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Abstract: During the COVID-19 pandemic, the digital economy has developed rapidly. The airborne
nature of COVID-19 viruses has attracted worldwide attention. Therefore, it is of great significance
to analyze the impact of the digital economy on particulate matter 2.5 (PM2.5) emissions. The
research sample of this paper include 283 prefecture-level cities in China from 2011 to 2019 in China.
Spatial Durbin model was adopted to explore the spatial spillover effect of digital economy on PM2.5

emissions. In addition, considering the impact of smart city pilot (SCP) policy, a spatial difference-
in-differences (SDID) model was used to analyze policy effects. The estimation results indicated
that (1) the development of the digital economy significantly reduces PM2.5 emissions. (2) The
spatial spillover effect of the digital economy significantly reduces PM2.5 emissions in neighboring
cities. (3) Smart city construction increases PM2.5 emissions in neighboring cities. (4) The reduction
effect of the digital economy on PM2.5 is more pronounced in the sample of eastern cities and
urban agglomerations.

Keywords: digital economy; particulate matter 2.5 emissions; spatial Durbin model; smart city pilot
policy; spatial difference-in-differences model

1. Introduction

The wide spread of COVID-19 in early 2020 has changed the way we live and work.
In an environment where the epidemic was spreading, new digital business models such
as online office, online shopping, online teaching, and online video were emerging, and
the digital economy have been developing rapidly [1]. In 2016, the G20 Digital Economic
Development and Cooperation Initiative clarified the concept of the digital economy,
highlighting digital information and knowledge and their role as carriers of information
networks. It also identified new information and communication technologies (ICT) as a
critical driver for upgrading the economy’s structure [2]. In 2020, the value of China’s digital
economy reached CNY 39.2 trillion, accounting for 7.8% of the gross domestic product
(Data from a white paper on the development of China’s digital economy published by
the China Academy of Information and Communication Technology). During the global
epidemic outbreak crisis, the development of the digital economy has provided a strong
impetus and guarantee for economic development.

Medical studies have indicated that the main channels of transmission of COVID-19
viruses include contact transmissions, mother-to-child transmission, and aerosol transmis-
sion [3]. Aerosol transmission refers to the mixing of droplets in the air to form an aerosol
which, when inhaled, causes infection. Delicate particulate matters are airborne particles
equal to or less than 2.5 microns in diameter, which can be suspended in the air for a more
extended period and have a more significant impact on human health and the quality
of the atmospheric environment. During the period of COVID-19 outbreak, exposure to
PM2.5 increased the risk of more severe symptoms at the time of infection [4], including
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death (Harvard T.H. Chan School of Public Health. (n.d.). Coronavirus and air pollu-
tion. https://www.hsph.harvard.edu/c-change/subtopics/coronavirus-and-pollution/,
accessed on 25 August 2022). According to the air quality report 2021 (https://www.iqair.
cn/cn/world-air-quality-report (accessed on 25 August 2022)), 143 of 1347 cities in East
Asia, had a PM2.5 greater than seven times the World Health Organization (WHO) air
quality objective value, and all 143 of these cities are from China, where average PM2.5
concentration in 2021 was 6.5 times the WHO annual air quality objective value. In 2021,
China ranked as the 22nd dirtiest country in the world. A series of facts show that air
pollution caused by PM2.5 emissions is a significant problem in China and, as such, poses a
considerable threat to public health and sustainable economic development. Especially in
the case of widespread COVID-19 virus transmission, air quality has a direct impact on the
rate of virus transmission [4].

Since the deepening of reform and opening up in China, the rapid economic devel-
opment urbanization level has been increasing. The urbanization process over the past
40 years had shown that the problem of high PM2.5 concentrations was mainly concentrated
in cities [5,6]. Unfortunately, China’s brutal model of economic development over the past
decades has caused irreversible environmental and energy crises [7]. Based on the trans-
mission characteristics of the new coronavirus and the development of the digital economy
in the post-epidemic era, it is essential to analyze the impact of the digital economy on
urban PM2.5 emissions. In addition, in August 2013, China’s Ministry of Industry and
Information Technology implemented a pilot policy on smart cities as an innovation to the
traditional urban governance model. There is a quasi-natural experimental scenario for
empirical analysis of whether innovations in urban governance models in the development
of the digital economy can reduce PM2.5 emissions.

Employing panel data of China’s 283 cities from 2011 to 2019, this paper empirically
explores the effects of the digital economic development and SCP policy on PM2.5, adopting
the spatial Durbin model and the spatial difference-in-difference (SDID) model, respectively.
We mainly analyze the following question: Does digital economy development reduce
PM2.5 emissions? Does the digital economy have spatial spillover effect on PM2.5? Have
SCP policy reduced PM2.5 emissions? Does smart city construction have a spatial spillover
effect on PM2.5 emissions?

The main contributions of this study can be summarized as follows: (1) Existing
studies on the digital economy have not standardized the definition and measurement of
the digital economy. This study employs an indicator system to construct digital economy
indicators at the city level in China through the entropy value method to complement the
digital economy research. (2) This paper quantified the impact of smart city construction on
PM2.5 emissions in a quasi-natural experiment using China’s SCP policy. Thus, it expands
the existing research perspective on smart cities and adds to the existing literature by
linking environmental pollution to smart city construction. (3) The spatial spillover effects
of digital economy and smart city construction are vital issues that may be neglected in
existing studies. This study also analyzes the impact of the digital economy and smart city
construction on PM2.5 emissions in pilot cities and neighboring non-pilot cities.

The structure of this paper is arranged as follows. Section 2 is a literature review.
Section 3 shows the research design and empirical analysis model. Section 4 further
explains the spatial characteristics of the digital economy and PM2.5 emissions. Section 5
presents and discusses the empirical results. Section 6 carries out an analysis of spatial
heterogeneity. Section 7 summarizes the conclusion.

2. Literature Review

Reviewing the digital economy, Tapscott (1996) indicated that the digital economy
explains the relationship between the new economy, new business, and new technology [8].
Rouse (2016) defined the digital economy as the economy based on digital technology
and considered the digital economy as a global network of economic activities supported
by information and communication technologies [9]. Further, Dahlman et al. (2016) ex-
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plained that the digital economy integrates a variety of generic technologies, a range of
economic and social activities carried out through the internet, including digital technolo-
gies based on physical infrastructure, used to access devices and their applications to
provide conditions [10].

With the rapid development of the internet, big data, cloud computing, blockchain,
and other modern information technologies, the digital economy was increasingly used
in life and production [11]. Especially in the light of COVID-19, the digital economy
was promoted more widely. The digital economy has become a significant driver for the
development of countries in the future [12,13]. As a result, the digital economy has attracted
widespread attention from political and academic circles.

First, some of the studies point to the digital economy as a driver for the development
of technology promotion, which improves economic development, social productivity, and
resource allocation throughout society [14–16]. On the one hand, the emergence of the
internet has reshaped operational and organizational structures, deflating spatial and tem-
poral constraints and enabling greater automation of traditional manufacturing processed,
leading to lower production costs, and higher productivity [14,17,18]. On the other hand,
the digital economy promotes connectivity, mere sharing and innovative collaboration
between economic agents, thus promoting digital technology empowerment [19–21]. With
technological innovation as the driving force of economic action, the digital economy faces
a broader scope for development against the backdrop of the ongoing advancement of
global sustainable development goals.

Second, with the advent of the internet, the digital economy has had a significant
impact on changes in the way societies live. For example, online shopping has eliminated
geographical restrictions, allowing people worldwide to buy the same products and ser-
vices, and promoting a global balance between supply and demand [12]. In addition,
the digital economy has played an irreplaceable role in the context of the spreading of
COVID-19. Online meetings, online offices, and online teaching provide a condition for
isolating groups [22,23]. The digital economy will play an increasingly important role in
future development during a century of unprecedented change.

Third, the digital economy development also influenced the environment. With global
environmental constraints, increasing applications of digital technologies are emerging in
the energy and environmental sectors [16,18]. The information integration capabilities of
digital technologies help energy companies to improve the efficiency, to reduce production
costs, and to extend the benefits of clean energy [24]. In addition, scholars in the field have
shifted from concentrating on whether the digital economy is good for the environment to
focus on how the digital economy is good for the environment.

2.1. Research on Digital Economy and Emissions Nexus

To meet the requirements of adapting to green development and addressing global
environmental issues, the digital economy has become a significant factor in promoting
quality economic development [13,18]. The main aspects are summarized below.

The development of digital economy contributes to the technological improvement of
the energy industry. Litvinenko (2020) uses the example of the mineral industry in the Rus-
sian Federation for his analysis and illustrates that digital systems reduce production costs
and improve the quality of human capital to achieve organizational efficiency gains [25].
In addition, using Japan as an example for analysis, Ahl et al. (2020) suggested that in the
energy sector, blockchain can reduce transaction costs, facilitate distributed, peer-to-peer
transactions, and create an innovative ecosystem for energy transformation [26]. Park
and Heo (2020) indicated that the energy data sharing mechanism and efficient regulatory
system established by ICT has facilitated the rapid development of the energy sector in
power industry in Korea [27]. One of the essential ways to reduce emissions is to improve
energy efficiency [7,18,28,29].



Int. J. Environ. Res. Public Health 2022, 19, 14456 4 of 20

2.2. Smart City Construction and Emissions Nexus

As the foundation of urban digital economy development, the construction of a smart
city takes an exogenous influence, and it is of great significance to investigate its influence
on emissions [13,16].

Smart cities are considered to be a transformation of city building and management,
with the integration of urban resources and information technology at their core [30].
Then, through the integration of urban resources and information technology, smart city
construction effectively improves air quality and has a significant positive spillover effect on
air pollution in neighboring cities, such that most of it can be attributed to the technological
impact [31]. On one hand, information technology can break through regional restrictions
and facilitate spreading technology and knowledge across regions. This enables innovation
dividends to be shared, which drives the production and lifestyle of other cities around the
smart city in the direction of intelligence [27,32]. On the other hand, the construction of
smart cities promotes the upgrading of urban industries structure and frees up space for the
development of high-tech industries by shifting energy-intensive and pollution-intensive
industry within the region [16,33].

A review of the literature revealed that there are still two gaps in the research on this
subject. First, even if the research on the digital economy have been around for a long
time, there is still a study gap in the definition and measures standard. Second, although
existing studies have analyzed impacts of digital economy on the environment, there is
still a research gap in the effect of digital economy and smart city construction on PM2.5
emissions. The following study will fill the above gaps.

3. Research Design
3.1. Methodology
3.1.1. Spatial Autocorrelation Model

Spatial autocorrelation refers to the potential interdependence between the observation
variables within the same distribution region. Especially, areas with similar locations have
similar variable values. If high values are adjacent to high values, or common values
are adjacent to common values, positive spatial autocorrelation exists. If high values are
adjacent to low values, there is a negative spatial correlation. If high values and common
values are published randomly, there is no spatial correlation [34]. The global Moran’s I
index was used to conduct spatial autocorrelation analysis of urban PM2.5 emissions, and
the relevant formula as follows [35].

I =

n
n
∑

i=1

n
∑

j=1
Wij|ci − c|

∣∣cj − c
∣∣

n
∑

i=1

n
∑

j=1
Wij

n
∑

i=1

∣∣cj − c
∣∣ (1)

The value of I ranges from −1 to 1. A positive value of I indicates a positive auto-
correlation in the neighboring space. The larger the I, the stronger the spatial correlation.
Conversely, a negative value of I represents a negative autocorrelation in the adjacent area.
If I is equal to 0, it indicates no spatial autocorrelation in urban carbon emissions [36].
Wij denoted the neighborhood weight matrix, and n represented the total number of cities.
ci, cj represented the carbon emissions of city i and city j, respectively. c defined the average
value of carbon emissions.

3.1.2. Spatial Markov Chains

A Markov chain is mainly used to analyze the continuous attribute values of an index
in different periods. Usually, the data level division is used to estimate the probability distri-
bution and change of each type, and the evolution and development process of geographical
phenomena are approximated as Markov processes [37]. A particular kind of distribution
at time t is represented by the state probability vector of Et = [E1,t, E2,t, · · · , Ek,t] of 1 × k,
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and the whole state transition process is described by the probability value k × k, as the
Markov probability transition matrix Mij [38,39]. Mij represented the probability that a
spatial unit of type i at time t becomes of type j at time t + 1.

Mij = nij/ni (2)

where nij represents the number of type i at time t that become type j at time t + 1, and ni
represents the sum of all kinds of i during the study period.

The regional correlation and dependence of the digital economy in geographic space
could not be ignored. The spatial Markov chain combined with the concept of spatial
lag made up for the lack of missing spatial interaction in the static Markov chain. The
spatial Markov chain introduce the spatial weight matrix to calculate the weighted average
attributes of adjacent regions to analyze the neighborhood conditions of spatial nits. If
the Markov chain has N possible states, the size of the transition matrix is of order N. To
analyze the state transition trend and dynamic evolution characteristics of the research
object, the digital economy level firstly was divided into N types by the method of the
natural break point. Secondly, the corresponding Markov probability transition matrix
is constructed to reflect the dynamic characteristics of the development of the digital
economy. Considering the mutual influence of the development of the digital economy in
the neighborhood, space factors are considered in the Markov transition matrix [40], as
shown in the following model:

value = ∑ DigitaliWij (3)

where, the value represents the spatial lag value, measuring the development level of the
digital economy in the spatial neighborhood, and obtained by the natural break point
method. Digitali represents the digital economy level in city i. Wij denoted the spatial
weight matrix.

3.1.3. Spatial Econometric Model

In this study, the spatial Durbin model (SDM) is used to introduces the spatial lag term
of dependent variables and the spatial lag term of the independent variables as independent
variables. The following model analyzes the relationship between the digital economy and
PM2.5 emissions.

ln pmit = α0 + β
n

∑
j=1

Wij ln pmit + γ ln(Xit) + λ
n

∑
j=1

Wij ln Xit + µi + υt + εit (4)

where, pmit is PM2.5 emissions per unit of output in city i, and β is the spatial lag regres-
sion coefficient, indicating the degree of mutual influence of spatial neighborhood PM2.5
emissions. Xit includes total independent variables in city i. γ is the regression coeffi-
cients of independent variables, and λ spatial lag regression coefficients of independent
variables. α0, µi, and νt represent constant term, individual fixed, and time fixed effects,
respectively. εit is the random disturbance term. Wij is the spatial weight matrix. In this
study, three spatial weights are used to analyze the spatial Durbin model. The first matrix
(W1

ij) is the spatial adjacency matrix, which takes the value of 1 for neighboring cities and

0 otherwise. The second matrix (W2
ij) is the economic distance matrix, constructed based

on the inverse of the gap between the per capita GDP of two cities. The third matrix (W3
ij)

is the economic–geographic nested matrix. Considering the influence of economic factors
and geographical, the economic distance spatial weight matrix and geographical distance
spatial weight matrix are nested to construct the matrix.

3.1.4. Spatial Difference-in-Differences Model

The construction of smart cities is the primary driver of the digital economy [16].
The Ministry of Housing and Construction officially promulgated the smart cities list on



Int. J. Environ. Res. Public Health 2022, 19, 14456 6 of 20

5 August 2013 (http://www.gov.cn/jrzg/2013-08/05/content_2461575.htm (accessed on
25 August 2022)) to promote the construction of smart city construction. To more robustly
analyze the impact of the digital economy on PM2.5 emissions, this study constructed a
dummy variable to investigate the SCP policy effect. The pilot city is 1, and the value of
the non-pilot city is 0, which is used to analyze the impact of SCP policy on urban PM2.5
emissions sites. The spatial DID model has been set as follows.

ln pmit = α0 + β
n
∑

j=1
Wij ln pmit + γ ln(Xit) + λ

n
∑

j=1
Wij ln Xitγ1 + γ1Smart

+λ1
n
∑

j=1
Smartγ0 + µi + υt + εit

(5)

where, Smart represents the dummy variable for whether SCP policy is implemented, and
other symbols are identical as Equation (5).

A necessary prerequisite for the DID method is that the treatment and control groups
satisfy the parallel trend hypothesis, i.e., there is either no significant difference in the digital
economy and PM2.5 emissions between the treatment and control groups of cities before
the SCP policy, or there is a relatively stable linkage trend. To address the characteristics
of SCP policy implementation, this study adopted an event study approach to test the
parallel trends.

The negative impact of the SCP policy on PM2.5 emissions may also come from some
unobservable factors. To ensure the reliability of the estimation results, estimation bias
due to the omission of explanatory variables needs to be eliminated. Xie et al. (2021) and
Guo et al. (2022) employed a random sampling method for placebo tests. Specifically, we
first divided all cities into the control group based on the actual SCP policy [16,41]. We
then randomly selected the same number of cities in the sample as the treatment group
and re-estimated benchmark estimates of 1000 times based on these placebo samples. The
t-statistics and coefficient estimates of 1000 times followed essentially a normal distribution.

3.2. Variables Selected

The dependent variable is PM2.5 emissions per unit of production (pm). The Atmo-
spheric Composition Analysis Group at Dalhousie University in Halifax combines global
models, satellite observations, and air quality monitor data to develop estimates of on-
the-ground PM2.5 levels (The resolution of the retrieval product is 0.01◦ × 0.01◦ spatial
resolution. The data in the grid can be exported by ArcGIS software). The measured data
are used in the empirical analysis of this paper.

The digital economy level was selected as the core independent variable. There is
still no uniform standard for the digital economy level. Combining with existing studies
on the digital economy [16,42–44], this study used the entropy method to measure the
level of digital economy development for four indicators: digital infrastructure, digital
industry development, digital innovation, and digital inclusive finance. Precisely, digital
infrastructure is mainly measured by broadband internet infrastructure and mobile internet
infrastructure by, respectively, the number of internet users and mobile phone users. The
development level of the digital industry is mainly measured by the information industry
basis and output value, which are the number of personnel in the information transmission,
computer service, and software industry and the total amount of telecom business. Digital
innovation level is mainly measured by spending on science and education. Digital financial
inclusion is mainly measured from three aspects: coverage breadth index, use depth index,
and digital measure, which are the coverage breadth index, use depth index, and digital
measure index of digital financial. Finally, the entropy method is used to measure the
comprehensive index of digital economy shown in Table 1. The development level of the
city’s digital economic is divided into four stages by the natural break point method: lag
phase, initial phase, propulsion phase, and leading phase.

http://www.gov.cn/jrzg/2013-08/05/content_2461575.htm
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Table 1. Comprehensive index system of digital economy.

Primary
Index

Secondary
Index Tertiary Index Indicator Description Index

Attribute

Digital
economy

Digital
infrastructure

Broadband
internet

Number of internet users (per
10,000 people) +

Mobile internet Numbers mobile phone users
(per 10,000 people) +

Digital industry
development

Information
industry basis

Number of personnel in the
information transmission,

computer service and
software industry

+

Information
industry output

value

Total amount of telecom
business (CNY 10,000) +

Digital
innovation

Digital
innovation factor

support

Spending on science and
education (%) +

Digital financial
inclusion

Coverage breath
index

Coverage breadth index of
digital financial +

Use depth index Use depth index of digital
financial +

Digital measure Digital measure index of
digital financial +

Based on existing research and theoretical analysis, the economy development level
(measured by per capita gross domestic product (GDP)) [7,45,46], urbanization
level [47,48], urban size (measured by population) [49–51], investment in fixed
assets [45,52,53], industrial upgrading [29,54,55], and green total factor productivity [56]
are selected as control variables.

3.3. Data Sources

This study selected 283 prefecture-level cities in China from 2011 to 2019 as research
samples. The data mainly comes from the Wind database, Guoyan web, China Urban
Statistical Yearbook, Digital research center of Peking University, China Energy Statistical
Yearbook, and China environmental Statistical Yearbook. Table 2 presents the descriptive
statistics of a significant variable.

Table 2. Descriptive statistics.

Explanation of
the Variables Data Sources Symbol Obs Mean Sd. Min Max Unit

PM2.5 emissions Atmospheric Composition Analysis
Unit, Dalhousie University ln pm 2547 43.6140 15.1208 13.8656 108.5263 Microgram

me/stere

Digital economy Digital research center of Peking
University ln Digital 2547 0.0949 0.0552 0.0102 0.8199 /

Per GDP China Urban Statistical Yearbook ln AGDP 2547 34,464.23 29,980.83 99 467,749 CNY/year
Urbanization level China Urban Statistical Yearbook ln Urb 2547 0.5496 0.1474 0.1815 1 /

Population size China Urban Statistical Yearbook ln Popu 2547 447.4903 319.9367 19.5 3404.01 /
Fixed asset

investment ratio China Urban Statistical Yearbook ln Invest 2547 0.0033 0.0035 0.0001 0.0406 /

Industrial
upgrading China Urban Statistical Yearbook ln Up 2547 0.3585 4.1002 0.0001 206.934 /

Green total factor
productivity Guoyan web and Wind database ln GTFP 2547 1.5371 0.7476 0.1044 2.9482 /

Note: In the follow regression, logarithms of all variables are taken.
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4. Spatial Evolution of the Digital Economy and PM2.5 Emissions
4.1. Agglomeration Characteristics of Digital Economy and PM2.5 Emissions

Based on the global Moran’s I index, this paper has analyzed the agglomeration
characteristics of the digital economy development level and PM2.5 emissions in China,
and further explored the spatial features. The results are shown in Table 2, which reports
the global Moran’s I index for the digital economy [12,14] and PM2.5 emissions [40,57].
The Moran’s I indexes are all significantly greater than 0, indicating a positive spatial
autocorrelation between the digital economy and PM2.5 emissions among Chinese cities.
Specifically, the Moran’s I index of the digital economy is smaller than the Moran’s I index
of PM2.5 emissions, indicating that the spatial autocorrelation of the digital economy is
slightly weaker than the spatial autocorrelation of PM2.5 emissions.

To analyze the spatial relationship of the digital economy and PM2.5 emissions,
Moran’s I indexes have been presented by different spatial distance thresholds of 100 km,
200 km, 300 km, 400 km, 500 km, and the entirety of these are in Table 3. The p-values of the
Moran’s I index for the digital economy and PM2.5 emissions are zero, and the z-indexes are
greater than 2.58, indicating significant spatial clustering of the digital economy and PM2.5
emissions in the city. Specifically, the Moran’s I indexes for the digital economy continues
to decrease over time, and the Moran’s I indexes for PM2.5 emissions increase and decrease,
suggesting that the correlation between different cities in the development of the digital
economy has an impact on the spatial correlation of PM2.5 emissions.

Table 3. Moran’s I index of the digital economy and PM2.5 emissions at different spatial thresholds.

2011 2012 2013 2014 2015 2016 2017 2018 2019

ln Digital entirety 0.220 ***
(5.966)

0.199 ***
(5.412)

0.179 ***
(4.895)

0.155 ***
(4.251)

0.151 ***
(4.131)

0.151 ***
(4.137)

0.150 ***
(4.114)

0.149 ***
(4.093)

0.138 ***
(3.795)

D100 0.290 ***
(6.656)

0.234 ***
(5.232)

0.266 ***
(5.956)

0.242 ***
(5.428)

0.213 ***
(4.784)

0.218 ***
(4.885)

0.227 ***
(5.084)

0.231 ***
(5.175)

0.220 ***
(4.928)

D200 0.178 ***
(8.239)

0.138 ***
(6.437)

0.155 ***
(7.187)

0.119 ***
(5.556)

0.117 ***
(5.489)

0.111 ***
(5.489)

0.123 ***
(5.198)

0.106 ***
(4.974)

0.100 ***
(4.713)

D300 0.105 ***
(7.291)

0.084 ***
(5.931)

0.086 ***
(6.076)

0.057 ***
(4.101)

0.059 ***
(4.216)

0.051 ***
(3.665)

0.052 ***
(3.734)

0.051 ***
(3.709)

0.040 **
(2.939)

D400 0.070 ***
(6.625)

0.054 ***
(6.625)

0.056 ***
(5.332)

0.031 ***
(3.316)

0.035 ***
(3.446)

0.034 ***
(3.339)

0.038 ***
(3.770)

0.028 **
(2.823)

0.026 **
(2.682)

D500 0.056 ***
(6.692)

0.043 ***
(5.260)

0.047 ***
(5.669)

0.021 **
(2.788)

0.020 **
(2.671)

0.028 ***
(3.540)

0.030 ***
(3.763)

0.022 **
(2.823)

0.022 **
(2.855)

ln pm entirety 0.273 ***
(7.394)

0.279 ***
(7.550)

0.261 ***
(7.091)

0.266 ***
(7.205)

0.290 ***
(7.855)

0.286 ***
(7.7500)

0.276 ***
(7.468)

0.267 ***
(7.248)

0.269 ***
(7.294)

D100 0.202 ***
(4.549)

0.219 ***
(4.908)

0.205 ***
(4.608)

0.193 ***
(4.346)

0.224 ***
(5.025)

0.226 ***
(5.073)

0.204 ***
(4.592)

0.198 ***
(4.442)

0.211 ***
(4.737)

D200 0.123 ***
(5.749)

0.130 ***
(6.055)

0.116 ***
(5.431)

0.093 ***
(4.375)

0.129 ***
(6.024)

0.131 ***
(6.106)

0.112 ***
(5.238)

0.108 ***
(5.044)

0.121 ***
(5.660)

D300 0.109 ***
(7.603)

0.107 ***
(7.461)

0.108 ***
(7.507)

0.080 ***
(5.662)

0.117 ***
(8.143)

0.117 ***
(8.117)

0.101 ***
(7.030)

0.105 ***
(7.321)

0.108 ***
(7.506)

D400 0.103 ***
(9.592)

0.103 ***
(9.595)

0.099 ***
(9.202)

0.079 ***
(7.410)

0.109 ***
(10.092)

0.111 ***
(10.329)

0.101 ***
(9.375)

0.107 ***
(9.906)

0.104 ***
(9.656)

D500 0.084 ***
(9.844)

0.084 ***
(9.919)

0.076 ***
(8.893)

0.065 ***
(7.711)

0.087 ***
(10.240)

0.088 ***
(10.335)

0.081 ***
(9.582)

0.085 ***
(10.017)

0.081 ***
(9.481)

Note: Z-value in parentheses. ** p < 0.05, *** p < 0.01. D100, D200, D300, D400, and D500 indicate 100 km, 200 km,
300 km, 400 km, and 500 km space thresholds, respectively.

4.2. Spatial Distribution Characteristics of the Digital Economy

The spatial distribution characteristics of the digital economy were visualized by
ArcGIS 10.6 software, as shown in Figure 1. From 2011 to 2019, the digital economy
development level has shown a trend of improvement, as well as a form of aggregate
development. The digital economy level was divided into four segments by the method of
natural segment points. The development level of the digital economy below 0.047 is the
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I phase, between 0.048 and 0.095 is the II phase, between 0.096 and 0.142 is the III phase,
and greater than 0.142 is the IV phase. The development of the digital economy in eastern
coastal areas has shown an agglomeration effect, especially in the Pearl River Delta and
Yangtze River Delta. In 2019, the development level of China’s digital economy significantly
improved. The theme of the digital economy and economic development pattern shows
the phenomenon of the core cities of digital economy spreading to surrounding cities. On
one hand, the technology spillover effect is the reason. On the other hand, factor resource
allocation optimization is the reason.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 9 of 20 
 

 

 D100 0.202 *** 
(4.549) 

0.219 *** 
(4.908) 

0.205 *** 
(4.608) 

0.193 *** 
(4.346) 

0.224 *** 
(5.025) 

0.226 *** 
(5.073) 

0.204 *** 
(4.592) 

0.198 *** 
(4.442) 

0.211 *** 
(4.737) 

 D200 0.123 *** 
(5.749) 

0.130 *** 
(6.055) 

0.116 *** 
(5.431) 

0.093 *** 
(4.375) 

0.129 *** 
(6.024) 

0.131 *** 
(6.106) 

0.112 *** 
(5.238) 

0.108 *** 
(5.044) 

0.121 *** 
(5.660) 

 D300 
0.109 *** 
(7.603) 

0.107 *** 
(7.461) 

0.108 *** 
(7.507) 

0.080 *** 
(5.662) 

0.117 *** 
(8.143) 

0.117 *** 
(8.117) 

0.101 *** 
(7.030) 

0.105 *** 
(7.321) 

0.108 *** 
(7.506) 

 D400 
0.103 *** 
(9.592) 

0.103 *** 
(9.595) 

0.099 *** 
(9.202) 

0.079 *** 
(7.410) 

0.109 *** 
(10.092) 

0.111 *** 
(10.329) 

0.101 *** 
(9.375) 

0.107 *** 
(9.906) 

0.104 *** 
(9.656) 

 D500 0.084 *** 
(9.844) 

0.084 *** 
(9.919) 

0.076 *** 
(8.893) 

0.065 *** 
(7.711) 

0.087 *** 
(10.240) 

0.088 *** 
(10.335) 

0.081 *** 
(9.582) 

0.085 *** 
(10.017) 

0.081 *** 
(9.481) 

Note: Z-value in parentheses. ** p < 0.05, *** p < 0.01. D100, D200, D300, D400, and D500 indicate 100 
km, 200 km, 300 km, 400 km, and 500 km space thresholds, respectively. 

4.2. Spatial Distribution Characteristics of the Digital Economy 
The spatial distribution characteristics of the digital economy were visualized by 

ArcGIS 10.6 software, as shown in Figure 1. From 2011 to 2019, the digital economy 
development level has shown a trend of improvement, as well as a form of aggregate 
development. The digital economy level was divided into four segments by the method 
of natural segment points. The development level of the digital economy below 0.047 is 
the I phase, between 0.048 and 0.095 is the II phase, between 0.096 and 0.142 is the III 
phase, and greater than 0.142 is the IV phase. The development of the digital economy in 
eastern coastal areas has shown an agglomeration effect, especially in the Pearl River Delta 
and Yangtze River Delta. In 2019, the development level of China’s digital economy 
significantly improved. The theme of the digital economy and economic development 
pattern shows the phenomenon of the core cities of digital economy spreading to 
surrounding cities. On one hand, the technology spillover effect is the reason. On the other 
hand, factor resource allocation optimization is the reason. 

 

 

Figure 1. Spatial-temporal evolution pattern of China’s digital economy. Note: Drawn by authors 
using ArcGIS 10.6. 

4.3. Spatial Dynamic Characteristics of the Digital Economy 
To analyze the spatial dynamic characteristics, in this section, we used the Markov 

chain method to calculate the transition probability of the digital economy to analyze the 
spatial evolution characteristics of the digital economy between cities from 2011 to 2019. 
The digital economy development level is divided into four stages, including: I phase, II 
phase, III phase, and IV phase by the natural break point method. According to the results 
in Table 4, the diagonal values of II phase, III phase, and IV phase of digital economy 
development level are all greater than 0.75, indicating that there is a hierarchical 
solidification phenomenon in these three phases. The hierarchical solidification level of I 
phase is the weakest, with a probability of 0.384. The upper right of the main diagonal 
indicates the probability of the digital economy moving from a lower level to a higher 

Figure 1. Spatial-temporal evolution pattern of China’s digital economy. Note: Drawn by authors
using ArcGIS 10.6.

4.3. Spatial Dynamic Characteristics of the Digital Economy

To analyze the spatial dynamic characteristics, in this section, we used the Markov
chain method to calculate the transition probability of the digital economy to analyze
the spatial evolution characteristics of the digital economy between cities from 2011 to
2019. The digital economy development level is divided into four stages, including:
I phase, II phase, III phase, and IV phase by the natural break point method. Accord-
ing to the results in Table 4, the diagonal values of II phase, III phase, and IV phase of
digital economy development level are all greater than 0.75, indicating that there is a
hierarchical solidification phenomenon in these three phases. The hierarchical solidification
level of I phase is the weakest, with a probability of 0.384. The upper right of the main
diagonal indicates the probability of the digital economy moving from a lower level to a
higher level. Among them, the transfer possibility from the I phase to the II phase is the
highest, which is 0.631. The second is from the II phase to III phase, with a probability of
0.222, followed by the transfer from propulsion phase to IV phase, with a probability of
0.173. In addition, the probability of cross-level transfer is minimal, which are less than
0.01, indicating that the development level of the urban digital economy in China has a
steady and gradual trend, and multi-level leapfrog development is challenging to occur.

Table 4. Markov transition probability of digital economy from 2011 to 2019.

Obs. I Phase II Phase III Phase IV Phase

I phase 297 0.384 0.613 0.003 0
II phase 1208 0.003 0.769 0.222 0.006
III phase 556 0 0.040 0.788 0.173
IV phase 203 0 0.010 0.069 0.921

4.4. Spatial Transfer Characteristics of the Digital Economy

Due to spatial auto-correlation, this section analyzes the influence of geographical
neighborhood relationships on the transition probability of digital economy development.
The Markov transition matrix is used to analyze the transition probability of the digital
economy development level under the influence of the community, and the results are
shown in Table 5. In terms of the transfer probability of digital economy level in the
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lag phase’s neighborhood, the central diagonal values of IV phase, III phase, II phase,
and I phase are 0.900, 0.600, 0.710, and 0.500 respectively, indicating that the probability
of horizontal transfer of digital development in the IV phase is more negligible in the I
phase community. From the perspective of transfer probability of digital economy level
in the neighborhood of the II phase, the main diagonal values of the IV phase, III phase,
II phase, and I phase are 0.750, 0.773, 0.750, and 0.500, respectively, indicating that the
transfer probability of the II phase is strong. The digital economy level of I phase in the
neighborhood of II phase has a possibility of 0.5 to move to a higher level. According
to the perspective of the transfer probability of the digital economic development in the
community of III phase, the central diagonal values of the IV phase, III, II phase, and I phase
are 0.877, 0.750, 0.787, and 0.200, respectively, indicating that I phase in the neighborhood
of the III phase has a significant influence on I phase. The probability of transfer to II phase
is 0.800. In terms of the transfer probability of the digital economy level in the IV phase’s
neighborhood, the central diagonal values of the IV phase, III phase, II phase, and I phase
are 0.931, 0.799, 0.770, and 0.382, respectively, indicating that the probability of horizontal
transfer of digital development in I phase is 0.618. According to the above analysis, the
state transition of the digital economy has a specific spatial correlation, and, significantly,
the I phase is most affected by the digital economy level of the surrounding cities. In
addition, there are apparent differences in the influence of different levels of regions in
the dynamic transfer. In particular, the IV phase can promote the joint development of the
digital economy in surrounding cities.

Table 5. Spatial Markov transition probability of the digital economic level.

Obs. I Phase I Phase III Phase IV Phase

I phase

I phase 6 0.500 0.500 0.000 0.000
II phase 31 0.000 0.710 0.290 0.000
III phase 25 0.000 0.080 0.600 0.280
IV phase 10 0.000 0.000 0.100 0.900

II phase

I phase 14 0.500 0.500 0.000 0.000
II phase 40 0.000 0.750 0.250 0.000
III phase 22 0.000 0.000 0.773 0.227
IV phase 4 0.000 0.000 0.250 0.750

III phase

I phase 10 0.200 0.800 0.000 0.000
II phase 75 0.000 0.787 0.213 0.000
III phase 36 0.000 0.028 0.750 0.222
IV phase 15 0.000 0.000 0.133 0.877

IV phase

I phase 267 0.382 0.614 0.004 0.000
II phase 1062 0.004 0.770 0.219 0.007
III phase 473 0.000 0.040 0.799 0.161
IV phase 174 0.000 0.011 0.057 0.931

4.5. Spatial Distribution Characteristics of PM2.5 Emissions

Figure 2 presented the spatial distribution characteristics of PM2.5 emissions for
283 cities in China for the three years 2011, 2015, and 2019, which were visualized by
ArcGIS 10.6 software. The data characteristics of PM2.5 emissions was divided into five
phases. Overall, PM2.5 is consistently higher in the central region and the Beijing-Tianjin-
Hebei economic cluster than in other regions. Around 2011, the problem of haze in China
threatened the health of the population. At one point, it became one of the most problematic
issues in China. Overall, China’s PM2.5 emissions have decreased, indicating that China’s
air quality has improved from 2011 to 2019.
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5. The Impact of the Digital Economy on PM2.5 Emissions
5.1. Total Effect of the Digital Economy on PM2.5 Emissions

Based on the results of the above analysis, it was shown that digital economy and
PM2.5 emissions have significant spatial correlation, and so ordinary least squares (OLS)
analysis is challenging to estimate. To analyze the results reliably and robustly, a spatial
Durbin model is used to analyze the impact of the digital economy on PM2.5 emissions in
this paper. The estimation results are shown in Table 6. City fixed effects and time fixed
effects are controlled in the model, as shown in City FE and Time FE in Table 6, respectively.

In Table 6, the neighborhood space matrix, the economic distance matrix, and the
economic geographical nesting matrix were considered separately. The impact of the
digital economy development on PM2.5 emissions was significantly negative under three
types of weight, indicating that digital economy development significantly reduced the
level of PM2.5 emissions in the region. This conclusion was consistent with [24,25,58].
Technological progress in the development of the digital economy has led to industrial
upgrading [14,16,21], which in turn has driven energy restructuring and the gradual
penetration of big data to promote the effectiveness of resource allocation [16,18,43]. At
the same time, economic externalities were generated, leading to an increase in industrial
productivity and urban energy utilization, ultimately contributing to the reduction of
PM2.5 emissions.

The comparative analysis revealed differences in the coefficient statistics and sig-
nificance of the digital economy under different spatial matrices. Even though the dig-
ital economy was not statistically significant under the neighborhood weights, it was
significantly negative at alpha level of 0.05 under both the economic distance and the
economic–geographic weight matrix. The marginal impact of the development of the
digital economy on neighborhood PM2.5 emissions was more significant than the marginal
impact on PM2.5 emissions in the region, which further illustrated the spatial relevance
discussed in Section 4.

In control variables, there were also differences in the significance of the coefficients of
several of the variables under different weighting matrices. Under the economic weights
and the economic–geographic nested weight matrix, the level of economic development
promotes the neighborhood PM2.5 emissions. Green total factor productivity, on the other
hand, reduced PM2.5 emissions in the neighborhood.
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Table 6. Impact of the digital economy on PM 2.5 emissions.

Variables
Neighborhood Weight Economic Weight Economic−Geographical

Nested

ln pm W1×ln pm ln pm W2×ln pm ln pm W3×ln pm

ln Digital −0.0416 **
(0.0175)

0.0109
(0.0134)

−0.0322 **
(0.0130)

−0.1118 ***
(0.0272)

−0.0244 **
(0.0117)

−0.0499 **
(0.0218)

ln AGDP 0.0030
(0.0042)

0.0086
(0.0061)

−0.0061
(0.0069)

0.0745 **
(0.0290)

−0.0047
(0.0052)

0.0394 **
(0.0146)

ln Urb −0.0306 **
(0.0156)

−0.0110
(0.0269)

−0.0492
(0.0323)

−0.2178 **
(0.0832)

−0.0411
(0.0290)

−0.1106
(0.0806)

ln Popu −0.0207
(0.0233)

−0.0950
(0.0758)

−0.0039
(0.0338)

0.1952 **
(0.0906)

0.0001
(0.0298)

0.0409
(0.0890)

ln Invest −0.0047 **
(0.0017)

−0.0005
(0.0026)

−0.0066 *
(0.0039)

0.0207 **
(0.0092)

−0.0063 *
(0.0034)

0.0078
(0.0076)

ln Up 0.0059
(0.0039)

−0.0002
(0.0046)

0.0064
(0.0050)

0.0204 **
(0.0097)

0.0053
(0.0043)

0.0165 **
(0.0076)

ln GTFP −0.0010
(0.0023)

−0.0051 *
(0.0027)

0.0013
(0.0050)

−0.0258 ***
(0.0061)

0.0023
(0.0043)

−0.0151 **
(0.0050)

rho 0.8811 ***
(0.0178)

0.5512 ***
(0.0244)

0.7352 ***
(0.0206)

City FE Yes Yes Yes
Year FE Yes Yes Yes

Obs. 2547 2547 2547
R2 0.6608 0.7031 0.7051

likelihood 2929.6137 1756.5161 1993.1250
Note: Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

5.2. Policy Effect of Smart Cities Pilot Policy

In 2013, the Chinese Ministry of Science and Technology and the National Standard-
isation Administration of China identified pilot cities for “smart city” technologies and
standards. The distribution of pilot cities is shown in Figure 3. Through the application of
new-generation information technologies such as Internet of Things (IOT) infrastructure,
cloud computing infrastructure, and tools and processes such as wikis, social networks,
Fab Lab, Living Lab, and integrated methods, smart cities achieve comprehensive and
open creation through perception, broadband and ubiquitous interconnection, intelligent
and integration. Along with the rise of network empires and the convergence of mobile
technologies of innovation, the smart city in the knowledge society environment was the
advanced form of informational city development after the digital city [16,59,60].

To evaluate the effect of SCP policy, this paper employed a spatial DID approach, and
the estimated results are represented in Table 7. The classical DID model was first used for
estimation and the results were shown in the first column. The estimated coefficient ob-
tained for the SCP policy was significantly negative, indicating that smart city construction
had reduced urban PM2.5 emissions to some extent. Further considering the spatial lag term
of the SCP policy dummy variable, the coefficient of the W×Smart showed a significant
positive effect. A possible reason was that SCP policy promoted low carbon, digital and
sustainable high-quality development, causing a portion of high energy consumption and
high emission industries to shift to neighboring cities [16]. Comparing the magnitude of
the coefficients shows that the coefficients of W×Smart were the largest under the economic
distance weighting matrix, indicating that this industrial shift prefers cities with similar
levels of development.
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Table 7. Policy effect of SCP policy.

Variables
Traditional DID Spatial DID

(1) (2) (3) (4)

Smart −0.0431 ***
(0.0153)

0.0012
(0.0052)

0.0108
(0.0141)

0.0028
(0.0124)

W×Smart 0.0396 ***
(0.0117)

0.0700 **
(0.0293)

0.0501 *
(0.0264)

ln Digital −0.2849 ***
(0.0127)

−0.0411 ***
(0.0106)

−0.0988 ***
(0.0112)

−0.0588 ***
(0.0096)

ln AGDP 0.01559 *
(0.0087)

0.0027
(0.0035)

−0.0080
(0.0058)

−0.0050
(0.0046)

ln Urb −0.2146 ***
(0.0440)

−0.0375 **
(0.0132)

−0.0888 **
(0.0323)

−0.0662 **
(0.0284)

ln Popu −0.1104
(0.0779)

−0.0249
(0.0220)

−0.0111
(0.0363)

0.0001
(0.0296)

ln Invest −0.0118 **
(0.0045)

−0.0049 **
(0.0017)

−0.0104 **
(0.0039)

−0.0077 **
(0.0033)

ln Up 0.0139 **
(0.0066)

0.0057
(0.0036)

0.0065
(0.0048)

0.0051
(0.0041)

ln GTFP −0.0373 ***
(0.0027)

−0.0027
(0.0013)

−0.0082 ***
(0.0024)

−0.0040 *
(0.0022)

Fixed effect Yes Yes Yes Yes
Obs. 2547 2547 2547 2547
R2 0.5890 0.6974 0.6741 0.6846

Note: Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. W indicates spatial weight matrix.

5.3. Placebo Test

There may be some unobservable factors in the impact of SCP policy on PM2.5 emis-
sions. This bias in estimation due to unobservable factors needs to be eliminated, and this
study refers to Xie et al. (2021) and Guo et al. (2022) for a placebo trial using a random
sampling method [16,41]. Specifically, all cities were divided into a control group based on
the actual SCP policy. An identical number of cities in the sample were randomly selected
as the treatment group. These samples were finally replicated an estimated 1000 times.

Kernel density plots of the t-statistic and estimated coefficients are reported separately
in Figure 4. Based on results from Figure 4, the t-statistics and estimated coefficients of
these 1000 regressions follow a normal distribution and the peak is around 0. Implying
that the SCP policy has no significant effect on the randomly selected experimental group,
further demonstrating the robustness of the study findings.
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Figure 4. Placebo test. Note: The curves indicate the distribution of t-values and estimated coefficients
for 1000 replicate tests, respectively. The red dashed line indicates that the results of 1000 repeated
experiments basically obey the state distribution.

5.4. Exclude the Influence of Other Policies

During the sample period of this paper, the Chinese government also introduced some
other policies. In October 2014, China’s Ministry of Industry and Information Technology
announced the list of pilot cities for Broadband China (BC) to speed up information transfer
and improve the efficiency of social and economical operations. In December 2015, China’s
Ministry of Industry and Information Technology (MIIT) announced the inclusion of
11 cities in the pilot list of regional industrial green transformation to promote the green
and efficient development of industry. In 2017, the national development and reform
commission (NDRC) issued the Notice on the Piloting of Low-carbon (LC) Provinces,
Regions, and Cities to promote the development of low-carbon industries, build low-
carbon cities, and advocate low-carbon living. These policies might also impact urban
PM2.5 emissions.

To exclude the influence of these policies, this section controlled for them and pre-
sented the estimation results in Table 8. Columns (1)–(3) report the policy effect of BC, MITT,
and LC pilot policies separately. The estimation results indicated that these three policies
have no significant impact on PM2.5. Column (4) considered these three policies and the
wise city pilot policy. The results show that the effects of digital economy development
on urban PM2.5 concentration is still significantly negative. The coefficient of the smart
city pilot policy is negative. However, the estimated coefficients of these three policies are
not significant.
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Table 8. Excluding the other policies effects.

Variables
(1) (2) (3) (4)

ln pm W×ln pm ln pm W×ln pm ln pm W×ln pm ln pm W×ln pm

ln Digital −0.0403 **
(0.0176)

0.0089
(0.0132)

−0.0405 **
(0.0175)

0.0102
(0.0134)

−0.0391 **
(0.0172)

0.0147
(0.0137)

−0.0377 **
(0.0173)

0.0107
(0.0136)

smart −0.0095 *
(0.0050)

0.0136
(0.0094)

BC −0.0041
(0.0064)

0.0146
(0.0101)

−0.0029
(0.0063)

−0.0103
(0.0122)

RIGT 0.0046
(0.0120)

0.0043
(0.0205)

0.0035
(0.0116)

0.0027
(0.0200)

LC −0.0114
(0.0087)

−0.0157 *
(0.0083)

−0.0097
(0.0087)

−0.0173 **
(0.0083)

ln AGDP 0.0028
(0.0042)

0.0088
(0.0062)

0.0029
(0.0042)

0.0086
(0.0062)

0.0025
(0.0040)

0.0030
(0.0060)

0.0025
(0.0040)

0.0038
(0.0061)

ln Urb −0.0284 **
(0.0144)

−0.0142
(0.0255)

−0.0253 *
(0.0147)

−0.0175
(0.0259)

−0.0292 *
(0.0152)

−0.0212
(0.0259)

−0.0356 **
(0.00147)

−0.0157
(0.0259)

ln Popu −0.0209
(0.0236)

−0.0970
(0.0780)

−0.0196
(0.0233)

−0.0935
(0.0746)

−0.0173
(0.0235)

−0.0921
(0.0737)

−0.0160
(0.0226)

−0.0927
(0.0758)

ln Invest −0.0047 **
(0.0017)

−0.0008
(0.0027)

−0.0047 **
(0.0017)

−0.0009
(0.0026)

−0.0047 **
(0.0017)

−0.0006
(0.0027)

−0.0050 ***
(0.0016)

−0.0003
(0.0027)

ln Up 0.0058
(0.0039)

−0.0004
(0.0046)

0.0059
(0.0039)

−0.0005
(0.0045)

0.0060
(0.0037)

0.0005
(0.0046)

0.0057
(0.0038)

−0.0002
(0.0045)

ln GTFP −0.0012
(0.0023)

−0.0053 *
(0.0028)

−0.0011
(0.0023)

−0.0049 *
(0.0027)

−0.0012
(0.0023)

−0.0050 *
(0.0027)

−0.0012
(0.0023)

−0.0059 **
(0.0028)

rho 0.8831 ***
(0.0176)

0.8832 ***
(0.01760)

0.8717 ***
(0.0196)

0.8721 ***
(0.0197)

Controls Yes Yes Yes Yes
City FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

Obs. 2547 2547 2547 2547
R2 0.6661 0.6626 0.7122 0.7227

likelihood 2956.1962 2954.8262 2968.6545 2975.3857

Note: Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. BC presents Broadband China pilot policy.
RIGT presents regional industrial green transfer pilot policy. LC presents low-carbon pilot policy.

6. Spatial Heterogeneity Analysis

Based on the uneven regional development of China, this section further analyzed
the spatial variability of the impact of the digital economy on urban PM2.5 emissions.
It was carried out in terms of both the geographical area (The division of the eastern,
middle and western was mainly based on the criteria of the Nation Statistics Office.
http://www.stats.gov.cn/xxgk/sjfb/zxfb2020/202207/t20220715_1886447.html (accessed
on 25 August 2022)), and whether it was an urban agglomeration (China’s urban agglomer-
ations include the Beijing-Tianjin-Hebei urban agglomeration, the Yangtze River midstream
urban agglomeration, the Ha-Chang urban agglomeration, the Chengdu-Chongqing urban
agglomeration, the Yangtze River Delta urban agglomeration, the Central Plains urban
agglomeration, the Beibu Gulf urban agglomeration, the Guanzhong Plain urban agglomer-
ation, the Hubao-Egyu urban agglomeration, the Lanzhou-West urban agglomeration and
the Guangdong-Hong Kong-Macao Greater Bay Area). As the differences between regions
include economic distance differences and geographical differences, they were calculated in
the subsequent analysis based on an economic geographical nested matrix. The estimated
results are shown in Table 9.

http://www.stats.gov.cn/xxgk/sjfb/zxfb2020/202207/t20220715_1886447.html
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Table 9. Regression results for the spatial heterogeneity test.

Variables
East Central West

Urban
Agglomerations

Non−Urban Cluster

ln pm W×ln pm ln pm W×ln pm ln pm W×ln pm ln pm W×ln pm ln pm W×ln pm

ln Digital
−0.0725

***
(0.0207)

−0.1527
***

(0.0474)

0.0176
(0.0351)

−0.0661
(0.0866)

−0.0456
(0.0281)

−0.0318
(0.0422)

−0.0402 **
(0.0187)

−0.0617 **
(0.0310)

−0.0213
(0.0153)

−0.0651 **
(0.0274)

ln AGDP
0.1528 **
(0.0711)

−0.0865
(0.0674)

−0.0286
(0.0375)

0.0389
(0.0487)

0.0155
(0.0177)

0.0214
(0.0166)

−0.0098
(0.0066)

0.0547 **
(0.0180)

0.0016
(0.0129)

0.736 ***
(0.0192)

ln Urb
0.1196 *
(0.0648)

0.0321
(0.1199)

−0.1918
(0.1543)

−0.2963
(0.2724)

−0.0534
(0.0554)

−0.5207 **
(0.1772)

−0.0172
(0.0342)

−0.2259 **
(0.0863)

−0.0435
(0.0384)

−0.0658
(0.0942)

ln Popu
0.730 ***
(0.1861)

−0.1387
(0.2662)

0.4217 ***
(0.1167)

−0.1357
(0.1506)

1.0427
(0.0411)

−0.3568
***

(0.0879)

0.0115
(0.0278)

0.0877
(0.05580)

0.0177
(0.0655)

−0.3199 *
(0.1891)

ln Invest
0.0073

(0.0082)
−0.0007
(0.0138)

−0.0137 *
(0.0080)

0.0177
(0.0142)

0.0024
(0.0071)

0.0251
(0.0155)

−0.0098 **
(0.0049)

0.0172 *
(0.0102)

−0.0023
(0.0041)

−0.0043
(0.0085)

ln Up
0.0312 **
(0.0147)

0.0253
(0.0176)

−0.0198
(0.0138)

0.0317
(0.0328)

0.0145
(0.0114)

−0.0632 **
(0.0262)

−0.0026
(0.0082)

0.0184
(0.0122)

0.0106 **
(0.0039)

0.0022
(0.0126)

ln GTFP
−0.0576 **
(0.0274)

0.0190
(0.0238)

0.0166
(0.0129)

−0.0355 **
(0.0139)

−0.0515
***

(0.0100)

0.0378 ***
(0.0110)

0.0045
(0.0063)

−0.0244
***

(0.0075)

−0.0056
***

(0.0055)

−0.0079
(0.0064)

rho
0.5854 ***
(0.0532)

0.6401 ***
(0.0644)

0.5305 ***
(0.0483)

0.6719 ***
(0.0320)

0.7225 ***
(0.0284)

City FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes

Obs. 909 891 747 1134 1413
R2 0.5507 0.2953 0.2480 0.7672 0.6474

likelihood 517.8134 364.7632 463.4475 899.4301 1138.3396

Note: Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

First, the impact of the digital economy on urban PM2.5 emissions is estimated for
each of the three regions: eastern, middle, and western (The eastern region includes
Beijing, Tianjin Hebei, Shanghai, Jiangsu, Zhejiang, Fujian, Guangdong, Shandong, Hainan,
Liaoning, Jilin, and Heilongjiang. The middle region includes Shanxi, Anhui, Jiangxi,
Henan, Hubei, and Hunan. The western region includes Guangxi, Chongqing, Sichuan,
Yunnan, Tibet, Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang). In the eastern region, the
development of the digital economy had significantly curbed PM2.5 emissions, as well as
in neighboring areas. Each unit increase in the digital economy reduced PM2.5 emissions
in the area by 7.25%, while reducing PM2.5 emissions in neighboring regions by 15.27%,
all at an alpha level of 0.01. Since China’s reform and opening up, the eastern region
had experienced rapid economic development and was at the leading edge of the country.
The eastern region has more apparent advantages in infrastructure and digital industry
development. In addition, the east area had gathered many innovative talents and capital,
relying on various advantages to play an empowering role in the digital economy. The
ultimate expression is green and emissions reduction [14,15]. In intermediate and west
regions, the digital economy did not pass a significance test, probably because the level of
development of the digital economy in the middle and west was still in its infancy. The
increased resource consumption of the digital economy development and the effect of
digital empowerment offset each other, ultimately resulting in a non-significant effect of
the digital economy on PM2.5 emissions [14].

Second, from a city cluster perspective, the development of the digital economy had a
mitigating effect on urban PM2.5 emissions within city clusters, and reduced neighboring
cities through spillover effects. Especially, each unit increase in the digital economy of a city
cluster reduced PM2.5 emissions by 4.02% in the region and by 6.17% in neighboring cities,
both at alpha level of 0.05. It was mainly because the development of urban agglomerations
showed strong synergies, and there were spillover effects between cities. For cities in
non-urban clusters, the digital economy had no significant impact on PM2.5 emissions, but
reduced PM2.5 emissions in neighboring cities.
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In summary, the spatial heterogeneity analysis suggested that the environmental
dividends of the digital economy in eastern and urban agglomerations are more fully
realized in the form of reduced PM2.5 emissions in the region and neighboring areas. The
cities in the central and west and non-urban clusters did not pass the significance test. The
possible reason for this is that the level of digital economy development is still early in
the central and west and non-urban cluster cities. The increase in resource consumption
caused by the initial development of the digital economy is offset by the boost generated
by digital empowerment.

7. Conclusions

To investigate the spatial effect of digital economy on PM2.5 emissions in China, this
paper establishes a spatial Durbin model by using prefecture-level cities from 2011 to 2019.
We further discuss the policy effect and spillover effect of smart city pilot policy. In addition,
we analyze the heterogeneous results between the digital economy and PM2.5 emissions in
two aspects. Accordingly, we highlight the following conclusions:

First, urban digital economy development is significantly negatively correlated with
PM2.5 emissions. Specifically, a 1% increase in the digital economy index will mitigate
PM2.5 emissions by an average of 2.44%. The spatial spillover effect results indicate that the
adverse spillover effects of the digital economy on neighboring PM2.5 emissions are more
substantial. A 1% increase in the digital economy index will mitigate neighboring PM2.5
emissions by an average of 4.99%. Possible reasons for this are that the development of
the digital economy promotes technological efficiency and reduces PM2.5 emissions in the
region and neighboring regions through technological spillover [61]. That is to say, digital
economy development significantly facilitates the process of green economic growth.

Second, considering the policy effect of the smart city pilot policy, this paper uses
classical DID and spatial DID models to explore the impact of smart city construction
on PM2.5 emissions. The empirical results persisted that SCP policy significantly reduces
PM2.5 emissions of pilot cities than non-pilot cities, and the spatial DID results show that
SCP policy significantly increases PM2.5 emissions of the neighbor cities of pilot cities.
One possible reason is that the construction of smart cities has led to the transfer of
highly polluting and emitting industries from the pilot cities to neighboring cities, thereby
increasing PM2.5 emissions from neighboring cities. In other words, smart city construction
reduces PM2.5 emissions in the pilot cities but increases PM2.5 emissions in neighboring
cities. To achieve green and sustainable development, the scope of smart cities should be
promoted, thus improving environmental quality.

Third, because of the uneven development of China’s regional economies and the
differences in the development of urban agglomerations, the differences are analyzed in
these two aspects. In the eastern region, a 1% increase in the digital economy index will
mitigate PM2.5 emissions by an average of 7.25% and 15.27% in region and neighboring
cities, respectively. For cities in urban agglomerations, a 1% increase in the digital econ-
omy index will mitigate PM2.5 emissions by an average of 4.02% and 6.17 in region and
neighboring cities, respectively. In other words, the digital economy spillover effect from
eastern and urban agglomeration should be given full play to drive the development of the
digital economy in middle and western regions and non-urban agglomerations, thereby
promoting green and sustainable economic development.

According to the above conclusions, we put forward the following insights. First, the
process of smart city construction, the development of the digital economy is conducive
to reducing PM2.5 emissions, thus promoting green economic development. Second, the
spatial spillover effects of the digital economy from eastern cities and urban agglomerations
are still insufficient to affect central and western cities and non-urban agglomerations, illus-
trating the clear imbalance that characterizes the development of China’s digital economy.
In a word, the development of digital economy in urban regions still has great potential for
the digital economy in China.
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