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Highlights:

What are the main findings?

• Contact tracing (CT) alone can control epidemic spreading
• CT efficacy changes under mobility lockdowns (LDs)
• A small fraction of indirect transmission can impede disease control

What is the implication of the main finding?

• Detailed knowledge regarding transmission routes is crucial to determine efficient non-
pharmaceutical intervention strategies

• Reduction of indirect transmission via fomites becomes particular important in the course of
mobility LDs

Abstract: The spread of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has raised
major health policy questions. Direct transmission via respiratory droplets seems to be the dominant
route of its transmission. However, indirect transmission via shared contact of contaminated objects
may also occur. The contribution of each transmission route to epidemic spread might change during
lock-down scenarios. Here, we simulate viral spread of an abstract epidemic considering both routes
of transmission by use of a stochastic, agent-based SEIR model. We show that efficient contact tracing
(CT) at a high level of incidence can stabilize daily cases independently of the transmission route long
before effects of herd immunity become relevant. CT efficacy depends on the fraction of cases that do
not show symptoms. Combining CT with lock-down scenarios that reduce agent mobility lowers the
incidence for exclusive direct transmission scenarios and can even eradicate the epidemic. However,
even for small fractions of indirect transmission, such lockdowns can impede CT efficacy and increase
case numbers. These counterproductive effects can be reduced by applying measures that favor
distancing over reduced mobility. In summary, we show that the efficacy of lock-downs depends on
the transmission route. Our results point to the particular importance of hygiene measures during
mobility lock-downs.

Keywords: virus transmission; contact tracing; lock-down; modelling epidemics; SEIR; agent-
based model

1. Introduction

In 2020, governments attempted to control the COVID-19 pandemic with non-
pharmaceutical interventions ranging from limiting gathering sizes, closures of business
and educational institutions, to stay-at-home orders, each of which reduced virus trans-
mission with different efficacy [1]. Given the impact of these interventions on resources
and individual liberty, they can be applied for a limited period only. Thus, additional
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control and monitoring strategies have been recommended. One key strategy is contact
tracing (CT), i.e., identifying and monitoring people who have been in close contact with
individuals with confirmed diagnoses.

Close contact with infectious individuals, in particular long-term, face-to-face contact,
is commonly accepted as the main transmission route of SARS-CoV-2. In contrast, trans-
mission via contaminated, highly frequented areas is considered to be of minor importance,
in particular in community settings [2,3]. It has been shown that stay-at-home mandates
reduce disease spreading [4], supporting that infection with SARS-CoV-2 is mainly driven
by direct contact transmission. However, we show that mobility lockdowns can decrease
CT efficacy and thereby may counteract disease control.

A prerequisite of such effects is a small contribution (~10%) of indirect virus transmis-
sion. Indirect transmission is known to be important for other corona viruses such as SARS
and MERS [5]. Indeed, SARS-CoV-2 can remain viable on non-adherent surfaces for several
days, as reviewed in [6,7], or even longer on personal protective equipment such as gloves,
coveralls or face masks [8]. This time is long enough to enable viral spreading, though there
is evidence that sunlight rapidly inactivates the virus [9]. Thus, indirect transmission may
occur preferentially indoors via high-touch surfaces as observed in Guangzhou, e.g., [10].
In the UK, the contribution of indirect transmission routes via fomites to COVID-19 death
cases has been estimated to reach 25% [11].

Mathematical models have been applied to study the conditions necessary for effi-
cient CT [12–15], the impact of supportive techniques [16], and their potential to allow
re-opening [17]. These studies use different modeling strategies such as stochastic or deter-
ministic branching models and agent-based models, and they can cover a broad range of
spatial details [17]. However, all of these studies assume direct (contact-based) virus trans-
mission. In fact, indirect transmission scenarios were modeled long before the COVID-19
pandemic [18] and even consider the effects of preferential attachment [19]. To our knowl-
edge, such models have not yet been investigated with respect to non-pharmaceutical
interventions.

Here, we use an agent-based model to simulate epidemic spread in scenarios that
consider both direct and indirect infection routes. We simulate spreading with and without
CT and study lock-down (LD) scenarios for both transmission types. Thereby, we provide
insight into mechanisms that might limit or even counteract epidemic control by CT. It was
neither our objective to provide a quantitative model of the early COVID-19 epidemic nor
to simulate the impact of particular travel modes on epidemic spread. We focus on the
interplay between different control strategies and show that they can counteract each other.
By using model parameters of the simulated epidemic similar to those of the COVID-19
epidemic, we demonstrate that such interactions can become relevant under real conditions,
which requires better characterization of transmission routes in general. We expect our
study to contribute to a better understanding of potential spreading dynamics.

2. Methods

Our modelling approach builds on the so-called SEIR model. Accordingly, we divide
the population (N) into four different subpopulations: (i) individuals that are healthy but
susceptible to the infection (S), (ii) newly infected individuals that are not infectious, called
“exposed” (E), (iii) infectious individuals (I), and (iv) those individuals who recovered from
the disease (R). Thus, it yields: S + E + I + R = N. Agents cannot become infected after they
have recovered. We neglect births and deaths of agents. In a continuum approach, this
model is described by four differential equations:

Susceptible : dS
dt = −β S

N I Exposed : dE
dt = β S

N I − αE

Infected : dI
dt = αE − γI Recovered : dR

dt = γI
(1)

Here, t is the time, β the transmission rate, α the conversion rate and γ the recovery
rate. The parameters β and γ can be estimated based on epidemic spread. For the number
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of cumulative cases P yields P = N − S. Thus, an increase of the daily cases ∆P with the
number of currently infectious individuals I provides an estimate for β in the initial phase
of the epidemic (S ≈ N). The change of the daily recovered cases ∆R with I provides the
recovery rate γ [20]. The model parameter are summarized in Table 1.

Assuming that the daily cases and daily recovered cases seen in an epidemic are
proportional to ∆P and ∆R, respectively, one can estimate β and γ from public data.
In our study, in order to model realistic epidemic spreading dynamics, we use data
on the COVID-19 epidemic spread in Austria, Germany and Switzerland in the first
epidemic wave in the summer of 2020. They are very similar and suggest average
values βex = 0.25/day and γex = 0.05/day (Figure S1, Supplementary Materials). These
values are in agreement with an estimate of the parameters for Austria by Bayesian analy-
sis [21] and provide an estimate of the basic reproduction number: R0 = β/γ = 5.

In our study, we use a stochastic realization of the SEIR-model with discrete time
steps ∆t. A summary of the model design can be found in the Supplementary Materials
(Text S2). In the reference system, we consider Nref ≈ 16,000 agents (Figure 1A) that
perform a truncated random walk on a quadratic area A with periodic boundary conditions
(Figure 1B). The jump rate is constant (1/∆t) and the step size in both the x- and y-direction
is equally distributed between 0 and rmax. We assign each agent an individual base position
(p Є A), to which it returns repeatedly after tret = 12 h in a single jump [22]. We do not
consider heterogeneity of agent mobility, household structures and do not model travel.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 3 of 14 
 

 

of cumulative cases P yields P = N − S. Thus, an increase of the daily cases ΔP with the 
number of currently infectious individuals I provides an estimate for β in the initial phase 
of the epidemic (𝑆 𝑁). The change of the daily recovered cases ΔR with I provides the 
recovery rate γ [20]. The model parameter are summarized in Table 1. 

Assuming that the daily cases and daily recovered cases seen in an epidemic are pro-
portional to ΔP and ΔR, respectively, one can estimate β and γ from public data. In our 
study, in order to model realistic epidemic spreading dynamics, we use data on the 
COVID-19 epidemic spread in Austria, Germany and Switzerland in the first epidemic 
wave in the summer of 2020. They are very similar and suggest average values βex = 

0.25/day and γex = 0.05/day (Figure S1, Supplementary Materials). These values are in 
agreement with an estimate of the parameters for Austria by Bayesian analysis [21] and 
provide an estimate of the basic reproduction number: R0 = β/γ = 5. 

In our study, we use a stochastic realization of the SEIR-model with discrete time 
steps Δt. A summary of the model design can be found in the Supplementary Materials 
(Text S2). In the reference system, we consider Nref ≈ 16,000 agents (Figure 1A) that perform 
a truncated random walk on a quadratic area A with periodic boundary conditions (Figure 
1B). The jump rate is constant (1/Δt) and the step size in both the x- and y-direction is 
equally distributed between 0 and rmax. We assign each agent an individual base position 
(p Є A), to which it returns repeatedly after tret = 12 h in a single jump [22]. We do not 
consider heterogeneity of agent mobility, household structures and do not model travel. 

 
Figure 1. Agent properties. (A) The spatial distribution of agents (16,000 agents) at t1 = 4 weeks. Color 
encodes the type of agent. Grey: S, yellow: E, red: Is, green: Ia, cyan: R. The size of agents in state E, 
Is, Ia and R is enhanced for better identification. (B) The traces of agents during their infectious state, 
and (C) the viral load VL induced by these agents. Small crosses indicate the agent’s base position. 

For the duration of the exposed state, TE = 1/α, we assume two days [23]. In contrast 
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before an agent can recover. This is an option to model data on the daily recovered cases 
that show separate branches for increasing and decreasing numbers I = (Is + Ia) (Figure S2A, 
Supplementary Materials). After that time span, individuals can recover with the transi-
tion probability ΓΔt per time step. We consider two different transmission scenarios: 

Direct transmission: Infectious agents can infect susceptible agents with a constant 
transmission rate, 𝛽 , if they are in contact. To calculate contact events, we assign each 
agent a contact radius rin. If two agents come closer than 2rin, they are considered to have 
contact as long as their distance remains smaller than 2rin. Contact is tested in each time 

Figure 1. Agent properties. (A) The spatial distribution of agents (16,000 agents) at t1 = 4 weeks.
Color encodes the type of agent. Grey: S, yellow: E, red: Is, green: Ia, cyan: R. The size of agents
in state E, Is, Ia and R is enhanced for better identification. (B) The traces of agents during their
infectious state, and (C) the viral load VL induced by these agents. Small crosses indicate the agent’s
base position.

For the duration of the exposed state, TE = 1/α, we assume two days [23]. In contrast
to the classical SEIR model, we do not vary this time throughout the simulation; thus, the
transition from exposed to infectious (E to I) is deterministic. Other agent properties also
differ from the classical SEIR-model: The number of infectious agents (I) is randomly split
into two populations, symptomatic (Is) and asymptomatic (Ia) agents. While symptomatic
infectious agents are always detected after the incubation time, asymptomatic infectious
agents are not detectable without testing (see below). The average fraction of asymptomatic
cases: FA = Ia/(Is + Ia) is fixed. We assume a minimal duration of the infectious state TI
before an agent can recover. This is an option to model data on the daily recovered cases
that show separate branches for increasing and decreasing numbers I = (Is + Ia) (Figure S2A,
Supplementary Materials). After that time span, individuals can recover with the transition
probability Γ∆t per time step. We consider two different transmission scenarios:

Direct transmission: Infectious agents can infect susceptible agents with a constant
transmission rate, βdi, if they are in contact. To calculate contact events, we assign each
agent a contact radius rin. If two agents come closer than 2rin, they are considered to have
contact as long as their distance remains smaller than 2rin. Contact is tested in each time
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step ∆t. The expected number of infections per infectious i per day, wdi, is accordingly
given by βdi∑j(kj∆t), where (kj∆t) is the duration of the contact j (kj time steps). The sum
runs, over all, potentially multiple contacts with susceptible agents within a day (2tret). The
βdi was chosen such that wdi/(2tret) within the first weeks is close to the observed values of
βex (±10%) in the COVID-19 epidemic.

Indirect transmission: Infectious agents leave a trace of virus behind. They contami-
nate the environment, represented by M interaction points randomly distributed over A.
Each point j, thus, has a dimensionless virus load VL(j, t) (Figure 1C). This load increases
during the contact time with an infected agent in every time step by aL ∆t/Nc (aL: virus
contamination parameter, Nc: number of contact points of the agent) and decreases with a
half-life-time dL of about 15 h. Susceptible agents in contact with a contaminated point j
become infected at the rate βinVL(j, t). The expected number of infections per infectious i
per day, win, is given by βin ∑

j
∑
k

(
Vi

L(j, t)∆t
)
, where j runs over all contacts by susceptible

agents with points j contaminated by i within a day, and k runs over the time steps of the
individual contact. Vi

L(j, t) is the load at point j left behind by i. To facilitate comparison
between direct and indirect transmission scenarios, the half-life-time dL was adjusted such
that win/(2tret) in the first weeks is again close to observed values of the COVID-19 epidemic
of βex (±10%). For mobile agents, the number of agents contacting the points contaminated
by an infectious agent is much higher than the number of agents contacting this agent
directly. Thus, the risk of an indirect infection becomes relevant, although the risk per
individual surface contact may be small.

Table 1. Reference model parameter (Nref ≈ 16,000, A = 1.6 km2). For simplification, we consider
fixed parameters (TE, TI and TN) although they might be broadly distributed (see [24]).

Parameter Symbol Value Comment

duration of the exposed state TE = 1/α 2 days [23], 2 days

incubation time TN 5 days [25], 4.75 days

minimal time of infectious state TI 5 days [26], TN − TE + 2 days

fraction of asymptotic cases FA 1/2, 2/3, . . . , 5/6 serological studies, see text

agent return time tret 12 h [22], 12 and 24 h

time step ∆t 3.6 min tret/200

maximum step size:
reference

LD20
rmax 3.0 m

0.6 m

average distance from base position after tret:
~30 m
~6 m

contact/infection radius rin 4 m set

rate of direct transmission
rate of indirect transmission

βdi
βin

0.2/day
0.2/day

transmission rate close to βex (±10%, Figure S1)
set

number of interaction points
contamination rate per agent

virus load half-life-time

M
aL
dL

8450
100/tret

15 h

set
set

transmission rate close to βex (±10%)

recovery rate after TI γ 0.05/day recovery rate ≈ γex (Figure S1)

Modeling quarantine and CT: In our simulations, exposed cases (E) are not detectable.
Symptomatic infectious agents (Is) always become detected after an incubation/detection
time TN, which is assumed to be longer than the duration of the exposed state TE. Thus,
virus transmission is possible for these agents. They are put under quarantine (no further
contacts) immediately after detection until they recover (R). We refer to this as a “quarantine
scenario”. Asymptomatic infectious agents (Ia) are not detectable without testing; thus,
without CT, virus transmission occurs during the infection time. Serological studies in
Germany provided numbers for the fraction of “not detected cases” of about 0.75–0.80 in
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hotspots [27,28]. Theoretical estimations suggest values of FA = 0.56 for several European
countries [29]. Here, we use FA = 0.50 as a reference value. If CT is utilized, all agents that
have had contact with an identified symptomatic infectious case in the last week are tested
for infection. Detected cases are put immediately under quarantine, but their contacts are
not traced further. Test efficacy of PCR tests has improved and error rates as high as in the
early phase [30] are unlikely. However, most of the tests are still far from providing 100%
sensitivity and/or specificity [31,32]. Nevertheless, we consider an ideal test as identifying
infected cases without error.

Modeling lockdowns and physical distancing: To gain insight into the relationship
between CT performance and agent mobility, we simulate mobility lockdowns (LDs). In
these simulations, we reduce the maximum step size of the truncated random walk to a
fixed percentage of the reference value (for LD20 to 20%). Thereby, we maintain the jump
rate and the rate of returning to the base position fixed, i.e., we maintain the basic pattern
of mobility [22]. During a LD, the number of agent contacts decreases (i.e., the number of
tests per detected case too), but the average time of the contacts increases. We do not model
the effects of household quarantine. Thus, after detection of a case, the simple quarantine
scenario is still applied. For comparison, we simulated scenarios of physical distancing as
well. Details are described in the Supplementary Materials (Text S2).

3. Results

Random jump model. We started our study simulating a random jump model without
indirect transmission (Ran). Here, each agent can reach each position within ∆t by a single
jump. Thereby, the positions reached are uniformly distributed on the area A. We simulated
the epidemic without symptomatic infections (FA = 1) for different numbers of agents N.
Accordingly, infected agents are not detected. We started each simulation by infecting
10 randomly selected agents and followed the epidemic over at least 150 days. Results of
10 simulations were averaged.

The basic reproduction number of this scenario is given by:

R0(N) = R0

(
Nre f

)
N/Nre f (2)

Moreover, the maximum fraction of infected agents in the SEIR model is given by [33]:

Jmax/N = max(E + Is + Ia)N−1 = 1 − (1 + ln(R0(N)))R0(N)−1 (3)

Thus, R0

(
Nre f

)
can be estimated from simulation results fitting Jmax/N. We obtained

R0

(
Nre f

)
= 10.8 [0.4] for our parameter settings (Figure 2A). This is close to the analytical

value R0

(
Nre f

)
= 10.05 (Text S4, Supplementary Materials). A further important property

of the SEIR model, the final size of the epidemic Pf inal/N, i.e., the cumulative fraction of
cases at infinite time, is given by the largest solution of the equation:

ln
(

1 − Pf inal/N
)
+ R0(N)Pf inal/N = 0. (4)

These solutions describe the simulation results very well (Figure 2B). Having R0

(
Nre f

)
,

the rate of transmission βRan
1 for FA = 1 is given by R0

(
Nre f

)
/
(
TI + Γ−1). For R0

(
Nre f

)
= 10.8, one obtains βRan

1 = 0.43 [0.02]. This result for FA = 1 can be used to provide an

approximation for R0

(
Nre f

)
if symptomatic infectious agents are present. For FA = 0.5,

the reproduction number is given by R0

(
Nre f

)
= βRan

1
(
TI + Γ−1 + TN − TE

)
/2. Thus, one

obtains R0

(
Nre f

)
= 6.0 [0.2].
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Corresponding results for Jmax/N and Pf inal/N (FA = 0.5, Text S5, Supplementary
Materials) nicely agree with our simulation results (Figure 2A,B). Note that in these, as in
all of the following simulations, we assume that the infection of all initially infected agents
cannot be detected, i.e., they all contribute to Ia.
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Figure 2. Characteristics of the epidemic for different agent numbers and mobility. (A) Maximum
fraction of infected agents, Jmax/N, for the random jump model (Ran) with FA = 1 (pink). Quarantine
of symptomatic agents (FA = 0.5, red) and reduction of mobility (Ref, black) decrease the maximum for
all N. Symbols are simulation results, lines represent the SEIR solutions with fitted R0. (B) Final size of
the epidemic, Pf inal/N. Symbols are simulation results, solid lines represent the SEIR solutions with
fitted R0 (thick) and analytical R0 (thin, for Ran results only). The blue dotted line is an exponential
growth curve for the subcritical regime. Reference mobility (Ref) keeps the epidemic under-critical
up to an agent number of about 5000. LD20 mobility (blue) extends the subcritical regime beyond
Nref. Loss of the base position at LD20 mobility (violet) abrogates the LD effect. (C) Applying CT
keeps the epidemic under-critical for N < Nref. Thus, it has a similar effect on Pf inal/N as a LD20.
Lines as in (B). All errors: sd.

Effects of confined mobility. Our model assumes two limitations of agent mobility: a
truncated jump size and a base position. In order to quantify their effects, we simulated
limited mobility under the quarantine scenario (FA = 0.5). Reducing mobility to the ref-
erence scenario (Ref), i.e., assuming a maximum jump size rmax = rref and introducing a

base position, reduces the value of R0

(
Nre f

)
. Fitting Jmax/N using Equations (2) and (3),

we observed R0

(
Nre f

)
= 3.36 [0.07] (Figure 2A) and β

Re f
0.5 = 0.24 [0.02] (≈βex). Thus, the

number of agents at which the epidemic becomes over-critical Nre f /R0

(
Nre f

)
is slightly

below 5000.
Locking down mobility by decreasing the maximum step size rmax to 20% of the

reference scenario (LD20) increases this number beyond Nref, i.e., results in R0

(
Nre f

)
< 1.

A similar reduction of R0 (64–85% at R0 = 3.5) by LDs were observed in the COVID-19
epidemics [34]. Thus, we used it as a standard. For a subcritical epidemic, clusters of
infected agents expand locally, but do not percolate. If percolation is reached, Pfinal/N
becomes largely independent of the mobility and follows Equation (4) (Figure 2B). Loss of
the base position under LD20 has similar effects as increasing the maximum step size rmax
to the reference value rref (Figure 2B).

The differences due to limited mobility largely vanish (Figure 2C) when CT is intro-
duced; CT can control the epidemic. For the chosen parameters, it results in similar Pf inal/N
as for LD20 mobility, independent of the actual mobility. These effects are described in
more detail in the following. For the reference parameters used in the following, the
model describes a slightly overcritical epidemic, i.e., with an effective reproduction number
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Reff slightly above one. This simulates the situation reached under non-pharmaceutical
interventions in many countries in the first COVID-19 wave [20].

Effects of measures under different infection scenarios. Next, we analyzed epidemic
spread for hypothetical complete direct transmission and complete indirect transmission
scenarios. Again, we started each simulation by infecting 10 randomly selected agents and
assigned them to Ia.

Without CT, the epidemic with direct transmission reaches a maximum number of
infected cases after about 10 weeks (Figure 3A). In the case of indirect transmission, the
epidemic reaches a slightly lower maximum after about 13 weeks (Figure 3B).
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Figure 3. Epidemic spread for direct and indirect transmission. Time series of case numbers for
controlled spreading without CT (A,B), with CT (C,D) and for LD after 4 weeks in parallel to CT
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(averages over 10 simulations, errors: sd). Without CT, case numbers peak between 8 and 13 weeks.
With CT, they stabilize after short time at a much lower level. An LD20 is efficient for direct (Reff < 1)
but counterproductive (Reff > 1) for indirect transmission. (greyscale version: see Supplementary
Materials Figure S6).

For direct transmission, the epidemic can be efficiently curtailed by CT. A maximum
case number is reached within the same time as in the scenario without CT, which is,
however, more than 10-fold lowered (Figure 3C). Afterwards, case numbers reach a plateau
phase with Reff close to one. In this phase, they start decreasing slowly due to a decreasing
ratio S/N. For indirect transmission, the case numbers are similarly reduced, reach a plateau
as well, but still slowly increase after 20 weeks (Figure 3D).

In both scenarios, about 2% of all agents are tested every day (Figure 4A,B); i.e., about
120 contact agents per detected case. As about 0.2% of all untested agents are infected
(Figure 3C,D: about 30 out of 16,000), 1% of these tests would be positive when including
the index case. In fact, about 3% and 2% are infected for direct and indirect transmission,
respectively. Thus, infected cases are enriched in the tested contacts, making CT efficient.
The results suggest that effective CT provides an option to reach high levels of immunity
under controlled conditions. However, the test effort is significant. A strategy to reduce the



Int. J. Environ. Res. Public Health 2022, 19, 14011 8 of 14

effort is to ignore ‘short term contacts’, i.e., contacts shorter than 15 min. In our simulations,
75% of the contacts are short term (Figure S2B, Supplementary Materials). However,
ignoring them reduces the number of required tests by 25% only, as multiple contacts (7–9
on average) occur between agents; 1.5% of the population still has to be tested daily. Thus,
the large quantities of tests required, particularly at high incidence, suggest the necessity of
additional measures.

Next, we studied LD scenarios for both transmission types during active CT. We initial-
ized an LD20 about 4 weeks after simulation start. During LD20, the numbers of contacted
individuals reduced by about 89% compared to the reference, which is similar to observa-
tions during strong LDs in the COVID-19 epidemics (Wuhan 86%, Shanghai 89% [35]). In
contrast, contact with neighbors intensifies. In the case of 100% direct transmission, the LD
is efficient (Reff < 1). After a short delay of about 1 week, the number of cases decreases,
and after 8 weeks, it reaches 1/3 of the initial value (Figure 3E). In the case of 100% indirect
transmission, the LD is counterproductive for CT efficacy (Reff > 1). After a similar delay,
the incidence begins to increase faster than without the LD, and after 8 weeks, it reaches
more than 5 times the value at LD initiation (Figure 3F).
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In both scenarios, the LD results in a strong increase of the number of positive tests
(Figure 4C,D). This shows that intense contact between neighbors, i.e., agents close to base
positions, during the LD increases transmission. For direct transmission, about 57% of
the contacts are still short-term. However, they are responsible for only 5% of the directly
transmitted infections (Figure S2B, Supplementary Materials). Direct transmission prefer-
entially occurs via long-term contact, which typically occurs in households (Figure S2C,
Supplementary Materials). Thus, it can be controlled through CT. In the case of indirect
transmission, a higher local transmission occurs during the LD as well. In parallel, the
probability that the agent that contaminated the area responsible for the observed infection
does not contact the traced agent increases (72% instead of 20%). Asymptomatic infected
agents become harder to identify and thus, transmission becomes more difficult to control.
Notably, the fraction of asymptomatic cases in the untested population increases during
LD for both transmission types (Figure 4E). In the case of direct transmission, this relates
to a few remaining cases, while in the case of indirect transmission, these cases drive the
epidemic.
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Limitations of non-pharmaceutical interventions. So far, we have provided a picture
of the epidemic based on the numbers of infected agents. In order to obtain a value that
is independent of the population size, epidemics are typically characterized by the 7-day
incidence of observed cases IN7ob. IN7ob is lower for FA > 0 than the total incidence IN7to
(here, new cases per 100,000 individuals within 7 days). Without CT, IN7ob is the number
of new symptomatic cases within 7 days (IN7S). With CT, IN7ob is the number of newly
detected cases in this period (IN7CT, Figure S3, Supplementary Materials). Both values are
strictly correlated with IN7to and do correctly characterize spreading dynamics.

Calculating IN7s (or IN7CT) links our simulation results for small populations (N = 16,000)
to the spreading of an epidemic in entire countries. LDs are often initialized depending
on threshold values of IN7 [36]. In the case of direct transmission, a mobility LD20 can
reduce IN7S within 4 weeks from values above 200 to below 50 (Figure 5A). Contrarily,
the same LD increases IN7S to values above 1000 in cases of indirect transmission. For
the chosen parameter set, the IN7s half-life-time τ in the LD20 under direct transmission
is about 7.6 days (Figure 5B). As both types of transmission might occur together, we
combined them in our simulations, keeping the combined transmission rate at 0.2/day.
Recent studies report a low infection risk from exposure to contaminated surfaces [2,37].
Thus, we considered direct transmission as the dominant transmission route. However, we
found that indirect transmission strongly affects epidemic spread under LD20, even if the
related risk of infection is an order of magnitude smaller than that of direct transmission.
For a 10% fraction of indirect transmission (applying 0.1 βin and 0.9 βdi), τ nearly triples to
about 19.4 days. A fraction above 20% indirect transmission renders the LD20 inefficient
(Figure 5B). Thus, an increasing share of indirect transmission reduces the impact of mobility
LDs. Under certain circumstances, it can even lead to increasing numbers of infections.
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Figure 5. Simulated 7-day incidence IN7s for different transmission routes (averages over 10 simu-
lations). (A) In the case of an LD20, the incidence decays exponentially towards 50 within 4 weeks
for direct transmission; for indirect transmission it rises to values above 1000. (B) A 10% and 20%
contribution of indirect transmission increases the plateau level incidence by a factor less than 2.
Under LD20, it increases the IN7s half-life-time by a factor of about 2.5 and 11, respectively. Lines
describe an exponential decay from level 400 with half-life-time τ.

One might expect that rather ‘soft’ LDs are more appropriate in the case of multiple
transmission routes; first simulation results applying our model support this thesis. How-
ever, the advantage of a softer LD, i.e., the higher individual liberty, comes with a longer LD
period and additional weeks of high incidence (Figure S4, Text S7, Supplementary Materi-
als). Our results suggest that even in the case of small fractions of indirect transmission, one
should give priority to reducing the number of contacts (similar to reducing the number of
agents, Figure 2B) and not on reducing all agents’ daily mobility. Such physical distancing
avoids increased transmission between neighbors as seen during mobility LDs, i.e., the
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fraction of positive tested agents monotonously decreases under the measure (Figure S4,
Text S7, Supplementary Materials).

Throughout our study, we worked with a fraction of asymptomatic cases FA = 0.5
which estimates the fraction of undetected cases. In fact, this value limits the impact of
CT. For increasing values of FA, the incidence of the plateau phase increases (Figure S5,
Supplementary Materials). This can be understood as follows: With increasing FA, the
transmission rate increases, and a higher number of infected agents has to be identified by
CT to reach the plateau phase with an effective reproduction number Reff equal to one. For
fixed numbers of contacts, this requires a higher incidence among them. The increasing
incidence comes with increasing numbers of symptomatic cases. This compensates for the
decrease in this number at increasing FA. IN7S, however, reaches a global maximum of
around FA = 3/4 (Figure S5, Supplementary Materials). Thus, approaching FA = 3/4, the
number of symptomatic cases becomes too small to control the epidemic. Accordingly,
CT becomes inefficient. To keep it efficient, FA can be reduced by applying additional test
strategies. However, this further increases the overall test effort.

4. Discussion

Here, we demonstrate that the efficacy of CT in controlling epidemic spread strongly
depends on the fraction of direct and indirect transmission. Theoretically, CT can fully
control a slightly overcritical epidemic (Reff slightly above 1). However, in real settings,
its effect is smaller due to time delays in reporting, limited test efficacy, etc., and the
incidence at which control is obtained might exhaust medical resources and thus lead to the
implementation of additional measures such as lockdowns. However, not every measure
is effective under a given condition. We simulated scenarios without vaccination efforts.
While these efforts are the most promising, they are not always available and might be
cost intensive. Moreover, waning effects can impair effectiveness of such strategies [38],
highlighting the importance of CT even if vaccination can be applied. Including waning
immunity following vaccination and infection in agent-based models thus represents a next
step in validating the efficacy of CT, thereby extending existing model approaches [39,40].

Generally, reduced mobility in LDs leads to longer contact times, increasing the
probability of infections of neighbors. Indeed, a higher infection risk in confined spaces has
been noticed regarding the COVID-19 epidemic [41]. CT allows controlling this increase
in cases of direct transmission, as infected agents can be identified efficiently. In the case
of indirect transmission, the LD impedes identification of asymptomatic cases, and even
a small fraction of indirect transmission may counteract disease control. Here, efficient
control would require tracing agent position. This allows linking asymptomatic infected
agents that contaminate an area with those who visit the area later on and become infected.
Several countries, in particular in East Asia, implemented such measures during the
COVID-19 epidemic early in 2020, which might be one reason for their successful control of
spreading of the Wuhan and alpha variants. However, the impact of these interventions on
individual liberty is significant. Moreover, the epidemic in Vietnam in July 2021 indicates
that this approach becomes less effective for more infectious variants [42]. Higher fractions
of asymptomatic (undetectable) cases FA might explain that observation.

Although calculated for an abstract epidemic, similar effects of lockdowns were
observed for the COVID-19 epidemic. In summer of 2020, following a mobility LD, a half-
life-time of the incidence of about two weeks was observed in several European countries
including Germany. During the second German LD in winter of 2020, this time was about
four weeks (data: Johns Hopkins University). Thereby, survival of the virus indoors should
be comparable. Whether this increase is related to higher indirect transmission because
of strictly reduced mobility remains open. In any case, our results point to the particular
importance of hygiene in the course of mobility LDs. The frequent cleaning of non-adhesive
surfaces that are potentially contaminated either by direct contact or deposition of virus
via aerosols should be mandatory [43]. In households, disinfection or wearing masks
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are similarly effective in reducing secondary transmission of SARS-COV-2 [44]. Under
unrestricted mobility, these efforts become less important [45].

The described effects of indirect transmission require a sufficient half-life-time of
the virus on high-touch surfaces. We have assumed a half-life-time for virus survival of
15h, a value at the upper limit suggested by several studies for non-adhesive surfaces [7].
However, it has been shown that protein in contact with the virus, as typically present,
e.g., in sputum, can strongly increase the half-life-time to several days [46]. In face masks,
viable virus has been detected even after 3 weeks [8]. The conditions actually required
for an infection via indirect transmission are, as for direct transmission, largely unknown,
making more realistic modeling impractical. We assumed a linear proportionality between
the virus load and infection risk in agreement with assumptions of other studies for small
virus concentrations [25]. A more sophisticated approach would require a measured
dose-response curve [47], which is currently not available.

Testing, regardless of whether performed in the course of CT or other strategies such
as the serial testing of subpopulations, is fundamental in controlling an epidemic, though
the regulatory effort can be significant. In our simulation, ideal CT requires testing about
2% of the population daily, a value hard to reach on a longer time scale by imposed testing.
Such control rates require combining self-imposed prevention measures and government
imposed testing as suggested early by model studies [48]. The latter might comprise regular
testing in schools, for example.

The actual effort highly depends on the fraction FA of cases that would not be de-
tected without testing. Many of these cases might refer to individuals with existing cross-
immunity, comprising up to 30% of the population [49,50], and vaccinated individuals after
a waning period [51]. One might expect that these individuals are also less infectious and
thus do not drive spreading. However, there is strong evidence against this assumption [52],
although virus clearance seems to be faster in vaccinated individuals [53]. Values estimated
for FA in an epidemic depend on the method applied and the spreading dynamics [54].
The latter is also seen in our simulations, reaching values found in hotspots (>0.7) under
LD for an intrinsic value of the epidemic of FA = 0.5. Thus, LD values of FA might be
overestimations. This may at least in part explain observed local differences.

5. Conclusions

Agent-based simulations of epidemic spread allow the consideration of agent mobility.
This mobility not only affects spreading dynamics, but it also enables a straightforward
simulation of CT. Here, we show that CT alone can stabilize an epidemic in the case of
moderate fractions of asymptomatic cases. However, its efficacy changes under mobility
LDs. LDs improve CT efficiency in cases of exclusive direct transmission, while even a small
fraction of indirect transmission can be sufficient to impede CT efficacy and to accelerate
spreading under such conditions. Thus, detailed knowledge regarding transmission routes
is crucial to determine efficient non-pharmaceutical intervention strategies.
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