
Citation: Wang, Y.; Fu, Q.; Wang, T.;

Gao, M.; Chen, J. Multiscale

Characteristics and Drivers of the

Bundles of Ecosystem Service

Budgets in the Su-Xi-Chang Region,

China. Int. J. Environ. Res. Public

Health 2022, 19, 12910. https://

doi.org/10.3390/ijerph191912910

Academic Editor: Wei Song

Received: 4 September 2022

Accepted: 5 October 2022

Published: 9 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

Multiscale Characteristics and Drivers of the Bundles of
Ecosystem Service Budgets in the Su-Xi-Chang Region, China
Yue Wang 1, Qi Fu 1,2,3,* , Tinghui Wang 1, Mengfan Gao 1 and Jinhua Chen 1,2,3,*

1 School of Politics and Public Administration, Soochow University, Suzhou 215123, China
2 The Institute of Regional Governance, Soochow University, Suzhou 215123, China
3 Research Institute of Metropolitan Development of China, Soochow University, Suzhou 215123, China
* Correspondence: fuqi@suda.edu.cn (Q.F.); jhchen@suda.edu.cn (J.C.)

Abstract: Managing ecosystem services (ESs) to meet human needs is critical to achieving sustainable
development in rapidly urbanizing regions. Identifying ES budget bundles and analyzing their
drivers at a multiscale level can facilitate management decision-making; however, further research is
required in areas undergoing rapid urbanization. This study quantified the supply, demand, and
budgets of six typical ESs at the county, township, and village scales in the Su-Xi-Chang region in
2020. Additionally, the influence of natural environmental and socioeconomic factors on ES budget
bundles was investigated based on K-means cluster analysis and the Geodetector model. The results
showed that ESs on all three scales showed a mismatch between supply and demand. The similarity
in the spatial pattern of supply, demand, and budgets of ESs at the township and village scales
was higher than that at the township and county scales. The location and area of surplus, balance,
and deficit varied with scale. We found that population density and the proportion of impervious
surfaces are the main factors influencing the formation of the ES budget bundles at different scales.
In addition, the diversity and degree of interpretation of drivers varied with scale. We believe that
focusing on the overall situation on a large scale and implementing precise management on a small
scale can make management decisions more effective. This study can provide a scientific basis for the
sustainable utilization of ESs in the Su-Xi-Chang region, and the research results and methods can
provide a reference for similar studies in other rapidly urbanizing areas in the world.

Keywords: ecosystem services; budget; multiscale; drivers; rapid urbanization

1. Introduction

Ecosystem services (ESs) refer to the various benefits humans directly or indirectly
derive from ecosystems [1]. Trees, grasslands, and water systems in cities provide resi-
dents with multiple important ESs. By 2050, 68% of the world’s population is expected
to live in cities [2]. Urban ecosystem services will be more closely linked to human well-
being [3]. However, with the acceleration of urbanization, 63% of global ESs have degraded
sharply [4]. The reduction in ESs will constrain economic development and affect human
well-being.

The supply and demand of ES linking natural ecosystems with socioeconomic systems
have been a research hotspot in the past decade [5–7]. The supply of ESs is the products and
services that the ecosystem provides to humans [8]. The demand for ESs is the preferential
consumption and use of products and services provided by ecosystems by humans [9]. The
evaluation methods of supply are mainly the model simulation method [10] and the value
evaluation method [1,11]. Due to easy access to input parameters and accurate evaluation
results, the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) developed
by the Natural Capital Project has become one of the most commonly used models for
evaluating ES supply. It can be used to quantitatively assess various ESs, such as flood
mitigation, urban cooling, water yield, and carbon sequestration. The assessment meth-
ods of demand are mainly based on the LULC matrix method [12], questionnaire survey
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method [13], and ecological footprint method [14]. The supply of ES is determined by
ecosystem components, structures, and processes [15]. For example, forest ecosystems can
provide considerable regulation services and cultural services, while farmland ecosystems
are more capable of providing provisioning services [16]. The demand for ESs is related to
the preferences of different stakeholders [9]. For example, residents are more concerned
about quick-profit entertainment services [13,17] and provisioning services, such as wa-
ter [18] and food [19]. Policy-makers favor regulation services with long-term benefits,
such as flood regulation [20], water purification [21], and carbon sequestration [18]. This
leads to an imbalance in the distribution of ES supply and demand with strong spatial
heterogeneity [22]. In highly urbanized areas, the spatial heterogeneity of ES supply and
demand often manifests as an imbalance or mismatch [3]. The reduction in ES supply
further exacerbates the supply–demand imbalance [23]. This imbalance will become more
severe as urbanization accelerates [18]. Coupled with ES supply and demand research, it is
possible to understand the gap between supply and demand and determine the position of
deficit (supply is less than demand) to achieve precise management [24].

The formation, consumption, and management of ESs are scale-dependent [25,26].
Findings on a single scale often cannot be directly applied to other scales; usually, 2-4 scales
will give better results [27]. However, most studies only observe ES supply and demand
at a single scale, such as a certain administrative region scale [13] or watershed scale [28],
which may not fully grasp the connection between ES supply and demand [24]. Multiscale
research has shifted from focusing on trade-offs and synergies between services [29,30]
to gradually focusing on supply–demand correlation research and management decision-
making [3,22,31]. A large number of studies have shown that applying the multiscale
analysis perspective of ES to the decision-making process can avoid problems such as a
lack of management measures and inefficiency caused by scale mismatch [31–34].

Multiscale analysis combines the advantages of large and small scales. The large
scale can understand the overall situation of ES supply and demand and determine the
main position of supply–demand imbalance, and the small scale can understand the
local situation and implement accurate management [35]. With the development of 3S
technology, ES spatial mapping provides clearer and more accurate information. However,
multiscale studies mostly focus on large scales, such as urban agglomerations [36] and
provinces [22]. Focusing on small scales, such as townships and villages, with the support
of more detailed data is needed to further strengthen multiscale research [31].

Understanding the interactions between ESs can help with scientific management
decisions [37]. Ecosystem service bundles (ESBs) are a combination of ESs that recurs in
a certain space or time [38]. A set of ESBs reflects similar social–ecological characteristics
in different landscape regions. The current research type is dominated by ES supply bun-
dles [39,40]. The identification methods are mainly K-means and hierarchical clustering
analysis [41]. ESBs are formed in global [42], European [39], national [43], watershed [40],
and local regions [44]. This suggests that ESBs do not appear randomly but are influenced
by socioeconomic [42,43] and natural environment factors [4,44,45]. Methods to identify
drivers of ESB include principal component analysis [46], the Geodetector model [4], and
random forests [47]. In addition, ESB manifests differently at different scales, and research-
ing only one scale will omit or distort the relationship between ESs at other scales [25]. It is
important to explore ES budget bundles and their driving factors from a multiscale level,
but further research is required in regions undergoing rapid urbanization.

The Su-Xi-Chang region is typically representative of an area undergoing rapid ur-
banization in China. Its urbanization driving force comes from the development of rural
industrialization, and it is a representative area of bottom-up urbanization in China. The
three cities in the region—Suzhou, Wuxi and Changzhou—have similar characteristics
in terms of their social culture, industrial layout and ecological structure, which are also
typical among many metropolitan areas in China. However, due to the rapid economic
development in recent years, areas under construction have occupied a large amount of
cultivated land and water, resulting in a loss of ESs such as food production, water yield,
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landscape recreation, and climate regulation [48,49]. However, people’s demand for natural
resources and a better living environment is increasing, which makes the contradiction
between people and land in the Su-Xi-Chang region more prominent. In addition, in the
“Yangtze River Delta Urban Agglomeration Development Plan (2015–2030)”, it is also
proposed that the Su-Xi-Chang region should speed up the restoration of ecological space.
Therefore, it is urgent to understand the location and drivers of ES supply and demand
imbalance to make management decisions.

To narrow the research gaps, we researched the supply and demand of ES in the
Su-Xi-Chang region from a multiscale level. First, we quantitatively evaluated the supply,
demand, and budgets of six typical ESs (crop production (CP), water retention (WR), PM2.5
reduction (PR), heat mitigation (HM), flood mitigation (FM), and landscape recreation (LR))
at the county, township, and village scales in 2020. Second, we identified the spatial pattern
of ES budget bundles at three scales using k-means clustering analysis. Third, we used
the Geodetector model to identify natural environmental and socioeconomic factors that
influence the formation and spatial distribution of ES budget bundles at different scales.
This paper aims (1) to reveal the multiscale pattern characteristics of supply, demand,
and budgets in typical urban ESs in the Su-Xi-Chang region and (2) to identify spatial
heterogeneity and scale dependence of ES budget bundles and their drivers. This study
can provide a scientific basis for the sustainable utilization of ecosystem services in the
Su-Xi-Chang region. The research results and methods can provide a reference for similar
studies in other rapidly urbanizing areas in the world.

2. Materials and Methods
2.1. Study Area

The Su-Xi-Chang region (119◦08′–121◦15′ E and 30◦46′–32◦04′ N) is located in the
southern part of Jiangsu Province, China, including three cities of Suzhou, Wuxi, and
Changzhou (Figure 1a,b). The total area is about 17,700 square kilometers. The Su-Xi-
Chang region borders Shanghai to the east, Zhejiang to the south, and the Yangtze River
to the north. The terrain of the study area is flat, and the average elevation is below 50 m.
The area is in a subtropical monsoon climate zone, with an average annual temperature of
15.1–17.3 ◦C and average annual precipitation of 1093 mm. The vegetation in the area is
mainly subtropical evergreen, broad-leaved forest. The land use types are mainly cultivated
land (31.32%), built-up area (23.1%), and water (22.56%) (Figure 1c). The lakes include
Taihu Lake, Yangcheng Lake, and Gehu Lake.

Since the early 1980s, Shanghai, the most important financial center in China, has
brought the Su-Xi-Chang region into an industrial age. In the mid-1980s, a development
model for realizing rural in situ urbanization through the development of township enter-
prises appeared in the Su-Xi-Chang region, called the “South Jiangsu Model” [50]. After
2000, the Su-Xi-Chang region entered a stage of rapid urbanization [49]. By 2020, the total
population of the Su-Xi-Chang region reached 25.49 million. The average population den-
sity (1439 persons/km2) was 9.73 times the national population density (148 persons/km2).
The per capita GDP (158,263 CNY) was 2.20 times the national average (72,000 CNY). The
urbanization rate (81.07%) is 1.29 times the national urbanization rate (63.89%). Population
growth, economic development, and rapid industrialization have changed the local land
use structure [51]. This is mainly manifested in the increased demand for construction land;
the occupation of farmland, water bodies, and wetlands along with landscape fragmenta-
tion, ES loss, and other problems, which seriously affect the sustainable development of
the ecosystem in the Su-Xi-Chang region [49,52,53].
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Figure 1. (a) The location of Jiangsu province in China; (b) the location of the Su-Xi-Chang region in
Jiangsu province; (c) the land use/land cover (LULC) pattern of the Su-Xi-Chang region in 2020.

2.2. Quantification of Supply and Demand for ESs

Combining the importance to the lives of local residents, the feasibility of assessment
methods and data, and referring to the study of [31,54–58], we selected six typical ESs (crop
production (CP), water retention (WR), PM2.5 reduction (PR), heat mitigation (HM), flood
mitigation (FM), and landscape recreation (LR)) as research objects and simulated their
supply and demand. The required data are shown in Table 1. The resolution of the raster
data in this study is uniformly set to 30 m × 30 m, and the projected coordinate system is
WGS_1984_UTM_Zone_51N. The LULC type is divided into six categories: cultivated land,
forest, grassland, water area, built-up area, and unused land.

Table 1. Data used in this study.

Data Name Data Type Year Source

Chinese administrative
boundaries Vector data 2015

Resource and Environment Science and Data Center
(https://www.resdc.cn/DataList.aspx

accessed on 5 August 2022)

Administrative
boundaries

in the Su-Xi-Chang region

County, township,
village.

Vector data
2009 The Second National Land Survey

LULC 10 m × 10 m
Raster data 2020

Earth Online
(https://earth.esa.int/web/guest/home

accessed on 18 May 2022)

Total population County
Statistical data 2020 Statistical yearbook of CNKI

(https://data.cnki.net/Yearbook accessed on 7 May 2022)

Population density 100 m × 100 m
Raster data 2020 WorldPop

(https://www.worldpop.org accessed on 23 May 2022)

Normalized difference
vegetation index

30 m × 30 m
Raster data 2020

Resource and Environment Science and Data Center
(https://www.resdc.cn/DataList.aspx

accessed on 20 May 2022)

https://www.resdc.cn/DataList.aspx
https://earth.esa.int/web/guest/home
https://data.cnki.net/Yearbook
https://www.worldpop.org
https://www.resdc.cn/DataList.aspx
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Table 1. Cont.

Data Name Data Type Year Source

Soil depth, sand, silt, clay,
soil organic matter content

1 km × 1 km
Raster data 1995

Agriculture Organization of United Nations
(https://www.fao.org/soils-portal/data-hub/soil-maps-

and-databases/harmonized-world-soil-database-v12
accessed on 8 February 2022)

Average precipitation 1 km × 1 km
Raster data 2020 National Earth System Science Data Center

(http://www.geodata.cn accessed on 5 February 2022)

Potential
evapotranspiration

1 km × 1 km
Raster data 2020 National Earth System Science Data Center

(http://www.geodata.cn accessed on 5 February 2022)

Water consumption County
Statistical data 2020 Water Resources Bulletin of Water Resources Bureau

Hydrologic soil groups 250 m × 250 m
Raster data 2020

Global Hydrologic Soil Groups for Curve Number-Based
Runoff Modeling

(https://daac.ornl.gov/accessed on 6 May 2022)

PM2.5 concentration 1 km × 1 km
Raster data 2020 National Earth System Science Data Center

(http://www.geodata.cn accessed on 5 July 2022)

Leaf area index 500 m × 500 m
Raster data 2019 National Earth System Science Data Center

(http://www.geodata.cn accessed on 18 May 2022)

Land surface temperature 1 km × 1 km
Raster data 2020 Institute of Tibetan Plateau Research, Chinese Academy of

Sciences (http://data.tpdc.ac.cn accessed on 8 June 2022)

GDP 1 km × 1 km
Raster data 2019

Resource and Environment Science and Data Center
(https://www.resdc.cn/DataList.aspx

accessed on 4 July 2022)

New impervious surfaces 30 m × 30 m
Raster data 2015–2020 https://doi.org/10.5281/zenodo.5220816 [59]

DEM 30 m × 30 m
Raster data 2020 Geospatial Data Cloud (http://www.gscloud.cn/search

accessed on 7 July 2022)

Slope, roughness 30 m × 30 m
Raster data 2020 Obtained by DEM processing in ArcMap10.8 software.

Average temperature 1 km × 1 km
Raster data 2020 National Earth System Science Data Center

(http://www.geodata.cn accessed on 5 July 2022)

Average wind speed 1 km × 1 km
Raster data 2020 National Earth System Science Data Center

(http://www.geodata.cn accessed on 7 July 2022)

Solar radiation 300 m × 300 m
Raster data 2007–2021 Global Solar Atlas (https://globalsolaratlas.info

accessed on 8 July 2022)

2.2.1. Crop Production

(1) Supply

Referring to the method of [60], the crop production was distributed to each pixel
according to the ratio of the Vegetation Condition Index (VCI) of each cultivated land pixel.
The calculation is as follows:

CPi = CPs ×
VCIi

∑N
i=1 VCIi

(1)

VCIi =
(NDVIi −NDVImin)

NDVImax −NDVImin
× 100% (2)

CPi is the crop production of the ith cultivated land pixel, t; GPs is the total crop
production in the Su-Xi-Chang region in 2020, GPs = 2.09 × 106 t; N is the total number
of pixels of cultivated land in the study area; NDVIi is the annual NDVI value of the ith

https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12
http://www.geodata.cn
http://www.geodata.cn
https://daac.ornl.gov/accessed
http://www.geodata.cn
http://www.geodata.cn
http://data.tpdc.ac.cn
https://www.resdc.cn/DataList.aspx
https://doi.org/10.5281/zenodo.5220816
http://www.gscloud.cn/search
http://www.geodata.cn
http://www.geodata.cn
https://globalsolaratlas.info
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cultivated pixel; and NDVImax and NDVImin represent the maximum and minimum annual
NDVI values of the cultivated land in the Su-Xi-Chang region.

(2) Demand

We defined the demand for crop production (CP) by crop consumption, mainly in-
cluding wheat and grains. The per capita annual crop consumption comes from the 2020
Jiangsu Statistical Yearbook. The calculation formula is:

Dci = Pci ×Ca (3)

Dci is the crop demand on pixel i, t; Pci is the population on pixel i, person; and Ca is
the per capita annual crop consumption in the Su-Xi-Chang region, Ca = 0.1221 t/person.

2.2.2. Water Retention

(1) Supply

The supply of water retention (WR) is the difference between water yield and surface
runoff [61]. Water yield was calculated using the InVEST Water Yield model. The model
defines the water yield as the difference between precipitation and actual evapotranspi-
ration. The plant’s available water content was calculated using the formula from [62].
The Biophysical Table refers to the study of [63]. The surface runoff coefficient refers to
Guidelines for Delineation of Ecological Protection Red Lines. The calculation is as follows:

Yij =

(
1−

AETij

Pi

)
× Pi (4)

AETij

Pi
=

1 + wiRij

1 + wiRij +
1

Rij

(5)

WRij = Yij − Runoffij (6)

Runoffij = Pi ×Cj (7)

where Yij is the annual water yield of LULC type j on pixel i, mm; AETij is the average
annual actual evapotranspiration on pixel i, mm; Pi is the average annual precipitation on
pixel i, mm; Rij is the Budyko Dryness Index on pixel i, dimensionless; wi is a non-physical
parameter characterizing natural climate and soil properties, dimensionless; WRij is the
annual water retention of LULC type j on pixel i, mm; Runoffij is the annual surface runoff
on pixel i, mm; and Cj is the average surface runoff coefficient of LULC type j. The specific
coefficient values are shown in Table 2.

Table 2. WR coefficient table.

LULC_Desc Lucode Kc Root_Depth LULC_Veg Cj

Cultivated
land 1 0.6 1000 1 0.347

Forest 2 1 7000 1 0.0267
Grassland 3 0.65 1500 1 0.0937
Water area 4 1 1000 0 0

Built-up area 5 0.3 500 0 1
Unused land 6 0.2 10 0 1

Note: Kc is the evapotranspiration coefficient, root_depth is the maximum root depth for plants, and LULC_veg
refers to whether there is vegetation on the LULC. A value of 1 means vegetation is present; 0 means no vegetation.

(2) Demand

This study expressed the demand for WR as the sum of agricultural, domestic, indus-
trial, and ecological water consumption [24]. We assigned the average water consumption
per unit area of cultivated land, industrial land, forest and grassland in each subdistrict to
the cultivated land, industrial land, forest and grassland in each subdistrict to obtain the
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agricultural water consumption (Dai), industrial water consumption(Dii), and ecological
water consumption(Dei) on pixel i. The assignment procedure was conducted using the
analysis tool in ArcGIS 10.8 software. The calculation is as follows:

Dwi = Dai + Ddi + Dii + Dei (8)

Ddi = Wc × Pwi (9)

Aa =
CAsubdistrict
SAsubdistrict

(10)

where Dwi is the annual water consumption on pixel i, m3; Dai, Ddi, Dii, and Dei are the
agricultural water consumption, domestic water consumption, industrial water consump-
tion, and ecological water consumption on pixel i, respectively, m3; Wc is the per capita
annual domestic water consumption in the Su-Xi-Chang region in 2020, m3/person; Pwi is
the population on pixel i, persons; Aa represents the average water consumption per unit
of cultivated land; CAsubdistrict represents the total water consumption of each subdistrict;
SAsubdistrict represents the cultivated land area of each subdistrict; and Dii and Dei are
calculated in the same way as Dai.

2.2.3. PM2.5 Reduction

(1) Supply

In this study, the supply of PM2.5 reduction (PR) was characterized by the amount
of PM2.5 particles adsorbed by the forest, which was calculated using the dry deposition
model [64]. The calculation is as follows:

Qy = D×Qd (11)

Qd = F× TCLA× T× (1− R) (12)

F = Vd ×Ch × 3600÷ 1000000 (13)

TCLA = Tc × LAI (14)

where Qy is the total reduction in PM2.5 particles by a forest in one year, g; D is the number
of non-rainy days in a year; Qd is the total reduction in PM2.5 particles by a forest in one day,
g; F is the PM2.5 dry deposition flux, g/(m2·h); TCLA is the leaf surface area of different
types of forest, m2; T is the evaluation time, the number of hours per day, T = 24; R is
the resuspension rate, R = 0.03; Vd is the deposition velocity, which is related to the wind
speed, Vd = 0.0009 m/s; R and Vd refer to the value of [65]; Ch is the hourly average PM2.5
concentration, µg/m3; Tc is the area of forest, Tc = 900 m2; and LAI is the leaf area index.

(2) Demand

This study expressed the demand for PR in terms of PM2.5 particles that exceed the
WHO standard (affecting human health). The calculation formula is:

Di =

{
(Ca − PM2.5permitted)×H×A× 365× 24, Ca > PM2.5permitted

0, Ca ≤ PM2.5permitted
(15)

where Di is the demand for PR, µg; Ca is the average annual PM2.5 concentration, µg/m3;
PM2.5permitted is the standard threshold of average annual PM2.5 concentration stipulated
by the World Health Organization [66], PM2.5permitted = 10 µg/m3; H is the height of the
atmospheric boundary layer, H = 200 m [67]; and A is the pixel area, A = 900 m2.
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2.2.4. Flood Mitigation

(1) Supply

This study used the Urban Flood Risk Mitigation model of the InVEST model to
calculate the supply of flood mitigation (FM). This module refers to the SCS-CN model and
uses the curve number method to estimate Rin. The calculation is as follows:

FMi = 1−
Rpi

P
(16)

Rpi =

{
(P−0.2Ii)

2

P+0.8II
, P > 0.2Ii

0, P ≤ 0.2Ii
(17)

Ii =
25400
CNi

− 254 (18)

where FMi is the supply of FM on pixel i, which is dimensionless, with a value between
0 and 1; P is the depth of rainfall for the design storm, mm; Rpi is the runoff on pixel i,
mm; Ii is the potential retention on pixel i, mm; CNi is the runoff curve value on pixel i,
dimensionless; and CNi refers to [68]; CNi takes a value between 0 and 100. When CNi
is 100, it means that the rainfall is completely converted into runoff. The values of the
coefficients for calculating FM are shown in Table 3.

Table 3. FM coefficient table.

Lucode LULC_Desc CN_A CN_B CN_C CN_D

1 Cultivated
land 54 70 80 84

2 Forest 36 60 73 79
3 Grassland 49 69 79 84
4 Water area 0 0 0 0
5 Built-up area 85 90 92 94
6 Unused land 77 86 91 94

Note: CN_(A–D) is the curve number value of the LULC type in the hydrological soil group.

(2) Demand

We refer to the research methods of [69,70] to quantify the demand of FM. The calcula-
tion is as follows:

FRSDi = xa × (a× PVIi + b× EVIi) (19)

PVIi = xb × (α× Popi + β×Oldi + γ×Childi) (20)

EVIi = xc ×
(

n

∑
i=1

EconomicScorei

)
(21)

where FRSDi is the demand of FM on pixel i; PVIi is the population vulnerability index
on pixel i; EVIi is the economic vulnerability index on pixel i, each LULC type has a
corresponding score (Table 4); FRSDi, PVIi, anI EVIi are dimensionless; a and b are the
weights of the population vulnerability index and the economic vulnerability index, re-
spectively, a = b = 1/2; xa, xb and xc are Min-Max normalization coefficients representing
the FR demand, PVI and EVI on pixel i, respectively. With this coefficient, FR demand,
PVI and EVI can be normalized to a value between 0 and 1; Popi is the average population
density on pixel i; Oldi is the population density of the elderly on pixel i; Childi is the
population density of children on pixel i; and α, β, and γ are the weights of the average
population density, the population density of the elderly, and the population density of
children, respectively, α = β = γ = 1/3.
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Table 4. Economic Vulnerability Score for each LULC type.

LULC_Desc Economic Score

Developed, high density (aISA > 80%) 8
Developed, moderate density (50% < aISA ≤ 80%) 7

Developed, low density (20% < aISA ≤ 50%) 6
Developed, open land (aISA ≤ 20%) 5

Unused land 4
Cultivated land 3

Grassland 2
Forest/water area 1

Note: Economic Scorei refers to [69–71]; aISA is the ratio of the impervious surface area to the pixel area
(30 m × 30 m). The larger the value of aISA, the denser the impervious surface on pixel i, and the higher the
economic vulnerability.

2.2.5. Heat Mitigation

(1) Supply

This study used the Urban Cooling model of the InVEST model to calculate the supply
of heat mitigation (HM). The model utilizes shade, evapotranspiration, and albedo to
calculate cooling capacity. The calculation is as follows:

CCi = 0.6× shadei + 0.2× ETIi + 0.2× albedoi (22)

ETIi =
Kc × ET0

ETmax
(23)

CCparki = ∑
j∈d radius from i

gi ×CCj × e
(
−d(i,j)
dcool

)
(24)

HMi =

{
CCi, if i is part of a large green area or CCi ≥ CCparki

CCparki, otherwise
(25)

where CCi is the cooling capacity index on pixel i. Its value is comprised between 0 and
1, 0 means no cooling capacity, 1 means maximum cooling capacity; shadei indicates the
ability of trees to provide shade, set to 1 for trees taller than 2 m or 0 for trees below 2 m;
ETIi is the evapotranspiration index on pixel i; albedoi represents the proportion of solar
radiation reflected by the LULC type. Its value is between 0 and 1, where 0 represents
the maximum absorption rate and 1 represents the maximum reflectivity. albedoi refers to
InVEST recommended data value [72]. ET0 is the potential evapotranspiration, mm; ETmax
is the maximum value of ET0 in the study area; Kc is the evapotranspiration coefficient; gi
indicates whether pixel i can be regarded as a green space. A value of 1 means LULC can
be regarded as a green space, 0 means LULC cannot be regarded as a green space. shadei
and gi refer to the value of [73]; d(i, j) is the distance between pixel i and pixel j; dcool is
the distance for which a green space has a cooling effect; j ∈ d radius from i is the set of
pixels whose distance to i is less than dcool; and HMi is the demand for HM on pixel i. The
specific coefficient values are shown in Table 5.

Table 5. HM coefficient table.

Lucode Shade Kc Albedo gi

1 0 0.6 0.2 1
2 1 1 0.2 1
3 0 0.65 0.2 1
4 0 1 0.05 0
5 0 0.3 0.15 0
6 0 0.2 0.25 0
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(2) Demand

We used the urban heat island effect intensity to express the demand for HM [74]. The
calculation formula is:

Di =

{
Ti − 1

n ∑n
j=1 Tcj, Ti <

1
n ∑n

j=1 Tcj

0, Ti >
1
n ∑n

j=1 Tcj
(26)

HMDi = xd ×Di (27)

where HMDi is the demand of HM on pixel i, which is dimensionless; xd is the Min-Max
normalization coefficient representing the HM demand on pixel i. With this coefficient, the
HM demand can be normalized to a value between 0 and 1, removing the units of supply
and demand, and then we can further calculate the ESDR to measure the relationship
between supply and demand of HM; Ti is the land surface temperature on pixel i, ◦C;
n is the total number of pixels of cultivated land; Tcj is the land surface temperature of
cultivated land on pixel j, ◦C;

2.2.6. Landscape Recreation

(1) Supply

In this paper, the supply of landscape recreation (LR) was reflected by the green area,
including forest and grassland [57]. The calculation formula is:

Sr = Agreenspace,subdistrict/Asubdistrict (28)

where Sr is the supply of LR, m2/m2; Agreenspace,subdistrict is the green area of each jurisdic-
tion, m2; and Asubdistrist is the total area of each jurisdiction, m2.

(2) Demand

In this paper, the demand for LR was reflected by the product of population density
and the per capita green area planned by the government. The calculation formula is:

Dr = Ppop ×Aguided greenspace (29)

where Dr is the demand for LR, m2/m2; Ppop is the population density, person/m2.
Aguided greenspace is the per capita green area planned by the government, Aguided greenspace

= 13 m2/person.

2.3. Relationship between Supply and Demand of ESs
2.3.1. Supply and Demand Relationship

This paper used the ecological supply–demand ratio (ESDR) to reflect the supply and
demand relationship of ES, which may be surplus, balance, or deficit [75]. The calculation
formula is:

ESDR =
S−D

(Smax + Dmax)/2
(30)

where S and D represent the supply and demand of ES, respectively; Smax and Dmax
represent the maximum supply and demand of ES, respectively. ESDR is expressed as a
surplus (supply > demand) when it is completely greater than the range of 0. ESDR is
expressed as a deficit(supply < demand) when it is completely less than the range of 0.
ESDR is expressed as a balance (supply ≈ demand) when the range is close to 0. The higher
the absolute value of ESDR, the greater the supply or demand for ESs.

2.3.2. Identifying ES Budget Bundles

We clustered the ESDR using k-means cluster analysis in Geoda spatial analysis
software. The principle of clustering is that the same ES budget bundle has the greatest
similarity, and the difference between different clusters is the largest. According to the
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elbow method [40], the optimal number of clusters was determined to be 6, and ES budget
bundles at the county, township, and village scales were obtained. Before clustering
analysis, the Min–Max normalization method was used to unify the ESDR values into
the range of [−1, 1] to reduce the influence of unit and size among ESs. The calculation
formula is:

xnew =
x− xmin

xmax − xmin
(31)

where xnew is the result after normalization; xmax and xmin are the maximum and minimum
values of sample x, respectively.

2.4. Driver Analysis of ES Budget Bundles

Referring to the research of [44,47,76–78] and combining it with the actual situation
in the Su-Xi-Chang region, we select 14 driving factors that may affect the formation
of ES budget bundles, including socioeconomic factors and natural environment factors.
(1) Socioeconomic factors include GDP, population density (POP), percentage of impervious
surface in 2020 (IS), and new impervious surfaces from 2015 to 2020 (NIS). (2) Natural
environment factors: climatic factors include annual average precipitation (PRE), annual
average temperature (TEM), annual average wind speed (WS), and annual average solar
radiation (SR); soil factors include the percentage of sand in the soil (SAND), percentage of
silt in the soil (SILT), and percentage of clay in the soil (CLAY); topographic factors include
DEM, slope (SLOPE), and ground roughness (GR).

This paper employed the factor detector in Geodetector to identify the driving factors
for the formation and spatial distribution of ES budget bundles [79]. The factor detector
analyzes the degree of explanation of the independent variable X to the dependent variable
Y. The calculation formula is:

q = 1− ∑L
h=1 Nhσ

2
h

Nσ2 (32)

where h = 1, . . . , L is a layer of Y or X; Nh and N are the number of units in the layer h and
the whole area, respectively; σ2

h and σ2 are the variance of the layer h and the whole area,
respectively; q is the degree of explanation of the independent variable X to the dependent
variable Y—that is, X explains q% of Y. The value of q is between 0 and 1; 0 means that
there is no correlation, and 1 means that Y is completely determined by X.

3. Result
3.1. Multiscale Pattern Characteristics of ES Supply and Demand
3.1.1. Crop Production

The supply of CP is spatially clustered on all three scales. The supply of CP at the
township and village scales is similar to the distribution of cultivated land, and the high-
value areas are concentrated in the west and northeast of the study area (Figure 2(a2,a3)).
As the scale becomes larger, the high-value areas of supply increase (Figure 2(a1)). The
distribution of CP demand at the township and village scales are similar, with a clustered
distribution, and randomly distributed at the county scale. The high-value areas of CP
demand are concentrated in the core areas of Suzhou, Wuxi, and Changzhou, and gradually
decrease to the periphery (Figure 2(b1–b3)). The ESDR of CP is clustered at the township
and village scales. At the township and village scales, deficit areas are concentrated in the
urban core and surrounding areas, while other areas are in surplus (Figure 2(c2,c3)). The
ESDR of CP is randomly distributed at the county scale. The deficit areas increased at the
county scale, the high-value areas are concentrated in the urban core areas, and the surplus
is located in the western part of the study area (Figure 2(c1)). As the scale grew, CP in the
study area’s northeast, south, and northwest changed from surplus to balance.
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3.1.2. Water Retention

The supply of WR has a similar spatial distribution pattern at the three scales. The
high-value supply areas are distributed in the western part of the study area, followed by
the southern part. The areas with the smallest supply are distributed in the northeastern
and central parts of the study area (Figure 3(a1–a3)). The demand for WR is spatially
clustered at the township and village scales. The high-value demand areas are distributed
in the study area’s central, southwestern, and northeastern parts (Figure 3(b2,b3)). The
demand for WR is randomly distributed at the county scale. As the scale becomes larger,
the areas of higher demand gradually increase (Figure 3(b1)). The ESDR of WR is clustered
at the township and village scales and randomly distributed at the county scale. At the
village scale, the deficit and high-demand areas are distributed similarly, and supply and
demand are balanced in the remaining areas (Figure 3(c3)). At the township scale, the
southern part of the study area gradually turned from balance at the village scale to surplus.
The high-value areas of the deficit are concentrated in the northeastern part of the study
area (Figure 3(c2)), that is, along the Yangtze River, where there are many factories with
high water demands. The deficit areas increase at the county scale and are distributed in
the study area’s northeastern, western, and southern parts. High-value deficit areas are
concentrated in urban core areas. The areas where supply and demand are balanced are
distributed in the central and southern parts of the study area (Figure 3(c1)).
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3.1.3. PM2.5 Reduction

The supply and demand of PR have significant spatial agglomeration at the county,
township, and village scales. The high-value supply areas on the three scales are concen-
trated in the west and south of the study area (Figure 4(a1–a3)). As the scale becomes
larger, the high-value areas of supply increase gradually. The demand for PR gradually
increases from the southeast to the northwest of the study area (Figure 4(b1–b3)). As the
scale becomes larger, the high-value demand areas gradually decrease and are concentrated
northwest of the study area. Although the southwest of the study area provides some
supply of PR, the spatial pattern of ESDR and demand is similar because of the large
demand. The PR of the entire study area is in deficit on all three scales. The high-value
deficit areas are concentrated in the northwest of the study area, showing a downward
trend from northwest to southeast (Figure 4(c1–c3)).

3.1.4. Flood Mitigation

The high-value areas of FM supply at the three scales are distributed in the west, south,
and north of the study area, with spatial aggregation. The distribution of FM demand at the
township and village scales is similar, with a clustered distribution (Figure 5(b2,b3)). The
demand for FM is randomly distributed at the county scale, with high-value areas distributed
in the central and northeastern parts of the study area (Figure 5(b1)). The ESDR of FM is
clustered at the three scales. The high-deficit areas of FM are concentrated in the urban core
(Figure 5(c1–c3)). At the county scale, the western part of the study area is in surplus, the
southern part is in balance, and the northeastern part is in deficit (Figure 5(c1)). There are
many surplus and balance areas at the township scale (Figure 5(c2)). At the village scale, the
western and southeastern parts of the study area are in surplus, and other areas are in deficit
(Figure 5(c3)).
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3.1.5. Heat Mitigation

The supply of HM is clustered at the township and village scales and randomly
distributed at the county scale. The high-value supply areas are mainly distributed in the
west and south of the study area. The low-value areas are located in the core areas and
the surrounding areas of Suzhou, Wuxi, and Changzhou (Figure 6(a1–a3)). The demand
for HM is spatially clustered at three scales. Demand in the northeast of the study area
is higher than in the southwest of the study area. The high-value demand areas are
concentrated in the urban core areas (Figure 6(b1–b3)). The surplus level of HM in the west
and southwest of the study area is optimal at the three scales. At the village scale, deficit
areas are concentrated in the urban core and surrounding areas (Figure 6(c3)). The spatial
distribution characteristics of ESDR also change as the scale becomes larger. For example,
at the township scale, the HM deficit area decreases (Figure 6(c2)); at the county scale, the
deficit area is transformed into balance (Figure 6(c1)).
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3.1.6. Landscape Recreation

The supply and demand of LR are randomly distributed at the county scale and
clustered at the township and village scales. The supply of LR is mainly located in the
west of the study area and along Taihu Lake. As the scale becomes larger, the high-value
areas of supply increase gradually (Figure 7(a1–a3)). The high-value areas of demand for
LR are concentrated in the urban core and surrounding areas (Figure 7(b1–b3)). At the
county scale, the high-value areas of demand are concentrated in the core areas of Suzhou,
Wuxi, and Changzhou (Figure 7(b1)). The ESDR of LR at the county scale is randomly
distributed. Most areas at the county scale are in surplus and balance. The high-value
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areas of surplus are concentrated in Changzhou. The deficit areas are concentrated in the
core areas of Suzhou and Wuxi (Figure 7(c1)). The value of ESDR also changes as the scale
becomes smaller. For example, some areas at the township scale change from surplus to
balance (Figure 7(c2)), and many areas at the village scale change from balance to deficit
(Figure 7(c3)).
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3.2. Multiscale Pattern Characteristics of ES Budget Bundles

Based on K-means clustering analysis, this study identified six ES budget bundles at
the county (Figure 8), township (Figure 9), and village scales (Figure 10). Each bundle has
similar ES characteristics [38]. This study found that ES budget bundles at the township
and village scales have similar spatial patterns. However, compared with the township
scale, the village scale is finer and more similar to the spatial distribution of LULC.
However, the distribution of ES budget bundles at the township/village scale and the
county scale are significantly different. The spatial distribution of ES budget bundles
at the county scale is similar to that of municipal administrative districts, forming the
spatial pattern of Suzhou, Wuxi, Changzhou, Taihu Lake and its surrounding areas, and
urban core areas.
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3.2.1. County Scale

Bundle 1 is mainly distributed in the north of Wuxi and Changzhou, accounting for
23.3% of the total study area. CP, WR, and LR are slightly higher than the mean value
of the study area; PR, HM, and FM are slightly lower than the mean value of the study
area. Bundle 2 is distributed in the relatively flat eastern region, concentrated in Suzhou,
accounting for 32.44% of the entire study area. Bundle 2 has the highest level of PR and
relatively high CP. FM and HM are slightly above the mean values. WR and LR are below
the mean. Bundle 3 is distributed in the slightly higher western region, concentrated in the
south of Wuxi and Changzhou, accounting for 25.55% of the total study area. All ESs are
above the mean value of the study area, except for PR, which is slightly below average. FM
and LR are at the highest level in the study area. Bundle 4 is distributed in the middle of
the study area, accounting for 0.88% of the total study area. Bundle 4 is concentrated in the
urban core areas of Wuxi and Suzhou. Due to the high demand, CP, WR, HM, LR, and FM
are all lower than the average value of the study area, except for the PR, which is slightly
higher than the average value. Bundle 5 is distributed in the Taihu Lake Scenic Area in the
south of the study area, accounting for 16.2% of the total study area. The six ESs are all
higher than the mean value, especially WR and HM, which are at the highest level in the
study area. Bundle 6 is distributed in the northwest of the study area, located in the core
area of Changzhou, accounting for 1.63% of the total study area. The six ESs in bundle 6
are all below the mean value, especially PR, which is at the lowest level in the study area.

3.2.2. Township Scale

Bundle 1 is distributed in the surrounding areas of the urban core areas of Suzhou,
Wuxi, and Changzhou, accounting for 2.21% of the total study area. All ESs in bundle
1 have below-average values, except for WR, which is slightly above the mean value of
the study area. Bundle 2 has the largest area at the three scales, accounting for 65.77% of
the total study area. LR is at the average level in the study area, and the remaining five
ESs are above the mean value. Bundle 3 is distributed in the relatively flat northern area,
accounting for 19.07% of the total study area. Although WR and CP are above average,
PR is at the lowest level in the study area. In addition, FM, HM, and LR are the average
levels of the study area. Bundle 4 is mainly distributed in the southwest of the study area,
accounting for 8.24% of the total study area. The high supply and low demand in the
area where bundle 4 is located make all of the six ESs in bundle 4 at the highest level in
the study area, especially LR, FM, and HM. Bundle 5 is concentrated in the urban core
areas of Suzhou, Wuxi, and Changzhou, accounting for 0.19% of the total study area. The
six ESs in this region are all below the average, and CP is at the lowest level in the study
area. Bundle 6 is distributed in the study area’s northern, northeastern, and central parts,
accounting for 4.52% of the total study area. WR in bundle 6 is at a lower level; PR, CP, and
HM are higher than the average of the study area; and LR and FM are at the average level
of the study area.

3.2.3. Village Scale

The LULC types of bundle 1 are mainly impervious surface (57.7%) and cultivated
land (17.6%) (the area proportion of LULC types in ES budget bundles at the village scale
was obtained through the zoning statistical tool of ArcGIS 10.8), accounting for 19.93%
of the total study area. The HM, FM, LR, and PR of bundle 1 are lower than the average
value of the study area; WR is higher than the average value of the study area; CP is the
average level of the study area. Bundle 2 is distributed in the central and eastern parts of
the study area, accounting for 45.91% of the total study area. The LULC types of bundle 2
are mainly water (44.76%) and cultivated land (30.21%). All ESs are above-average values
except for LR, which is slightly below the mean value of the study area. In particular, PR is
at the optimal level in the study area. Bundle 3 is located in the west and northwest of the
study area, accounting for 21.4% of the total study area. These areas are mainly covered by
cultivated land (54.94%) and impervious surfaces (18.21%). The PR of bundle 3 is much
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lower than the average of the study area; the LR is slightly lower than the average of the
study area; and the CP, HM, WR, and FM are slightly higher than the average. Bundle 4
is distributed in the forest (64.5%) in the western and central parts of the study area. The
areas of cultivated land (17.22%) and impervious surface (2.28%) in bundle 4 were smaller
and less disturbed by human activities. Thus, bundle 4 provides the highest LR, FM, HM,
and more PR levels in the study area. However, its area only accounts for 10.19% of the
study area. Bundle 5 is mainly concentrated in the urban core areas of Suzhou, Wuxi, and
Changzhou, accounting for 1.61% of the study area. CP, HM, FM, and LR are all at the
lowest levels in the study area, except for WR, which is slightly above average. Bundle 6
is distributed in the northeastern part of the study area, accounting for 0.96% of the total
study area. LULC types of bundle 6 are mainly cultivated land (33.55%) and industrial
land (26.85%). WR in bundle 6 has the lowest level in the study area; PR and CP have
above-average values; and FM, HM, and LR have the average level of the study area.

3.3. Driver Analysis of ES Budget Bundles

This study analyzed the extent to which different drivers explain the formation of ES
budget bundles using the factor detector in Geodetector. Table 6 shows the results of the
factor detection at the county, township, and village scales. (1) County scale: POP (0.729531)
> IS (0.630183). (2) Township scale: POP (0.286231) > IS (0.220963) > GDP (0.158807) >
NIS (0.153661) > SR (0.144641) > DEM (0.139593) > TEM (0.114315) > CLAY (0.085909) >
SAND (0.083865) > SILT (0.073237). (3) Village scale: POP (0.331799) > IS (0.186227) > DEM
(0.105744) > SLOPE (0.097106) > SR (0.087445) > GR (0.077787) > GDP (0.060104) > PRE
(0.054848) > TEM (0.026132) > NIS (0.024559) > SILT (0.018906) > WS (0.012526) > CLAY
(0.007144) > SAND (0.005382).

Table 6. Results of factor detection.

County Scale Township Scale Village Scale

Variable q-Statistic p-Value q-Statistic p-Value q-Statistic p-Value

GDP 0.352705 0.158807 ** 0.060104 **
POP 0.729531 ** 0.286231 ** 0.331799 **

IS 0.630183 ** 0.220963 ** 0.186227 **
NIS 0.509151 0.153661 ** 0.024559 **
PRE 0.381515 0.024387 0.054848 **
TEM 0.285643 0.114315 ** 0.026132 **
WS 0.509074 0.017601 0.012526 **
SR 0.329032 0.144641 ** 0.087445 **

SAND 0.308795 0.083865 ** 0.005382 **
SILT 0.201164 0.073237 ** 0.018906 **

CLAY 0.140203 0.085909 ** 0.007144 **
DEM 0.150341 0.139593 ** 0.105744 **

SLOPE 0.275312 0.044057 0.097106 **
GR 0.374718 0.050881 0.077787 **

Note: The larger the q-value, the stronger the interpretation of X by Y. The q-value means that X explains 100 × q%
of Y; the p-value indicates the degree of significance. p < 0.1 indicates significance, and it is indicated by **.

4. Discussion

This paper analyzed the supply, demand, and budgets of ESs and the drivers of ES
budget bundles at the county, township, and village scales in the Su-Xi-Chang region.
Unlike previous studies, this study focused on multiscale analysis and analyzed the impact
of multiple drivers on ES budget bundles in rapidly urbanizing regions. The issues we
attempted to address were threefold. (1) Theoretical implications: to determine the charac-
teristics of the multiscale pattern of ES supply and demand in the Su-Xi-Chang region and
to analyze the impact of the natural environment and socioeconomic factors on ES budget
bundles. (2) Practical implications: to propose a multiscale decision-making process. (3) To
discuss the limitations and future perspectives of this study.
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4.1. Multiscale Pattern of Supply and Demand of ESs

This paper evaluated the supply and demand patterns of six typical ESs at the county,
township, and village scales in the Su-Xi-Chang region and identifies six ES budget bundles.
The results showed that the supply, demand, and budgets of ES are scale-dependent, which
is consistent with the findings of [25]. On the one hand, the large scale masks the spatial
heterogeneity and clustering characteristics of the supply and demand distribution of ESs
at the small scale, similar to the findings of [58]. In this study, the distribution of supply
and demand of ESs was more refined at the township and village scales than at the county
scale. In addition, the demand for CP, WR, FM, and LR, as well as the supply of HM
and LR, were randomly distributed at the county scale but clustered at the township and
village scales. Therefore, it is unscientific to simply add, generalize, or extrapolate the
information represented by a certain scale. On the other hand, the large scale highlights
high-value areas of supply and demand. In this study, the high-value areas of CP supply
were concentrated in cultivated land. The high-value areas of supply of regulating services
(WR, PR, HM, and FM) and cultural service (LR) were concentrated in the forest and water
areas. The high-value areas of demand were mainly concentrated in the urban core areas.

Due to the inconsistency in the quantity and location of the supply and demand of
various ESs, all ESs at the three scales showed a mismatch between supply and demand.
The position and area of surplus, balance, and deficit vary with scale. For example, the
supply of HM at the county scale can meet the demand, but the township and village
scales cannot (Figure 5(c1–c3)). On the three scales, CP, PR, and FM all showed a deficit
in the urban core areas, unable to meet their own needs through local supply. ES budget
bundles also exhibited scale dependence. The spatial patterns and inter-service composition
of ES budget bundles at the township and village scales were similar (Figures 7 and 8),
while there were significant differences between the township/village scale and the county
scale (Figure 6). This is similar to the findings of a study in Quebec, Canada [25], which
demonstrated that the spatial pattern and inter-service composition of ES supply bundles
were similar at the two smaller scales (1 km and 3 km) but very different at a larger scale
(9 km). This suggests that the formation of ESB at similar scales is similar and stable. When
the scale becomes larger or smaller, the spatial pattern and the inter-service composition of
ESB will be reconfigured. In summary, we believe that the county scale in the Su-Xi-Chang
region is suitable for analyzing the overall situation of ESs, while the township and village
scales include detailed information and are suitable for implementing precise management.

4.2. The Impact of the Natural Environment and Socioeconomics on ES Budget Bundles

Clarifying the reasons for the formation of ESB will help to deepen the understanding
of the coupling between the natural environment and the social economy and inform
managers of the underlying mechanisms that affect decision-making [41]. In this study,
social factors (POP and IS) determined the formation of ES budget bundles at three scales
(Table 6), which is similar to the findings of [42,76]. Economic factors (GDP) only played a
significant role at the township scale, which is consistent with the findings of [3]. Natural
environment factors (such as DEM, SR, and PRE) played a role at the township and village
scales. Our results show that, compared with natural environmental factors, socioeconomic
factors play a dominant role in forming ES budget bundles in the Su-Xi-Chang region.

We found that the drivers of ES budget bundles were also scale-dependent (Table 6).
The larger the scale, the stronger the explanation of the driving factors, similar to the results
of a study in the Yangtze River Delta region [56]. The larger the scale, the more single
the driving factor, and the smaller the scale, the more diverse the driving factor, which
is consistent with the research results of [3]. While small scales are better for identifying
drivers [80], multiscale analysis of drivers of ESBs in decision-making helps to capture the
key at different scales [3].

Therefore, landscape planners and managers must comprehensively consider local
natural conditions, typical ES, and scales when making decisions [41]. On the other hand,
it is also necessary to focus on regulating human activities [45]. Increasing supply will
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undoubtedly improve the mismatch between supply and demand of ESs, but it is unrealistic
to only increase supply without reducing demand to achieve the sustainable use of ESs [18].
It may be difficult to solve the mismatch between the supply and demand of various ESs at
different scales [57], but it will bring about a mismatch or trade-off between the supply and
demand of other services [56].

4.3. Multiscale Decision-Making Process

We combined multiscale ES budget bundles and drivers to inform decision-making
processes toward the sustainable use of ESs. The multiscale decision-making process
consists of four steps. The first step is to determine who will govern based on the scale.
The regions of Suzhou, Kunshan (the county-level administrative unit under Suzhou),
and Kunshan development zone correspond to the management scope of managers at the
county scale, the township scale, and the village scale, respectively (Figure 11, step 1). The
second step is to determine where to implement the decision based on the distribution
of ES budget bundles (Figure 11, step 2). The county and village scales include bundle 1,
bundle 2, bundle 4, and bundle 5, and the township scale includes bundle 1 and bundle 2.
The third step is to determine the ESs that need to be managed based on the histogram
(Figure 11, step 3). The fourth step is to formulate specific management countermeasures
based on drivers, local natural conditions, typical ESs, scale, and stakeholder preferences
(Figure 11, step 4) [81].

In the example shown in Figure 11, the area of bundle 2 is the largest at the county
scale, so the situation in the area where bundle 2 is located can best represent the overall
situation of Suzhou. The PR and CP in bundle 2 are better, but the WR and LR are slightly
lower than the mean value of the study area. Therefore, decision-makers at the county
scale need to improve the WR and LR of the area where bundle 2 is located. When refining
from the county scale to the township scale, Kunshan includes bundle 2, where all ESs are
higher than the average level of the study area, and bundle 1, where all ESs except WR
are lower than the mean value. Then, the decision-makers at the township scale need to
include the region where bundle 1 is located in the decision-making scope and take the
improvement of HM and FM as the main task. From the township scale to the village scale,
bundle 1 and bundle 5 are the main ES budget bundles of the Kunshan Development Zone.
The ESs in bundle 5 have more below-average values than the ESs in bundle 1, especially
CP, HM, and FM. Therefore, when the workload is heavy, decision-makers can prioritize
bundle 5 at the village scale as the priority area of management. Combined with the driving
factors, policy-makers need to focus on regulating human activities and comprehensively
consider local natural conditions, typical ES, and scale [45]. At the same time, cultivated
land should be used intensively, and the conversion of other lands to urban land should
be controlled [3]. Strengthening the cross-regional flow of ES, giving play to the leading
role of the advantageous bundle, and complementing the disadvantaged bundle can help
achieve a win–win situation [46].

In conclusion, decision-makers at the county scale should pay attention to the overall
situation of ES and find the prominent locations of the imbalance between supply and
demand. In this way, the decision-making time is shortened, decision-making efficiency is
improved, and overall decisions that meet the interests of most people are made. Decision-
makers at the township scale have clearer images and can make decisions that are more
in line with local conditions, with decisions that are consistent with the higher-level scale.
Managers at the village scale should incorporate the opinions of stakeholders and help
decision-makers at the larger scale fill in the small but important issues that are easily
overlooked. The large scale highlights the focus of decision-making, the small scale makes
up for the lack of precision in the large scale, and the combination of multiple scales
can make ES management more effective [24,37]. The multiscale decision-making process
we propose can be broadly applied to making management decisions in other rapidly
urbanizing regions of the world.
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4.4. Limitation

(1) In terms of supply and demand assessment, from the perspective of demand, for
example, the demand for WR is the actual demand calculated according to the statistical
data. At the same time, the demand for LR was calculated based on the minimum threshold.
Therefore, the actual demand for LR may be greater. From the perspective of supply, there
is no distinction between actual supply and potential supply. The supply of ES evaluated
by the InVEST model is the potential supply, such as FM, which belongs to the potential
supply (maximum threshold). (2) It is necessary to map and analyze the supply and
demand of ESs in the three administrative spatial units of county, township, and village.
This helps to link production to consumption and also meets the decision-making needs of
managers [76]. However, the range of influence of ESs is of many shapes and may be larger
or smaller than the range of administrative boundaries [36]. In this study, most ESs were
generated locally, but WR, for example, was delineated by watershed, and administrative
boundaries may have split some ecological boundaries. Therefore, decision-makers need to
work with surrounding areas to incorporate the actual management scope of ES into the
decision-making process [82]. (3) We did not consider the ES flow, which may alleviate
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the supply–demand imbalance to a certain extent, which will be the direction of further
research in the future.

5. Conclusions

This paper analyzed the supply, demand, and budgets of ESs and the drivers of ES
budget bundles at the county, township, and village scales in the Su-Xi-Chang region.
The results showed that the high-value areas of ES supply were mainly distributed in
the western part of the study area. The high-value areas of ES demand were mainly
concentrated in urban core areas. Due to the inconsistency in the quantity and location
of the supply and demand of various ESs, ESs on the three scales all showed a mismatch
between supply and demand. Among them, CP, PR, and FM showed deficits in the urban
core area and could not meet their own needs through local supply. The location and area
of ES supply and demand surpluses, balances, and deficits varied with scale. The spatial
patterns of ES supply, ES demand, and ES budget bundles at the township and village
scales were similar, while the township/village and county scales were different. We found
that socioeconomic factors significantly impact ES budget bundles in the Su-Xi-Chang
area more than natural environment factors. The top two drivers on the three scales were
population density and the percentage of impervious surfaces. The diversity and degree of
interpretation of influencing factors varied with scale. We believe that focusing on the big
picture on a large scale, implementing precise management on a small scale, and focusing
on regulating human activities can make management decisions more effective. This study
can provide a scientific basis for the sustainable utilization of ecosystem services in the
Su-Xi-Chang region, and the research results and methods can provide a reference for
similar studies in other rapidly urbanizing areas in the world.
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