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Abstract: This study aimed to assess the pollution levels, sources, and human health risks of heavy
metals in street dust from a typical industrial district in Wuhan City, Central China. In total, 47 street
dust samples were collected from the major traffic arteries and streets around Wuhan Iron and Steel
(Group) Company (WISC) in Qingshan District, Wuhan. The concentrations of heavy metals (Cr, Mn,
Ni, Zn, Fe, Cu, and Cd) in street dust were determined by atomic absorption spectroscopy. Results
indicated that the mean concentrations of Zn (249.71 mg/kg), Cu (51.15 mg/kg), and Cd (0.86 mg/kg)
in street dust were higher than their corresponding soil background values in Hubei Province.
Heavy metal enrichment is closely related to urban transportation and industrial production. The
pollution level of heavy metals in street dust was assessed using the geo-accumulation method
(Igeo) and potential ecological risk assessment (PERI). Based on the Igeo value, Cr, Mn, Fe, and Ni
showed no pollution, Zn and Cu showed light to moderate contamination, and Cd showed moderate
contamination. The PERI values of heavy metals in street dust ranged between 76.70 and 7027.28,
which represents a medium to high potential ecological risk. Principal component analysis showed
that the sources of heavy metals in street dust were mainly influenced by anthropogenic activities.
Among the studied metals, Cu, Cr, Zn, Fe, and Mn mainly come from industrial processes, while Ni
and Cd come from traffic exhaust. The non-carcinogenic risk indexes of heavy metals for children
and adults are ranked as Cr > Cu > Ni > Cd > Zn. The health risks to children through the different
exposure pathways are higher than those for adults. Hand-to-mouth intake is the riskiest exposure
pathway for non-carcinogenic risk. In addition, Cr, Ni, and Cd do not pose a carcinogenic risk for
the residents.

Keywords: heavy metal; street dust; pollution; critical source; health risk assessment

1. Introduction

With the rapid development of industrialization and urbanization, the city has become
the most active area for human activities. However, the urban environment is largely
affected by various factors, such as industrial production, transportation, construction,
and residents’ daily life. As a typical environmental medium, street dust is an important
reflection of the concentration and spatial distribution of heavy metal pollutants in the
immediate environment [1,2]. Meanwhile, due to the high surface area of street dust, it is
also an important carrier for organic and inorganic pollutants, especially heavy metals [3].
Street dust acts as the source and sink of heavy metals and also receives heavy metals
from atmospheric deposition. Due to the toxicity, cumulative trends, and non-degradable
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potential of heavy metals in street dust [4], it has attracted widespread attention. The
pollution sources of heavy metals are generally divided into two types, i.e., natural and
anthropogenic sources. Human activities have been proved to be the major sources of
heavy metal pollution, such as metallurgic processing, traffic emissions, chemical fertilizers,
waste disposal, the construction of buildings and roads, etc. [5–9].

Previous studies have shown that urban street dust is polluted to varying degrees by
heavy metals [10–18]. Moreover, street dust can come into direct contact with the human
body and produce hazards to human health [19,20], increasing the risk of Alzheimer’s
disease [21,22], cardiovascular disease [23,24], and atherosclerosis [25,26]. In addition,
the composition and concentrations of heavy metals in urban dust can directly reflect the
long-term or short-term human activities in the region. Heavy metals in dust particles,
especially fine particles, are re-suspended into the atmosphere, which can cause health risks
for local residents via ingestion, inhalation, or dermal exposure [27]. Previous studies found
that among the three exposure pathways, hand-to-mouth ingestion is the most important
exposure pathway for human beings to absorb street dust, thus causing certain hazards to
the human body, involving both non-carcinogenic risk and carcinogenic risk [27,28].

Air pollution in China’s cities has become a serious problem in the last ten years, which
is closely related to the city’s economic stability, human health and safety, and social stability.
Secondary suspension of street dust has become an important source of air pollution [29,30]. In
addition, the absorption of heavy metals in organisms largely depends on their chemical specia-
tion. At present, there are many studies about heavy metal pollution in street dust that have
been conducted in China, involving pollution characteristics, occurrence forms, environmental
magnetic response, source analysis, particle size effect, and health risks [13–18,31–33].

Qingshan District (QSD) is known as an important steel production area with a large
chemical industry and is also a heavy industry zone in Wuhan City, Central China. Af-
ter more than 50 years of construction and development, it has national significance for
industries such as steel manufacturing, petrochemicals, and equipment manufacturing.
However, with the rapid development of urbanization and industrialization, the environ-
mental pollution problem in QSD has become more and more serious. The effects of urban
street dust on the local environment and human health have increased continuously, but
there is less relevant research available that is specific to QSD, Wuhan City. Therefore, the
objectives of this study were: (1) to investigate the pollution levels of Cr, Mn, Ni, Zn, Fe, Cu,
and Cd in street dust, and reveal their spatial characteristics; (2) to evaluate the potential
ecological risk and human health risk of heavy metals in street dusts; (3) to analyze the
potential sources of heavy metals in street dust using principal component analysis. The
study results provide a scientific basis for the environmental protection of local residents
and the construction of an eco-city.

2. Materials and Methods
2.1. Study Area

Qingshan District (30◦37′ N, 114◦26′ E), one of the central urban areas of Wuhan, is
also an important industrial zone, with a population of over 0.45 million in Wuhan City.
The district is located in northeastern Wuhan City, adjacent to Wuchang District in the
west and Hongshan District in the south, surrounded by the Yangtze River to the east and
north. It has become an important industrial town, mainly due to its eight pillar industries:
metallurgy, chemical manufacture, environmental protection, electric power, machinery,
shipping, construction, and building materials. QSD is located in the transportation loop
between the central and outer rings of Wuhan, connecting the Beijing, Zhuhai, Shanghai,
and Chengdu high-speed trunk lines, and includes the Wudong railway marshaling station
and multiple freight terminals on the Yangtze River Golden Waterway. There are 110 roads
in QSD with a total length of 137.15 km. The per capita road area is 6.5 square meters, and
the road network density in the area is 3.05 km per square kilometer. Among them, the
four main roads represent a transportation hub connecting the three towns of Wuhan and
leading to all parts of the country.
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2.2. Sample Collection and Analysis Method

In this study, a total of 47 street dust samples were collected in QSD during May 2018
(Figure 1). At each sampling site, a polyethylene brush and dustpan were used to sweep
both sides of the road, repeated at least 3 times to collect about 100 g of dust. The dust
samples were stored in numbered self-sealing polyethylene bags and then transported to
the laboratory. All the samples were air-dried for 5 days and then sieved through a 1.0 mm
nylon mesh to remove debris. After the samples were carefully homogenized and passed
through a 100 µm sieve, the sieved samples were stored at 4 ◦C before analysis.

 
 
Figure 1. Map of sampling sites in the Qingshan District of Wuhan City. 
Figure 1. Map of sampling sites in the Qingshan District of Wuhan City.

About 0.2 g of dust samples were weighed in a Teflon crucible and then digested
with HNO3, HF, HClO4, and HCl at a temperature of 180–350 ◦C using an electro-thermal
plate. Each sample solution was filtered, using a 0.45-µm membrane filter, into a 50 mL
volumetric flask and diluted with HNO3 (2%, v/v). The concentrations of heavy metals
(Cr, Mn, Ni, Zn, Fe, Cu, and Cd) were analyzed using atomic absorption spectrometry
(FAAS, Varian AA240, NJ, USA). A blank control was added to each group of digested
samples, and a soil standard reference material sample (GSS-5, National Research Center
for Certified Reference Materials, Beijing, China) was added to every 10 samples. The
recovery rate of heavy metals was within the range of 84.5–116.4%. The relative standard
deviations of replicated samples were lower than 10%.

2.3. Pollution Assessment Methods
2.3.1. Geo-Accumulation Index (Igeo)

The geo-accumulation index (Igeo) is widely used to assess the contamination of street
dust by comparing the levels of heavy metals obtained in samples to the background
levels [27,29]. The calculation formula is shown in Equation (1):

Igeo = log2

(
Cn

1.5Bn

)
(1)
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where Cn (mg/kg) is the concentration of each metal in street dust and Bn (mg/kg) is the
geochemical background concentration of each metal. The constant, 1.5, is a correction
index that is commonly used to offset the effect of natural variation [29]. According to the
author of [34], the values are: uncontaminated (Igeo ≤ 0); uncontaminated to moderately
contaminated (0 < Igeo ≤ 1); moderately contaminated (1 < Igeo ≤ 2); moderately to heavily
contaminated (2 < Igeo ≤ 3); heavily contaminated (3 < Igeo ≤ 4); heavily to extremely
contaminated (4 < Igeo ≤ 5); and extremely contaminated (5 < Igeo).

2.3.2. Potential Ecological Risk Assessment (PERI)

The potential ecological risk index (PERI) was established for evaluating heavy metal
pollution and ecological hazards based on the principles of sedimentation [35]. The method
considers various factors, such as multi-element synergy, toxicity level, pollution con-
centration, and environmental sensitivity to heavy metals, and is widely used in the
environmental risk assessment of heavy metals [11,19]. The calculation formulas are shown
in Equations (2)–(4):

Ci
f =

Ci
r

Ci
n

(2)

Ei
r = Ti

r × Ci
f (3)

PERI = ∑n
i=1 Ei

r (4)

where Cf
i is the calculated contamination factor; Cr

i (mg/kg) is the measured concentration
of each metal, and Cn

i (mg/kg) is the geological background value of each metal; Er
i is the

potential ecological risk of each toxic metal; Tr
i is the toxicity coefficient of heavy metals

(Cr = 2, Ni = 5, Mn = 10, Cd = 30, Cu = 5, Zn = 1) [35]; PERI is the combined potential ecolog-
ical risk index for multiple metals. The classification of pollution level and ecological risks
according to Hakanson’s method are shown in Table S1 in the Supplementary Materials.

2.4. Human Health Risk Assessment

Children and adults are exposed to three major forms of health risks with dust-based
heavy metals, namely, hand-to-mouth ingestion, respiratory ingestion, and skin exposure.
In this study, the health risk assessment model recommended by the US Environmental
Protection Agency [36] was used to assess the health risk of five heavy metals (Cr, Ni, Cd,
Cu, and Zn) with chronic non-carcinogenic risk. The long-term daily average exposures
of the three exposure pathways and the exposure to carcinogenic heavy metals can be
calculated as follows [37,38]:

ADDing = C× IngR× EF× ED
BW × AT

× 10−6 (5)

ADDinh = C× InhR× EF× ED
PEF× BW × AT

(6)

ADDdermal = C× SA× AF× ABS× EF× ED
BW × AT

× 10−6 (7)

LADDinh =
C× EF

PEF× AT

(
InhRchild × EDchild

BWchild
+

InhRadult × EDadult
BWadult

)
(8)

where ADDing [mg·(kg·d)−1], ADDinh [mg·(kg·d)−1], and ADDdermal [mg·(kg·d)−1] are
oral intake, respiratory inhalation, and skin contact pathways, respectively; C (mg/kg)
is the concentration of heavy metals in street dust; IngR (mg/day) represents the rate of
street dust ingestion; EF (day/year) is the exposure frequency; ED (year) is the exposure
duration; InhR (m3/day) represents the rate of human inhalation of air containing street
dust; SA (cm2) is the surface area of human skin which is exposed to dust; AF and ABS
are the dermal adherence and absorption factors, respectively; PET (m3/kg) is the particle
emission factor; BW (kg) is the average body weight of the exposed individuals; AT is the
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average time of exposure with the pollutants, in days. The values of the above parameters
were adopted from [39,40] and are listed in Table S2 in the Supplementary Materials.

Non-carcinogenic risk (HI) and carcinogenic risks (CR) were calculated using
Equations (9)–(11) [41]:

HQ = ADD/RfD (9)

HI = ∑ HQi (10)

CR = LADD × SF (11)

where ADD [mg·(kg·d)−1] is the daily average exposure dose; RfD [mg·(kg·d)−1] represents
the daily reference ingested dose of the contaminant via an exposure route; HI is the hazard
index; CR represents the probability of cancer occurrence; and SF [mg·(kg·d)−1] is the
carcinogenic slope factor. The RfD and SF values of the different metals participating in the
health risk assessment are shown in [40].

If the HQ or HI value < 1, the risk is considered relatively small or negligible; if
the value of HQ or HI > 1, the non-carcinogenic risk is considered to be significant. It is
generally believed that if CR < 10−6, the substance is not considered to be carcinogenic; if
CR ranged from 10−6 to 10−4, an acceptable carcinogenic risk is assumed; if CR > 10−4, an
unacceptable risk of carcinogenicity is assumed [40].

3. Results and Discussion
3.1. Heavy Metal Pollution in Street Dusts

The statistical results of heavy metal concentrations in the street dust of QSD are
shown in Table 1. The average concentrations of Cr, Mn, Ni, Zn, Fe, Cu, and Cd in the
street dust were 70.17, 635.80, 22.17, 249.71, 5278.60, 51.15, and 0.86 mg/kg, respectively. It
can be seen that the Ni concentration showed a wide range, and the difference between
its minimum and maximum values was 58 times. According to the national limit guide
for China [42], the concentrations of Cr, Ni, Cu, and Cd in the street dust did not exceed
the limits, indicating that the concentration of heavy metals was low and there was no
significant pollution. As there were no standard values for Mn, Fe, and Zn in the limit
values, there was no basis by which to judge whether the two heavy metals exceeded
the standard. The average concentrations of Cr, Mn, Fe, and Ni did not exceed the soil
background value of Hubei Province [43], while the mean concentrations of Zn, Cu, and
Cd were all higher than the soil background values, which were 2.99, 1.66 and 5 times that
of the background value, respectively. In addition, due to industrial pollution, Zn is also
derived from the abrasion of automobile tires and the leakage of lubricating oil, while Cu
might also be related to traffic pollution emissions [44]. Cd is generally related to smelting
activities or is derived from traffic pollution; thus, it may be affected by the activities of the
Wuhan Iron and Steel (Group) Company (WISC). Therefore, transportation activities are
the main reason for the high contents of Zn, Cu, and Cd in street dust from QSD.

The coefficient of variation (CV) of the heavy metals followed the decreasing order
of Cd > Ni > Cr > Cu > Mn > Zn > Fe from small to large, with the coefficient of variation
of Fe being 8.71%, indicating that the element was less affected by external factors and its
spatial distribution was relatively uniform, with relatively similar pollution levels. The
coefficients of variation of Cr, Mn, Zn, and Cu were in the range of 25~60%, while those
of Ni and Cd were all higher than 100%. In particular, the CV value (319.09%) of Cd was
the highest, indicating that these elements were subject to strong external interference and
might be affected by human activities.
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Table 1. Statistical description of heavy metal concentrations (mg/kg) in the street dust of the
Qingshan District.

Metal Minimum Maximum Mean Value ± SD CV (%) Background Value a National Guide Value b

Cr 32.25 295.94 70.17 ± 40.74 58.05 86 78
Mn 370 1545.90 635.80 ± 256.23 40.30 712 —
Ni 2.74 158.74 22.17 ± 22.46 101.32 37.3 2000
Zn 132.49 458.76 249.71 ± 73.48 29.42 83.6 —
Fe 3931.37 6176.01 5278.60 ± 265.23 8.71 39,100 —
Cu 21.76 107.20 51.15 ± 22.37 43.74 30.7 36,000
Cd 0.001 12.01 0.86 ± 2.74 319.09 0.172 172

SD: standard deviation. CV: coefficient of variation. a The background values of soil in Hubei Province, China [43];
b the guide values based on the soil environmental quality risk control standards for the soil contamination of
development land (GB36600-2018) [42].

Table 2 summarizes the comparison of heavy metal concentrations in the street dust of
QSD with that of other cities. Cr concentration in the street dust was lower than in samples
taken in Beijing [45], Xi’an [46], Urumqi [47], and Panzhihua [48], which was comparable
with those in Changsha [49], but higher than those in Suzhou [50] and Shenyang [51]. With
the exception of Luanda [52] and Mexico [53], Cr concentration was at a lower level than
in Dhaka [54], Kolkata [55], Ho Chi Minh City [56], and Bandar Abbas [57]. As for Mn,
its concentration was relatively higher than those concentrations in other foreign cities.
The Ni concentration was only higher than that found in Suzhou [49] and Lunda [50].
Zn was at a relatively low concentration, compared with other cities [46,48,50,52,56]. Cu
and Cd concentrations were at a relatively low level, compared to those in other cities in
China [47,50]. With the exception of Luanda [52] and Dhaka [54], Cu concentration was
at a lower level than in other foreign cities. Cd concentration was only higher than that
observed in Ho Chi Minh City [56] and Bandar Abbas [57]. The reason for this difference
might be that it was greatly affected by different pollution sources.

Table 2. Comparative study of heavy metal concentrations in street dust between Wuhan and
other cities.

City
Heavy Metal Content in Street Dust (mg/kg)

Reference
Cr Mn Ni Zn Fe Cu Cd

Wuhan, China 70.17 635.80 22.17 249.71 5278.6 51.15 0.86 This study
Beijing, China 92.10 553.73 32.47 280.65 — 83.12 0.59 [45]
Xi’an, China 167.28 687 — 421.46 — 94.98 — [46]

Suzhou, China 25.70 — 16.40 376.90 — 104.80 2.45 [50]
Urumqi, China 186.00 — 289.70 227.00 — 179.00 1.97 [47]

Changsha, China 71.6 — 171.00 21,500 43.90 7.48 [49]
Shenyang, China 40.17 — 35.11 140.24 — 41.19 0.37 [51]
Panzhihua, China 228 — 62.5 373 — 68.6 0.96 [48]

Kolkata, India 114.00 543.00 51.00 249.00 114.00 466.90 — [55]
Luanda, Angola 26.00 258.00 10.00 317.00 11,572.00 42.00 1.10 [52]

Dhaka, Bangladesh 144.34 261.53 37.01 239.16 — 49.68 11.64 [54]
Ho Chi Minh City, Vietnam 102.4 393.9 36.2 466.4 — 153.7 0.5 [56]

Bandar Abbas, Iran 73.51 458.75 65.97 292.92 — 149.75 0.42 [38]
Mexico City, Mexico 51.4 235.2 36.3 280.7 5722.2 99.7 — [53]

3.2. Spatial Distribution of Heavy Metal Content

The spatial distribution map of heavy metal Cr, Mn, Ni, Zn, Fe, Cu, and Cd contents in
the street dust of QSD in Wuhan City was drawn using the Surfer 10.0 program (Figure 2).
It can be seen that the concentrations of Zn, Mn, and Fe show a trend of gradual increase
from west to east. The WISC is located in the east of the study area. Fe is an essential
element in the production of steel alloys. In the metallurgical industry, Mn is often used to
make special types of steel, while ferromanganese alloy can also be used as a sulfur and
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oxygen remover in the production of steel. In addition, large trucks and lorries often drive
on the roads around the WISC. The combustion of gasoline and diesel, as well as tire wear,
will release particulates containing Zn [57]. Therefore, the concentrations of Zn, Mn, and Fe
in street dust may be affected by both steel industry production and road transportation.
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Cd concentrations in the southeast direction of the study area are extremely high,
which is possibly from traffic emissions because Cd concentrations were greatly affected
by automobiles, and the traffic volume in this section is mostly heavy trucks [58]. It could
also be seen from the data that Mn and Cd are observed in high concentrations at the same
point. This point is near a highway, and previous studies have also shown that the increase
in Mn concentrations in road dust is related to the high road traffic flow [59].

There were four high-value points of Cu concentrations; two of them in the southeast
direction might be closely related to the industrial production of the WISC. The other two
high-value points are located in the northwest and southwest directions, where Linjiang Av-
enue and Huanle Avenue are located, respectively. The traffic flow is large, and the frequent
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human disturbances and motor vehicle brake wear emissions will lead to an increase in
Cu concentrations in street dust [60]. Meanwhile, Zn, Fe, and Cu show multicenter points.
These centers are located in the factory and road trunk roads, which together comprise
a production–to–transport process, further indicating that the possible sources of these
metals are related to industrial emissions from road transport.

The distributions of Ni and Cr are relatively similar, with high values appearing on
Linjiang Avenue in the northwest. It is speculated that the high values may be related to
the construction activities of newly built parks and the freight of heavy trucks, resulting in
high concentrations of Ni and Cr.

3.3. Heavy Metal Pollution Evaluation
3.3.1. Geo-Accumulation Indexes (Igeo)

The Igeo values for heavy metals were calculated to further evaluate the pollution
levels of heavy metals (Figure 3). The Igeo value of Cd in 47% of samples exceeded 1.0,
indicating that the street dust was contaminated with Cd. The Igeo value of Zn exceeded 1.0
for 47% of the samples, indicating that Zn pollution was of a light to moderate degree. For
Cu, only 10% of the samples had Igeo values above 1.0, indicating that the Cu contamination
was slight. The average Igeo values of Cr, Mn, Fe, and Ni were all less than 0, indicating
that Cr, Mn, Fe, and Ni were at a pollution-free level, with no significant enrichment.
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3.3.2. Potential Ecological Risk Assessment

Table 3 shows that the Er
i values of heavy metals were in the order of Cd > Mn > Cu >

Zn > Ni > Cr, and the Er
i values of Cr, Mn, Ni, Zn, and Cu were all less than 30, indicating

that these metals presented a slight ecological risk. The mean Er
i value of Cd was the

largest (149.52), indicating a strong ecological hazard. The PERI values of heavy metals
were in the order of Cd > Mn > Cu > Zn > Ni > Cr, while the PERI value of Cr was less than
80, indicating that it was a minor ecological hazard. The PERI values of Ni and Zn were in
the range of 80–160, indicating a medium ecological hazard. The PERI values of Mn, Cu,
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and Cd were all greater than 320 and indicated a strong ecological hazard. Mn, Cu, and Cd
present a relatively strong ecological risk, which may be related to particulate matter that is
emitted from motor vehicle fuel combustion and steel industry production.

Table 3. Potential ecological risk index (PERI) values of heavy metals in street dust.

Element
Ei

r (Grading)
PERI Risk Level

Mix Value Min Value Ave Value

Cr 0.75 6.88 1.63 76.70 Slight ecological risk
Mn 5.20 21.71 8.93 419.70 Strong ecological hazard
Ni 0.37 21.28 2.97 139.67 Medium ecological hazard
Zn 1.58 5.49 2.99 140.39 Medium ecological hazard
Cu 3.55 17.45 8.32 391.50 Strong ecological hazard
Cd −532.52 2095.12 149.52 7027.28 Strong ecological hazard

3.4. Principal Component Analysis

The results of the principal component analysis (PCA) (Figure 4) showed that the
heavy metal pollution source was primarily maintained by two principal components
(PCs) with a cumulative variance contribution rate of 69.75%. The contribution rate of PC 1
is 48.13%, and the factor loads of Cu, Cr, Mn, Zn, Ni, and Fe are all higher than 0.5. It
is generally judged that these elements might be derived from a mixture of natural and
anthropogenic sources. The wearing down of metal automobile parts might release Cu and
Zn [61]. The combustion of car mixers or carburetors and production dust from smelting
plants may also be a source of Cr in street dust [62]. Fe and Mn are indispensable elements
in steel alloys and special steels. The WISC is the first ultra-large steel complex built after
the founding of New China, based in the QSD in Wuhan City. The emission of tailpipe
gas and dust during production, as well as the transportation of steel, may have a certain
impact on soil particles in the surrounding environment, thereby affecting street dust as
well. Therefore, PC1 might represent both industrial and transportation pollution.
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The contribution of PC2 was 21.62%, with higher factor loads of 0.787, 0.539, and
0.492 for Ni, Cr, and Cd, respectively. Cr and Cd are generally considered to be related
to transportation conditions, and their main impacts are derived from transportation
exhaust [63]. Ni is closely related to metal smelting [64]; atmospheric dust will bring such
heavy metals into the street dust. Therefore, PC2 might be attributed to traffic emissions
and traffic carry-ons.

3.5. Health Risk Assessment

The non-carcinogenic health risk index (HQ), total non-carcinogenic risk index (HI),
and carcinogenic risk index (CR) of heavy metals were calculated using the USEPA health
risk assessment model. Table 4 shows these three data values. The results showed that
the HQ and HI values of heavy metals were less than 1 in this study. This shows that
these non-carcinogenic metals present no non-carcinogenic health risks to children and
adults. However, compared with adults, children’s exposure to heavy metals in street dust
had a higher non-carcinogenic risk. Some scholars believed that compared with adults,
children’s higher intake and lower tolerance to pollutants will lead to such a situation [65].
Among these studied metals, Cr has the highest non-carcinogenic risk, followed by Cu and
Zn. From the perspective of exposure routes for both adults and children, hand-to-mouth
intake is the main exposure route of human contact with street dust, followed by skin
contact exposure and respiratory inhalation. This finding has been confirmed in previous
studies [29].

Table 4. Non-carcinogenic risk and the carcinogenic risk index of heavy metals in street dust.

Element
HQing HQinh HQdermal HI

CR
Adult Child Adult Child Adult Child Adult Child

Cr 3.75 × 10−2 2.68 × 10−1 3.82 × 10−4 8.13 × 10−4 2.23 × 10−3 1.20 × 10−2 4.01 × 10−2 2.81 × 10−1 2.41 × 10−7

Ni 1.78 × 10−3 1.27 × 10−2 1.67 × 10−7 3.56 × 10−7 7.84 × 10−6 4.23 × 10−5 1.79 × 10−3 1.27 × 10−2 1.52 × 10−9

Cd 1.37 × 10−3 9.82 × 10−3 2.33 × 10−6 4.97 × 10−6 6.55 × 10−5 3.53 × 10−4 1.44 × 10−3 1.02 × 10−2 4.41 × 10−10

Cu 2.05 × 10−3 1.47 × 10−2 1.98 × 10−7 4.21 × 10−7 8.14 × 10−6 4.39 × 10−5 2.06 × 10−3 1.47 × 10−2

Zn 1.33 × 10−3 9.54 × 10−3 1.29 × 10−7 2.76 × 10−7 7.95 × 10−6 4.29 × 10−5 1.34 × 10−3 9.58 × 10−3

Total 4.41 × 10−2 3.15 × 10−1 3.84 × 10−4 8.19 × 10−4 2.32 × 10−3 1.25 × 10−2 4.68 × 10−2 3.28 × 10−1 2.43 × 10−7

In this study, only Cr, Ni, and Cd exposure by inhalation were identified as carcino-
genic. The carcinogenic risk results of these three heavy metals are shown in Table 4.
The CR values of Cr, Ni, and Cd are all less than 1 × 10−6, indicating that there is no
carcinogenic risk.

4. Conclusions

The pollution levels, spatial distribution, and potential risks of heavy metals in street
dust were investigated in detail in the Qingshan District of Wuhan. The concentrations
of Cr, Ni, Zn, Cu, and Cd all exceeded the national standard limit, and the enrichment
of heavy metals was high. The Igeo values showed that Zn and Cu presented light and
moderate pollution, while Cd showed moderate pollution. The potential ecological risk
assessment showed that heavy metals posed medium to high potential ecological risks.
The spatial distribution of heavy metals in street dust was consistent with the distribution
of the surrounding traffic pollution sources and the pollution emission sources of the steel
industry. The PCA results showed that heavy metal pollution was mainly affected by
anthropogenic activities, and Cu, Cr, Zn, and Mn were mainly emitted from industrial
processes. Ni, Cr and Cd were mainly from traffic pollution. Moreover, Cr, Ni, Zn, Cu,
and Cd did not pose any non-carcinogenic health risk to adults and children; their risk
levels to adults and children are shown in descending order: Cr > Cu > Ni > Cd > Zn.
The carcinogenic risk of Cr, Ni, and Cd was less than 1 × 10−6, indicating that there was
no carcinogenic risk. Based on the spatial distribution and PCA results, it is necessary
to manage industrial and traffic emissions more strictly in order to reduce the pollution
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risk caused by heavy metals in the future. Overall, the present study results might be
very helpful to better develop future management risk strategies for urban environments,
especially for metropolitan areas in China.
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