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Abstract: Exploring the impacts of perceived neighborhood environment on commuting behavior and
travel-related CO2 emissions helps policymakers formulate regional low-carbon transport policies.
Most studies have examined the impact of the objective measures of built environment on travel
behavior and related CO2 emissions, and few studies have focused on perceived neighborhood
environment. This study develops a structural equation model and uses data from a self-administered
survey of urban full-time employees in Nanjing, China to examine the direct and indirect effects of
perceived neighborhood environment on commuting mode choice and commuting CO2 emissions.
The study shows that perceived service facilities has a significant direct effect on commuting mode
and a significant indirect effect on commuting CO2 through the mediating effect of commuting
mode choice. While socio-demographic variables such as gender have a significant direct impact
on commuting mode and commuting CO2 emissions, they have an indirect impact on commuting
mode and commuting CO2 emissions through the intermediate variables (such as car ownership,
perceived neighborhood environment and commuting distance). The conclusions of this study show
that the potential of commuting CO2 emissions reduction in China is enormous, and that policy
interventions on commuting would help developing countries such as China achieve the goals of
low-carbon transport and sustainable development.

Keywords: perceived neighborhood environment; commuting CO2 emissions; commuting mode
choice; mediating effect; structural equation model; China

1. Introduction

Cities are not only the centers of economic development and human activities, but
also tremendous sources of carbon emissions [1]. In cities, transportation is identified as
one of the priority sectors for decarbonization [2]. However, transportation is the most
non-renewable energy-dependent sector in the world [3]. Compared to other sectors, trans-
portation has experienced the most difficulty in achieving CO2 emissions reduction [4].
Clearly, reducing energy consumption and CO2 emission in the transportation sector con-
tributes significantly to climate change mitigation [5]. Some of the countermeasures to
achieve low-carbon cities and green transport should also include reducing CO2 emissions
from the transportation sector [6,7]. As an important travel purpose, commuting accounts
for nearly 50% of the total travel [8,9]. Discovering the reasons behind commuting mode
choice and related CO2 emissions is vital for the construction of low-carbon cities and the
formulation of sustainable transport policies and schemes in regions. Therefore, encourag-
ing non-motorized commuting and reducing CO2 emissions while commuting will help
developing countries such as China reduce CO2 emissions in urban transportation.

Unlike western developed countries, China is in the process of rapid urbanization
and urban construction. High-speed economic development, urban spatial expansion and
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increased car ownership have resulted in an increasing proportion of employees who choose
cars to commute. This shift has led to rapid growth in urban transportation demand with
related energy consumption and CO2 emissions. In 2019, transport sector CO2 emissions
accounted for about 10% of China’s total energy-related CO2 emissions [10]. Meanwhile,
with the acceleration of China’s urbanization process, the urban environment has also
undergone tremendous changes such as diversification of land use and suburbanization
of housing. Changes in the urban built environment affect residents’ travel behavior and
then generate related CO2 emissions [5,11]. Furthermore, changes in the objective built
environment of cities affect residents’ perception of the built environment. Changes in the
perception of the built environment may affect residents’ travel behavior, which further
affects residents’ travel CO2 emissions [12,13]. Therefore, examining the impact of the
perceived built environment on travel behavior and related environmental consequences
is important for policymakers to promote low-carbon travel behaviors by improving the
urban environment.

While scholars have been increasingly interested in combining travel behavior, travel
CO2 emissions with urbanization [14,15], urban form [16–18] and land use [19–21] to re-
duce CO2 emissions in the transportation sector, the current literature is more focused
on exploring the correlations among objective measures of the built environment, travel
behavior and travel CO2 emission [22–27]. As for the impacts of the perceived built environ-
ment on travel behavior and travel-related CO2 emissions, researchers have paid limited
attention [28–30], especially regarding the impact of perceived neighborhood environment
on travel CO2 emissions. In fact, the perceived environment not only has the mediating
effect in the impact of the built environment on travel behavior [13], but also has a direct
impact on active travel behavior [31–33]. Currently, we know little about the impact of the
perceived built environment on travel modes other than active travel.

The built environment is an important determinant of travel behavior [34]. Urban-level
built environment and transportation planning are of great benefit to achieving the regional
sustainable planning goals [23,35,36]. With the support of the above views, numerous
studies have linked the built environment with travel behavior and travel CO2 emissions.
Some studies have suggested that built environment factors such as land use diversity and
density affect travel distance and travel mode choice, and travel distance and travel mode
are closely related to transportation CO2 emissions [37–42]. Ding et al. examined the effects
of the built environment on travel distance and energy consumption and found significant
differences between commuting and non-commuting trips [24]. Ten Dam found that full-
time work is associated with higher energy consumption [43]. These studies suggest that
the impact of the built environment may be different for different travel purposes and types
of work. Therefore, further research on commuting travel of urban full-time employees is
of great significance.

Most of the above studies only have focused on the impact of objective measures
of the built environment on travel behavior and related CO2 emissions. Research on the
perceived built environment has been more focused on its association with physical activity
(PA) [44–47]. Other studies have focused on the relationship between perceived environ-
ment and active travel, but most of these studies only focused on the relationship between
perceived environment and children or adolescents’ active commuting to school [48,49] and
adults’ active travel [31,32,50], and seldom on the impact of the perceived built environment
on commuting behavior and related CO2 emissions of urban full-time employees. Recent
studies have found that perceived high land use diversity, the existence of alternative routes,
perceived cycling infrastructure, aesthetic characteristics and green space can promote
pedestrian traffic and bicycle traffic [31,50]. However, we know little about the impacts
of the perceived built environment on travel modes other than active travel modes [29].
A study in rural China found that perceived accessibility and preference have positive
impacts on the probability of choosing to walk, and safety and neighborhood harmony
have positive impacts on the frequency of motorcycle and private car trips [51]. In addition,
perceptions had a mediating effect in the impact of the objective built environment on



Int. J. Environ. Res. Public Health 2022, 19, 7649 3 of 17

travel behavior [13]. Hong and Chen found that built environment factors such as traffic
convenience and density affect perceived safety from crime, and further affect walking
behavior [12].

In summary, without examining the effects of the perceived built environment on
travel modes other than active travel mode and on travel-related CO2 emissions, the above-
mentioned studies focus primarily on the impact of the objective measures of the urban
built environment on travel behavior and related CO2 emissions. However, the existing
studies seldom focus on the specialized group of urban full-time employees for whom the
daily commuting behavior has an important impact on transportation CO2 emissions. Fur-
thermore, most of the current studies only consider the direct effect of the built environment
on travel CO2 emissions while ignoring the mediating effect of travel behavior. Therefore,
this paper develops a structural equation model to examine the direct and indirect effects
of perceived neighborhood environment on commuting mode choice and commuting
CO2 emissions of employees in Nanjing, and to better understand the mechanism of the
connection among perceived environment—travel behavior—environmental consequences.
The core questions of this study are: (1) Does perceived neighborhood environment affect
commuting mode choice and commuting CO2 emissions? (2) Does commuting mode
choice have a mediating effect in the impact of perceived neighborhood environment on
commuting CO2 emissions?

This study contributes threefold to the literature. First, we examined the impact of
perceived neighborhood environment rather than objective measures of built environment
on commuting mode choice and commuting CO2 emissions, which has received less at-
tention in the literature. Second, our research objects are urban full-time employees with
relatively fixed daily commuting behavior. Their commuting behavior has an important
impact on urban transportation CO2 emissions as research has found that full-time work
is associated with higher energy consumption [43]. Third, we used a structural equation
model to examine the mediating effect of commuting mode choice in the impact of per-
ceived neighborhood environment on commuting CO2 emissions. Our research provides
implications for the formulation of urban commuting CO2 emissions reduction policies.

The remainder of this paper is organized as follows. Section 2 describes the study
area, self-administered survey, variables in the model and modeling approaches. Section 3
presents calculation results of commuting CO2 emissions and results of the structural
equation model. Section 4 presents research conclusions and discussion.

2. Methodology
2.1. Study Area and Data Collection
2.1.1. Study Area

This study uses Nanjing, a core city in the Yangtze River Delta region in eastern
China, as the study area. Nanjing is the capital city of Jiangsu province with its socio-
economic development level at China’s forefront. As with the development of most
Chinese large cities, Nanjing has experienced rapid urbanization and motorization since
the 21st century. From 2000 to 2019, the urban construction area increased from 194 km2 to
972 km2, the urbanization rate increased from 53.41% to 83.20% [52,53] and the number
of private cars increased from 27,413 to 2,111,876 [54,55]. The rapid urbanization and
motorization of Nanjing has led to corresponding changes in the commuting mode of
urban employees. Employees are increasingly dependent on private cars for commuting,
and commuting CO2 emissions have also entered a stage of rapid growth. In addition,
Nanjing has continuously strengthened its efforts in the construction of urban environment
and transportation infrastructure in recent years. These efforts will inevitably affect the
subjective perception of urban employees on the built environment, and this in turn will
lead to a new impact on the commuting mode. Therefore, based on the highly representative
study area of Nanjing, this is an important case for empirical research on Chinese cities.
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2.1.2. Data Collection

Data for the study were obtained from a retrospective questionnaire survey conducted
between November 2017 and January 2018. The administrative division of Nanjing includes
11 urban areas. We selected the main urban area (including 6 administrative districts) with
relatively concentrated population and employment for research. Our sampling rule was
to randomly select 8 administrative streets in the main urban area and randomly select
a community in each street. According to the traffic environment, leisure environment
and socio-demographic characteristics of the communities, we divided these communities
into 4 types (Figure 1). Among the 8 communities, Yunnanlu community and Yujiaxiang
community, located in the old town area, have a good traffic environment and a poor leisure
environment, and belong to type I community. Zhong’ao community and Fengqiyuan
community, located in Hexi new town, have a good traffic environment and a good leisure
environment, and belong to type II community. Huilinlvzhou community and Suojincun
community, located close to Xuanwu Lake scenic area, have a poor traffic environment
and a good leisure environment, and belong to type III community. Jingmingjiayuan
community and Xingweicun community, located at the edge of the main city, have a poor
traffic environment and a poor leisure environment, and belong to type IV community.
Before conducting the questionnaire survey, we established contact with eight community
neighborhood committees to explain the purpose and use of our questionnaire and invite
them to participate. After receiving affirmation, we entered the communities to issue
questionnaires. The members of our research group pre-distributed the questionnaire.
Based on the feedback from the research group members, we revised the questionnaires
and distributed them formally.
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The data were collected through face-to-face structured questionnaires filled out
by random sampling method, and the respondents were recruited in community public
spaces. When distributing the questionnaires, we prepared small gifts (including some
daily necessities such as handkerchief papers or wet wipes, worth about USD 2) as an
incentive to participants. We recorded the commuting behavior, perceived neighborhood
environment and socio-demographic characteristics of full-time employees aged 18 and
above. Respondents were asked to recall their commuting behavior from the past week,
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including the different modes of transportation they chose to travel between home and work
and their corresponding time. If there was a transfer behavior, participants could record
different transportation modes and their corresponding times. Respondents were also
asked to provide their workplace address. Some respondents, concerned about potential
privacy leakage, were unwilling to provide the address of their workplace address, and
so we asked them to indicate the bus station or metro station closest to their workplace.
We used the above information to calculate commuting distance and commuting CO2
emissions of employees. Respondents also filled in their perceptions of the neighborhood
environment. These question settings used a 5-point Likert scale, with 1 representing
“completely disagree” and 5 representing “completely agree”. Meanwhile, we determined
whether the respondents had moved in the past five years according to the number of
years they had lived in the current community to eliminate the impact of residential self-
selection. Considering that employees are usually away from their home on weekdays,
we chose to conduct questionnaire surveys during the weekends when employees were at
home. We distributed a total of 1200 questionnaires (150 in each community), recovered
1102 questionnaires and collected 622 questionnaires from employees who had complete
commuting information and had not moved in the past five years. The built environment
characteristics and sample characteristics of different types of communities are shown
in Table 1.

Table 1. Sample characteristics and built environment characteristics of different types of communities.

Community Type Type I Type II Type III Type IV

Average commuting distance (km) 11.13 12.19 14.38 12.13
Standard deviation 14.70 12.14 14.11 11.33

Built environment characteristics
Traffic environment good good poor poor
Leisure environment poor good good poor

Sample characteristics
Proportion of car ownership (%) 46.67 69.66 80.52 62.66

Proportion of personal monthly income greater than CNY 10,000 (%) 21.21 27.59 27.27 22.78
Proportion of Bachelor/College degree and above (%) 70.30 77.93 88.31 75.32

Proportion of local hukou 1 (%) 64.24 70.34 85.71 65.19
1 China’s hukou system refers to a household registration system required by law to officially identify every
citizen as a resident of a certain area. Under this system every citizen is categorized according to the type of
hukou (agricultural/non-agricultural) and the place of hukou registration (urban/rural areas) [56,57].

2.2. Variables Selection and Calculation
2.2.1. Calculation of Commuting CO2 Emissions

Considering the availability and accuracy of data, this study uses a method commonly
used internationally to calculate individual commuting CO2 emissions. In other words, this
study uses the commuting mode and commuting distance of each employee to calculate
commuting CO2 emissions [22,51,58,59]. The commuting distance (CD) of each sample
was calculated by multiplying the average speed of each employee’s chosen mode of
transportation by the corresponding commuting time. Commuting distance was calculated
using the following formula:

CDij = ∑n
j=1 Vij•Tij (1)

where CDij represented the commuting distance of the employee i using the transportation
mode j, Vij was the average speed of the transportation mode j during the peak commuting
period (obtained through field investigation) and Tij was the commuting time of the
employee i using the transportation mode j.

Once the commuting distance was measured for each employee using different modes
of transportation, the CO2 emissions per commute could be calculated. According to
different transportation modes, a CO2 emission factor was assigned to each distance. The
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sources of the CO2 emission factor values are shown in Table 2. The calculation of CO2
emissions was as follows:

CEi =
n

∑
j=1

(CD ij•Fj)•2 (2)

where CEi represented the daily commuting CO2 emissions of employee i, CDij was the
one-way commuting distance of employee i using transportation mode j and Fj was the
CO2 emission factor corresponding to transportation mode j. It is assumed that employees
commute to and from work twice a day and use the same means of transportation each
time. Due to the limitation of data acquisition, the calculation of commuting CO2 emissions
in this study did not consider the impact of fuel type, vehicle type, vehicle speed and
other factors.

Table 2. CO2 emission factors for different modes of transportation (kg CO2/person·km).

Walk Bike Electric Bike Metro Bus Shuttle Bus Car Taxi Source

0 0 0.008 0.0091 0.035 0.035 0.135 0.135 Ma et al. [5]

0 0 0.008 - 0.035 - 0.126 0.126 Ao et al. [51]
0 0 0.008 0.0091 0.035 - 0.126 0.129 Yang et al. [60]
- - 0.008 - 0.021 0.050 0.184 0.091 Lyu et al. [61]
0 0 0.008 0.0091 0.035 0.050 0.126 0.129 this research

2.2.2. Classification of Commuting Modes

In this study, commuting mode (CM) was classified into four categories according
to the CO2 emission factors for different transportation modes. The CO2 emission factors
for walking and biking were both 0, and so they were classified into one category of
commuting mode (namely walking/biking commuting mode). Electric bicycle, as a more
common mode of motorized transportation for short-distance travel in China, had a small
CO2 emission factor, and so it was classified as the electric bicycle commuting mode. The
CO2 emission factors for public transport such as subway, bus and unit shuttle bus were
relatively large, and so they were regarded as the public transportation commuting mode.
The CO2 emission factor was the largest when private cars and taxis were chosen, and so
we classified cars and taxis into one category (namely car commuting mode).

For the 622 samples collected in this paper, in terms of commuting mode choice, the
proportion of employees who chose public transport commuting mode was the largest at
36.66%, followed by the walking/bicycle commuting mode for 30.23% of the employees.
The proportion of employees choosing car commuting mode and electric vehicle commuting
mode was 22.51% and 10.61%, respectively. Descriptive statistics of commuting modes are
shown in Table 3.

Table 3. Share of each transportation mode and average CO2 emissions.

Variable Lever Sample Size Percentage of
Samples

Average Commuting CO2
Emissions (kg/person·day)

Standard
Deviation

Commuting mode
(CM)

1 = Walking/biking 188 30.23% 0 0
2 = Electric bicycle 66 10.61% 0.1029 0.0529

3 = Public transportation 228 36.66% 0.7059 0.6614
4 = Car 140 22.51% 3.8657 2.0273

2.2.3. Factor Analysis of Perceived Neighborhood Environment

SPSS 20.0 was used to test the reliability and validity of the perceived neighborhood
environment data in the questionnaire. The overall Cronbach’s alpha value of the data was
0.676, and Cronbach’s alpha value based on standardized items was 0.695. This shows
that the internal consistency among the question items on the perceived neighborhood
environment in the questionnaire reached the minimum acceptable value. At the same
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time, most of Cronbach’s alpha if the item deleted values of the perceived neighborhood
environment items in the questionnaire did not reach 0.695 (Table 4). This indicates that the
validity of the data in the questionnaire was good.

Table 4. Validity test of observed variables of perceived neighborhood environment.

Observed Variables of Perceived Neighborhood Environment Symbols of
Variables

Cronbach’s Alpha
if Item Deleted

Easy and convenient walk to the nearest large supermarket or shopping mall D1 0.644
Easy and convenient walk to the nearest bus stop D2 0.667

Easy and convenient walk to the nearest metro station D3 0.652
Easy and convenient walk to the nearest park or green area D4 0.635

There are many intersections around the community D5 0.671
There are many different roads around the community to choose from D6 0.656

The roads around the community are in good sanitation condition D7 0.660
The roads around the community are well illuminated at night D8 0.656

The streets around the community are flat D9 0.653
Most roads around the community have walking trails D10 0.665

There are pedestrian crossing facilities around the community D11 0.656
There are attractive natural landscapes around the community D12 0.643
There are attractive cultural landscapes around the community D13 0.658

There are not many fast-moving motor vehicles around the community D14 0.690
Traffic accidents do not often occur around the community D15 0.703

There are not many obstacles around the community (such as vehicles occupying roads) D16 0.718
Public security around the community is very good D17 0.645

Peace and order around the community is very good at night D18 0.646

Next, we performed exploratory factor analysis on 18 variables of perceived neighbor-
hood environment in the questionnaire. To analyze whether the perceived neighborhood
environment variables satisfy the prerequisites of factor analysis, that is, whether there
was a strong correlation among the items, KMO and Bartlett tests were conducted on the
18 variables of perceived neighborhood environment. It was verified that the KMO value
was 0.777, and the significance of the Bartlett sphericity test value was 0.000. This indicates
that the correlation coefficients among the items were both significant and suitable for
factor analysis.

The factors were further rotated orthogonally using the maximum variance method
to make them more convincing and explanatory. The cumulative variance contribution
rate of the five common factors was 58.22%. From the rotation component matrix table
(Table 5), combined with the meaning of each item, the five common factors were defined as
service facilities perception, environmental quality perception, road condition perception,
traffic safety perception and community safety perception, forming the latent variables
of perceived neighborhood environment in the structural equation model. The means,
standard deviations and standard errors of the latent variables of perceived neighborhood
environment are shown in Table 6.

Table 5. Rotation component matrix.

Symbols of
Variables

Component

1 2 3 4 5

(Service) (Environment) (Road) (Traffic) (Community)

D1 0.579
D2 0.650
D3 0.668
D5 0.563
D6 0.680
D4 0.714
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Table 5. Cont.

Symbols of
Variables

Component

1 2 3 4 5

(Service) (Environment) (Road) (Traffic) (Community)

D12 0.724
D13 0.779
D7 0.550
D8 0.599
D9 0.641
D10 0.773
D11 0.732
D14 0.772
D15 0.654
D16 0.688
D17 0.870
D18 0.879

Note: The extraction method is principal component analysis; the rotation method is an orthogonal rotation
method with Kaiser standardization.

Table 6. Mean, standard deviation and standard error of latent variables of perceived neighborhood.

Latent Variables of Perceived
Neighborhood Environment

Symbols of
Variables Sample Size Mean Standard

Deviation
Standard Error of

the Mean

Service facilities perception Service 622 3.785 0.624 0.025
Environmental quality perception Environment 622 2.683 0.982 0.039

Road condition perception Road 622 3.623 0.630 0.025
Traffic safety perception Traffic 622 2.927 0.778 0.031

Community safety perception Community 622 3.835 0.756 0.030

2.2.4. Socio-Demographic Characteristics

Socio-demographic characteristics are crucial to understanding travel behavior and
travel CO2 emissions. The existing relevant literature has proven that gender, age, in-
come, education, occupation, household size and hukou not only affected travel behav-
iors [62,63], but also affected travel CO2 emissions [5,11,22,24,60]. In this study, the above
socio-demographic characteristics were considered as exogenous variables introduced into
the model. The impact of car ownership is more complicated, with some scholars believing
that car ownership has a mediating effect between the exogenous variables and other en-
dogenous variables [11,64,65]. Therefore, car ownership was set as an endogenous variable
in this research. Table 7 presents the socio-demographic characteristics of the sample.

2.3. Structural Equation Model and Conceptual Framework

In recent years, scholars have often used structural equation modeling to analyze
the complex relationships among built environment, travel behavior and related CO2
emissions [11,17,64,66]. Structural equation modeling is a multivariate data analysis tool
that analyzes the relationships among variables based on the covariance matrix of variables.
It integrates factor analysis and path analysis. Structural equation models can not only
solve the endogeneity problem among variables, but also allow the existence of mediating
variables [26,66]. Because there were mediating variables such as commuting distance
and commuting mode in this study, it would have been difficult to support the analysis
using traditional multiple regression methods. Thus, we used structural equation modeling
to analyze the direct and indirect impact of perceived neighborhood environment on
commuting mode choice and commuting CO2 emissions through the effect values.
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Table 7. Socio-demographic characteristics of the sample.

Variables Lever Sample Size Percentage of
Sample

Gender
0 = female 291 46.78
1 = male 331 53.22

Income

1 = less than CNY 2000 30 4.82
2 = CNY 2001–4000 115 18.49
3 = CNY 4001–6000 134 21.54
4 = CNY 6001–8000 96 15.43

5 = CNY 8001–10,000 94 15.11
6 = CNY 10,001–15,000 77 12.38

7 = more than CNY 15,000 76 12.22

Occupation

1 = government staff 110 17.68
2 = white collar 223 35.85

3 = personnel in a specific
technical field 115 18.49

4 = general workers 100 16.08
5 = freelance 74 11.90

Car ownership
1 = no car 221 35.53

2 = own 1 car 313 50.32
3 = own 2 or more cars 88 14.15

Age

1 = age 18–29 175 28.14
2 = age 30–39 207 33.28
3 = age 40–49 139 22.35
4 = age 50–59 83 13.34

5 = age 60 and above 18 2.89

Education

1 = junior high school and
below 61 9.81

2 = high school 77 12.38
3 = undergraduate 386 62.06

4 = postgraduate and above 98 15.76

Household size

1 = 1 person 68 10.93
2 = 2 persons 123 19.77
3 = 3 persons 265 42.60
4 = 4 persons 85 13.67
5 = 5 persons 67 10.77
6 = 6 persons 14 2.25

Hukou
0 = other places 179 28.78

1 = local 443 71.22

Because of the subjective aspect of human behavior and their different life experiences,
attitudinal preferences and socio-demographic characteristics, even in the face of the same
urban built environment, different people have different subjective perceptions of the built
environment, and their commuting mode choices and commuting CO2 emissions will differ
to some extent. Therefore, the mechanism behind commuting mode choice and commuting
CO2 emissions cannot be fully explained from the perspective of the objective measures of
the urban built environment. The impact of perceived neighborhood environment must also
be considered. In addition, commuting distance has been considered an important factor
for commuting mode choice and travel CO2 emission [11,67]. Thus, commuting distance
is included in the model in this paper. Socio-demographic characteristics significantly
affect commuting mode choice and commuting CO2 emissions, so they are also included in
the model.

In summary, the conceptual framework of the structural equation model is shown
in Figure 2. Through this conceptual framework, we can intuitively see the direct effect
of perceived neighborhood environment on commuting mode and commuting CO2 emis-
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sions, and how perceived neighborhood environment ultimately affects commuting CO2
emissions through the mediating effect of commuting mode.

Figure 2. Conceptual framework for the structural equation model.

3. Results
3.1. Calculation Results of Commuting CO2 Emissions

Through calculation, the average one-way commuting distance of urban employees in
Nanjing is 12.42 km, the one-way commuting time is 29.59 min, the daily commuting CO2
emissions per capita is 1.14 kg and the corresponding standard deviations are 13.17 km,
22.19 min and 1.82 kg, respectively. From comparison with other studies in Table 8, we
found that the daily commuting CO2 emissions of our sample are close to the results of
other scholars’ research on China [5,60], but much lower than the result of Ohnmacht et al.
for Switzerland [58].

Table 8. Individual travel CO2 emissions in different studies.

Literature Study Area Time Personal CO2 Emissions per Day

Ma et al. [5] Beijing, China 2007 A work-related trip: 0.8 kg/person

Wang et al. [68] Xi’an, China
Bangalore, India

Xi’ an: 2012
Bangalore: 2011–2012

Urban transportation CO2 emissions: Xi’an:
0.28 kg/trip

Bangalore: 0.41 kg/trip

Yang et al. [60] Guangzhou, China 2015 Commuting CO2 emissions:
0.954 kg/day·person

Ohnmacht et al. [58] Switzerland 2019 Commuting CO2 emissions:
3.32 kg/day·person

3.2. Goodness of Fit for Structural Equation Model

In this paper, we used AMOS 22 to build the initial model. The model was estimated
using the Bollen–Stine Bootstrap because our data were not normally distributed [11,32].
We removed non-statistically significant links (p > 0.1) and re-estimated the model. We then
modified the model according to the modification indices (MI) to obtain the final model.
The model fit indices and its corresponding reference values [69] are given in Table 9. All
indices show that the model fits well and is statistically significant.
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Table 9. Model fitness indices.

Statistical Test
Volume Indices Description

Criteria or
Thresholds for

Adaptation

Model
Results

Absolute fit
measurement

χ2 Chi-square value Significant probability
value p > 0.05 p = 0.469

SRMR Standardized root mean
square residual <0.05 0.0345

RMSEA Root mean square error of
approximation <0.05 0.003

GFI Goodness-of-fit index >0.90 0.968
AGFI Adjusted goodness-of-fit index >0.90 0.954

Incremental fit
measurement

NFI Normed fit index >0.90 0.938
RFI Relative fit index >0.90 0.917
IFI Incremental fit index >0.90 1.000
TLI Tacker–Lewis index >0.90 1.000
CFI Comparative fit index >0.90 1.000

Parsimonious fit
measurement

PGFI Parsimony goodness-of-fit index >0.5 0.672
PNFI Parsimony-adjusted NFI >0.5 0.698
χ2/df Chi-square/degree of freedom 1–3 1.004

3.3. Effects among Endogenous Variables

The relationships among endogenous variables are shown in Table 10. In terms of the
direct effects among endogenous variables, the service facilities perception in the perceived
neighborhood environment variables has a significant direct effect on commuting mode,
which indicates that employees with a positive perception of service facilities around the
community have a higher probability of choosing walking/bicycle commuting methods. It
is understandable that employees have a positive perception of service facilities around
the community, meaning they may live closer to the center of the main city rather than the
edge of the main city, so they are closer to the workplace and are more likely to choose
the walk/bicycle commuting mode. Meanwhile, car ownership and commuting distance
have a significant direct effect on commuting mode. This shows that employees with more
car ownership and longer commuting distance have a higher probability of choosing car
commuting mode. In addition, commuting mode, commuting distance and car ownership
have a significant direct effect on commuting CO2 emissions, which means that employees
who choose to commute by car, commute longer distances or own more cars and emit more
CO2 when commuting.

However, perceived neighborhood environment variables have no direct effect on
commuting CO2 emissions. Service facilities perception and commuting distance indirectly
affect commuting CO2 emissions through the mediating effect of commuting mode. That
is, employees with a positive perception of service facilities around the community have
a higher probability of choosing walking/biking commuting mode, and CO2 emissions
are lower when they choose walking/biking commuting mode; employees with longer
commuting distance are more likely to choose the car commuting mode, and CO2 emissions
are higher when choosing the car commuting mode. Car ownership indirectly affects
commuting mode choice through the mediating effect of service facilities perception. In
addition, car ownership indirectly affects commuting CO2 emissions through the mediating
effect of service facilities perception and commuting mode.
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Table 10. Standardized direct, indirect and total effects of endogenous variables on one another.

Variables
Symbol Effects Service Car

Ownership CD CM

CM Total effect −0.098 *** 0.223 *** 0.440 *** -
Direct effect −0.098 *** 0.209 *** 0.440 *** -

Indirect effect - 0.013 ** - -
CE Total effect −0.050 *** 0.283 *** 0.445 *** 0.508 ***

Direct effect - 0.170 *** 0.221 *** 0.508 ***
Indirect effect −0.050 *** 0.113 *** 0.224 *** -

Service Total effect - −0.133 *** - -
Direct effect - −0.133 *** - -

Indirect effect - - - -
Community Total effect - 0.135 *** - -

Direct effect - 0.135 *** - -
Indirect effect - - - -

Note: The above values are all standardized values. ** and *** represent statistical significance at the 5% level and
the 1% level respectively. Links that are not included in the model after re-estimation are indicated by “-”.

3.4. Effects of Socio-Demographic Variables on Endogenous Variables

The relationships between socio-demographic variables and endogenous variables are
shown in Table 11.

Table 11. Standardized direct, indirect and total effects of socio-demographic variables on endoge-
nous variables.

Variables
Symbol Effects Gender Age Income Education Occupation Household

Size Hukou

Car ownership Total effect - - 0.273 *** - - - -
Direct effect - - 0.273 *** - - - -

Indirect effect - - - - - - -

Service Total effect - - −0.036 *** - - - -
Direct effect - - - - - - -

Indirect effect - - −0.036 *** - - - -

Environment Total effect −0.121 *** - - - - - 0.142 ***
Direct effect −0.121 *** - - - - - 0.142 ***

Indirect effect - - - - - - -

Road Total effect 0.073 * - - - 0.098 ** - -
Direct effect 0.073 * - - - 0.098 ** - -

Indirect effect - - - - - - -

Traffic Total effect - 0.200 *** - - −0.117 *** - -
Direct effect - 0.200 *** - - −0.117 *** - -

Indirect effect - - - - - - -

Community Total effect - - 0.037 *** - - - -
Direct effect - - - - - - -

Indirect effect - - 0.037 *** - - - -

CD Total effect 0.106 *** - - - −0.100 ** 0.077 * 0.078 *
Direct effect 0.106 *** - - - −0.100 ** 0.077 * 0.078 *

Indirect effect - - - - - - -

CM Total effect 0.196 *** −0.078 ** 0.061 *** 0.071 * −0.134 *** 0.034 * 0.105 ***
Direct effect 0.149 *** −0.078 ** - 0.071 * −0.09 ** - 0.071 **

Indirect effect 0.047 *** - 0.061 *** - −0.044 ** 0.034 * 0.035 *

CE Total effect 0.210 *** −0.04 ** 0.077 *** 0.036 * −0.016 0.034 * 0.071 ***
Direct effect 0.087 *** - - - 0.074 ** - -

Indirect effect 0.123 *** −0.04 ** 0.077 *** 0.036 * −0.09 * 0.034 * 0.071 ***

Note: The above values are all standardized values. *, ** and *** represent statistically significant at 10% level, 5%
level and 1% level respectively. Links that are not included in the model after re-estimation are indicated by “-”.

Among socio-demographic variables, only income directly impacts on car ownership.
This indicates that high-income employees own more cars.

Socio-demographic variables directly impact perceived neighborhood environment.
Male employees have a positive perception of road conditions and a negative perception of
environmental quality, which means that male employees better understood road condi-
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tions, while female employees better understood environmental quality. Older employees
have a positive perception of traffic safety. Freelance employees have a negative percep-
tion of traffic safety and a positive perception of road conditions. Meanwhile, employees
with local hukou have a positive perception of environmental quality. In addition, socio-
demographic variables also have significant indirect effects on perceived neighborhood
environment, which comes from the mediating effect of car ownership. Higher-income
employees own more cars, while employees with more cars have a positive perception
of community safety and a negative perception of service facilities. It is not difficult to
understand that most of the high-income employees live in high-end communities, and the
safety of such communities is more guaranteed; employees with more cars can easily reach
farther distances to obtain services, so they have a negative perception of service facilities
around their communities.

Socio-demographic variables directly impact commuting distance, commuting mode
and commuting CO2 emissions. Male employees, employees with larger household size
and employees with local hukou commute longer distance, while freelance employees
commute relatively shorter distances. Male employees, highly educated employees and
employees with local hukou have a higher probability of choosing the car commuting mode,
while older employees and freelance employees have a higher probability of choosing the
walking/biking commuting mode. Meanwhile, male employees and freelance employees
emit more CO2 when commuting. In addition, socio-demographic variables also indirectly
impact commuting mode and commuting CO2 emissions. This comes from the mediating
effects of car ownership and commuting distance. Higher-income employees own more
cars, and so they have a higher probability of commuting by car and emit more CO2. Male
employees, local hukou employees and employees with larger household size have longer
commuting distances, and so they are more likely to choose cars to commute and emit
more commuting CO2 emissions. Freelance employees have relatively shorter commuting
distances, and so they have a higher probability of choosing the walking/bicycle commut-
ing mode; this results in lower commuting CO2 emissions. Highly educated employees are
more likely to choose cars to commute, and so their commuting CO2 emissions are relatively
higher. Older employees are more likely to choose the walking/biking commuting mode,
and so their commuting CO2 emissions are relatively lower.

In general, the indirect effects of socio-demographic characteristics on commuting CO2
emissions are more significant than the direct effects, and so we cannot ignore the mediating
effects of commuting behavior, including commuting distance and commuting mode.

4. Conclusions and Discussion

Taking Nanjing as the case and using questionnaire data to estimate the conceptual
model of a structural equation model, this study examined the direct and indirect effects
of the perceived neighborhood environment on commuting mode choice and commuting
CO2 emissions of urban full-time employees. The following main conclusions and policy
implications were determined:

(1) Using full-time employees in Nanjing as a sample, the average daily commuting
CO2 emission per employee is 1.14 kg. If Chinese people work 250 days per year,
each urban employee would emit 285 kg of CO2 every year due to commuting. It
is evident that commuting is an important part of residents’ daily travel, and its
CO2 emission reduction potential is enormous. If we can encourage employees to
shift from high-carbon car commuting to green and low-carbon walking/biking and
public transportation commuting from the perspective of changing their commuting
behavior, it will not only alleviate traffic congestion in Chinese large cities and promote
the construction of low-carbon cities in China, but also take part in achieving China’s
carbon neutrality target by 2060.

(2) Among the perceived neighborhood environment variables, the service facilities
perception directly affects commuting mode choice, and perceived neighborhood
environment ultimately affects the commuting CO2 emissions of employees indirectly
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through the mediating effect of commuting mode. Therefore, in climate change mit-
igation, it is more beneficial to change residents’ behavior patterns through urban
planning tools. In some developed countries, perceived safety and aesthetic character-
istics often promote walking and cycling [30,50], so improving residents’ perceptions
of safety and aesthetics can promote low-carbon travel. In developing countries such
as China, a good service facilities perception may be more important for promoting
low-carbon commuting mode choice and reducing related CO2 emissions. There-
fore, improving service facilities around communities should become one of the key
dimensions of urban low-carbon transportation construction in China.

(3) Commuting distance and commuting mode directly affect commuting CO2 emissions,
and commuting distance indirectly affects commuting CO2 emissions of employees
through the mediating effect of commuting mode choice. Since the impact of perceived
neighborhood environment on commuting mode choice is limited (only the impact
of service facilities perception is significant), shortening the commuting distance of
employees and promoting their choice of walking/bicycle commuting are some of
the effective measures to reduce the commuting CO2 emissions. In the past two
decades, China’s urban form has continued to expand, and the job-housing imbalance
is one reason for the increasing commuting distance of urban employees [70,71]. Thus,
it is necessary to develop compact urban forms in the future. Meanwhile, with the
advancement of internet communication technologies, more diverse forms of work can
be explored. Current studies have also proven that coworking, working from home or
teleworking could reduce energy consumption and greenhouse gas emissions [58,72].
In addition, accelerating the construction of pedestrian greenways, bicycle paths
and public transportation systems, and advocating low-carbon travel behavior are
of great significance for encouraging urban employees to choose a green commuting
mode and reducing commuting CO2 emissions. China’s first urban mobility industry
report, titled “The 2021 Urban Sustainable Mobility Observation Report”, showed
that public transportation to car commuting time ratios in eight big cities in China
were generally from 1.5 to 2.5 [73], indicating that the priority development strategy
of public transportation in China still needs to be improved.

(4) Socio-demographic characteristics such as gender, occupation and car ownership di-
rectly influence commuting CO2 emissions and indirectly influence commuting CO2
emissions through mediating variables of commuting distance and commuting mode.
These conclusions are beneficial to formulate commuting CO2 reduction policies for
specific groups. For example, for groups with a high propensity to commute by
cars—this paper refers to male employees, higher-income employees and employees
with more car ownership and local hukou—the Chinese government should increase
the cost of their car use. Through measures such as car purchase restrictions, higher
vehicle purchase taxes and parking fees, the Chinese government can control the
use of cars by urban employees within a reasonable range and encourage such em-
ployees to choose a lower-carbon commuting mode, thereby reducing CO2 emissions
from commuting.

Overall, this study fills a research gap on the effects of perceived neighborhood
environment on commuting mode choice and related CO2 emissions, providing some new
evidence for the current construction of sustainable transport and low-carbon cities in
China and other developing countries. The main limitation of this study is related to the
use of CO2 emission factors, which are closely related to fuel type, vehicle type, vehicle
speed and other factors. Due to the difficulty in obtaining such data, this study did not
take these factors into account and could only estimate the model using the average CO2
emission factor for each mode of transportation.



Int. J. Environ. Res. Public Health 2022, 19, 7649 15 of 17

Author Contributions: Conceptualization, C.C., F.Z. and X.H.; methodology, formal analysis and
visualization, C.C.; investigation, C.C. and F.Z.; data curation, F.Z.; writing—original draft, C.C., F.Z.
and X.H.; funding acquisition, F.Z. and X.H.; supervision, X.H.; writing—review and editing, C.C.,
F.Z. and X.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Project of National Social Science Fund of China (17ZDA061
and 20AZD040).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tao, X.Z.; Wu, Q. Energy consumption and CO2 emissions in hinterland container transport. J. Clean Prod. 2020, 279, 123394.

[CrossRef]
2. Linton, S.; Clarke, A.; Tozer, L. Technical pathways to deep decarbonization in cities: Eight best practice case studies of

transformational climate mitigation. Energy Res. Soc. Sci. 2022, 86, 102422. [CrossRef]
3. International Energy Agency (IEA). Improving the Sustainability of Passenger and Freight Transport. 2021. Available online:

https://www.iea.org/topics/transport (accessed on 20 January 2022).
4. Brand, C.; Tran, M.; Anable, J. The UK transport carbon model: An integrated life cycle approach to explore low carbon futures.

Energy Policy 2012, 41, 107–124. [CrossRef]
5. Ma, J.; Liu, Z.L.; Chai, Y.W. The impact of urban form on CO2 emission from work and non-work trips: The case of Beijing, China.

Habitat Int. 2015, 47, 1–10. [CrossRef]
6. Abid, M. The close relationship between informal economic growth and carbon emissions in Tunisia since 1980: The (ir) relevance

of structural breaks. Sustain. Cities Soc. 2015, 15, 11–21. [CrossRef]
7. Hickman, R.; Ashiru, O.; Banister, D. Transitions to low carbon transport futures: Strategic conversations from London and Delhi.

J. Transp. Geogr. 2011, 19, 1553–1562. [CrossRef]
8. Hu, Y.; Sobhani, A.; Ettema, D. Exploring commute mode choice in dual-earner households in a small Chinese city. Transp. Res.

Part D-Transp. Environ. 2022, 102, 103148. [CrossRef]
9. Neves, C.E.T.; da Silva, A.R.; Arruda, F.S.D. Exploring the link between built environment and walking choice in São Paulo city,

Brazil. J. Transp. Geogr. 2021, 93, 103064. [CrossRef]
10. International Energy Agency (IEA). CO2 Emissions by Sector, People’s Republic of China 1990–2019. 2021. Available online:

https://www.iea.org/countries/china (accessed on 20 January 2022).
11. Cao, X.S.; Yang, W.Y. Examining the effects of the built environment and residential self-selection on commuting trips and

the related CO2 emissions: An empirical study in Guangzhou, China. Transp. Res. Part D-Transp. Environ. 2017, 52, 480–494.
[CrossRef]

12. Hong, J.; Chen, C. The role of the built environment on perceived safety from crime and walking: Examining direct and indirect
impacts. Transportation 2014, 41, 1171–1185. [CrossRef]

13. Ma, L.; Cao, J. How perceptions mediate the effects of the built environment on travel behavior? Transportation 2019, 46, 175–197.
[CrossRef]

14. Martínez-Zarzoso, I.; Maruotti, A. The impact of urbanization on CO2 emissions: Evidence from developing countries. Ecol. Econ.
2011, 70, 1344–1353. [CrossRef]

15. Poku-Boansi, M. Contextualizing urban growth, urbanisation and travel behaviour in Ghanaian cities. Cities 2021, 110, 103083.
[CrossRef]

16. Guerra, E.; Caudillo, C.; Monkkonen, P.; Montejano, J. Urban form, transit supply, and travel behavior in Latin America: Evidence
from Mexico’s 100 largest urban areas. Transp. Policy 2018, 69, 98–105. [CrossRef]

17. Liu, Z.L.; Ma, J.; Chai, Y.W. Neighborhood-scale urban form, travel behavior, and CO2 emissions in Beijing: Implications for
low-carbon urban planning. Urban Geogr. 2017, 38, 381–400. [CrossRef]

18. Xia, C.Y.; Xiang, M.T.; Fang, K.; Li, Y.; Ye, Y.M.; Shi, Z.; Liu, J.M. Spatial-temporal distribution of carbon emissions by daily travel
and its response to urban form: A case study of Hangzhou, China. J. Clean Prod. 2020, 257, 120797. [CrossRef]

19. Cervero, R. Mixed land-uses and commuting: Evidence from the American Housing Survey. Transp. Res. Pt. A-Policy Pract. 1996,
30, 361–377. [CrossRef]

20. Gim, T.H.T. Analyzing the city-level effects of land use on travel time and CO2 emissions: A global mediation study of travel
time. Int. J. Sustain. Transp. 2022, 16, 496–513. [CrossRef]

21. Lu, Y.; Sun, G.B.; Sarkar, C.; Gou, Z.H.; Xiao, Y. Commuting mode choice in a high-density city: Do land-use density and diversity
matter in Hong Kong? Int. J. Environ. Res. Public Health 2018, 15, 920. [CrossRef]

http://doi.org/10.1016/j.jclepro.2020.123394
http://doi.org/10.1016/j.erss.2021.102422
https://www.iea.org/topics/transport
http://doi.org/10.1016/j.enpol.2010.08.019
http://doi.org/10.1016/j.habitatint.2014.12.007
http://doi.org/10.1016/j.scs.2014.11.001
http://doi.org/10.1016/j.jtrangeo.2011.03.013
http://doi.org/10.1016/j.trd.2021.103148
http://doi.org/10.1016/j.jtrangeo.2021.103064
https://www.iea.org/countries/china
http://doi.org/10.1016/j.trd.2017.02.003
http://doi.org/10.1007/s11116-014-9535-4
http://doi.org/10.1007/s11116-017-9800-4
http://doi.org/10.1016/j.ecolecon.2011.02.009
http://doi.org/10.1016/j.cities.2020.103083
http://doi.org/10.1016/j.tranpol.2018.06.001
http://doi.org/10.1080/02723638.2016.1191796
http://doi.org/10.1016/j.jclepro.2020.120797
http://doi.org/10.1016/0965-8564(95)00033-X
http://doi.org/10.1080/15568318.2021.1901163
http://doi.org/10.3390/ijerph15050920


Int. J. Environ. Res. Public Health 2022, 19, 7649 16 of 17

22. Brand, C.; Goodman, A.; Rutter, H.; Song, Y.; Ogilvie, D. Associations of individual, household and environmental characteristics
with carbon dioxide emissions from motorised passenger travel. Appl. Energy 2013, 104, 158–169. [CrossRef]

23. Cervero, R.; Kockelman, K. Travel demand and the 3Ds: Density, diversity, and design. Transp. Res. Part D-Transp. Environ. 1997,
2, 199–219. [CrossRef]

24. Ding, C.; Liu, C.; Zhang, Y.; Yang, J.W.; Wang, Y.P. Investigating the impacts of built environment on vehicle miles traveled and
energy consumption: Differences between commuting and non-commuting trips. Cities 2017, 68, 25–36. [CrossRef]

25. Munshi, T. Built environment and mode choice relationship for commute travel in the city of Rajkot, India. Transp. Res. Part
D-Transp. Environ. 2016, 44, 239–253. [CrossRef]

26. Yang, W.Y.; Cao, X.S. Examining the effects of the neighborhood built environment on CO2 emissions from different residential
trip purposes: A case study in Guangzhou, China. Cities 2018, 81, 24–34. [CrossRef]

27. Ding, C.; Cao, X.Y.; Yu, B.; Ju, Y. Non-linear associations between zonal built environment attributes and transit commuting mode
choice accounting for spatial heterogeneity. Transp. Res. Pt. A-Policy Pract. 2021, 148, 22–35. [CrossRef]

28. Ao, Y.B.; Zhang, Y.T.; Wang, Y.; Chen, Y.F.; Yang, L.C. Influences of rural built environment on travel mode choice of rural
residents: The case of rural Sichuan. J. Transp. Geogr. 2020, 85, 102708. [CrossRef]

29. Hou, Y.T.; Yap, W.; Chua, R.; Song, S.Q.; Yuen, B. The associations between older adults’ daily travel pattern and objective and
perceived built environment: A study of three neighbourhoods in Singapore. Transp. Policy 2020, 99, 314–328. [CrossRef]

30. Panter, J.; Griffin, S.; Ogilvie, D. Active commuting and perceptions of the route environment: A longitudinal analysis. Prev. Med.
2014, 67, 134–140. [CrossRef]

31. Ferrari, G.; Oliveira Werneck, A.; Rodrigues da Silva, D.; Kovalskys, I.; Gómez, G.; Rigotti, A.; Yadira Cortés Sanabria, L.; García,
M.C.Y.; Pareja, R.G.; Herrera-Cuenca, M.; et al. Association between perceived neighborhood built environment and walking and
cycling for transport among inhabitants from Latin America: The ELANS study. Int. J. Environ. Res. Public Health 2020, 17, 6858.
[CrossRef]

32. Ma, L.; Dill, J.; Mohr, C. The objective versus the perceived environment: What matters for bicycling? Transportation 2014,
41, 1135–1152. [CrossRef]

33. Shaer, A.; Rezaei, M.; Moghani Rahimi, B.; Shaer, F. Examining the associations between perceived built environment and active
travel, before and after the COVID-19 outbreak in Shiraz city, Iran. Cities 2021, 115, 103255. [CrossRef]

34. Aston, L.; Currie, G.; Kamruzzaman, M.; Delbosc, A.; Brands, T.; van Oort, N.; Teller, D. Multi-city exploration of built
environment and transit mode use: Comparison of Melbourne, Amsterdam and Boston. J. Transp. Geogr. 2021, 95, 103136.
[CrossRef]

35. Silva, C.; Pinho, P. The structural accessibility layer (SAL): Revealing how urban structure constrains travel choice. Environ. Plan.
A 2010, 42, 2735–2752. [CrossRef]

36. Wey, W.M.; Zhang, H.; Chang, Y.J. Alternative transit-oriented development evaluation in sustainable built environment planning.
Habitat Int. 2016, 55, 109–123. [CrossRef]

37. Eldeeb, G.; Mohamed, M.; Páez, A. Built for active travel? Investigating the contextual effects of the built environment on
transportation mode choice. J. Transp. Geogr. 2021, 96, 103158. [CrossRef]

38. Ewing, R.; Cervero, R. Travel and the built environment: A meta-analysis. J. Am. Plan. Assoc. 2010, 76, 265–294. [CrossRef]
39. Hong, J.; Shen, Q.; Zhang, L. How do built-environment factors affect travel behavior? A spatial analysis at different geographic

scales. Transportation 2014, 41, 419–440. [CrossRef]
40. Barla, P.; Miranda-Moreno, L.F.; Lee-Gosselin, M. Urban travel CO2 emissions and land use: A case study for Quebec City. Transp.

Res. Part D-Transp. Environ. 2011, 16, 423–428. [CrossRef]
41. Hong, J.; Goodchild, A. Land use policies and transport emissions: Modeling the impact of trip speed, vehicle characteristics and

residential location. Transp. Res. Part D-Transp. Environ. 2014, 26, 47–51. [CrossRef]
42. Bautista-Hernández, D.A. Mode choice in commuting and the built environment in Mexico City. Is there a chance for non-

motorized travel? J. Transp. Geogr. 2021, 92, 103024. [CrossRef]
43. Ten Dam, C.D.; Kramer, G.J.; Ettema, D.; Koning, V. Spatial and sociodemographic determinants of energy consumption for

personal mobility in the Netherlands. J. Transp. Geogr. 2022, 98, 103243. [CrossRef]
44. Chiang, C.C.; Chiou, S.T.; Liao, Y.M.; Liou, Y.M. The perceived neighborhood environment is associated with health-enhancing

physical activity among adults: A cross-sectional survey of 13 townships in Taiwan. BMC Public Health 2019, 19, 524. [CrossRef]
[PubMed]

45. Ferrari, G.; Werneck, A.O.; Silva, D.R.; Kovalskys, I.; Gómez, G.; Rigotti, A.; Fisberg, M. Perceived urban environment attributes
and device-measured physical activity in Latin America: An 8-nation study. Am. J. Prev. Med. 2021, 62, 635–645. [CrossRef]
[PubMed]

46. Yoo, S.; Kim, D.H. Perceived urban neighborhood environment for physical activity of older adults in Seoul, Korea: A multimethod
qualitative study. Prev. Med. 2017, 103, S90–S98. [CrossRef]

47. Yu, J.B.; Yang, C.; Zhang, S.; Zhai, D.K.; Li, J.S. Comparison study of perceived neighborhood-built environment and elderly
leisure-time physical activity between Hangzhou and Wenzhou, China. Int. J. Environ. Res. Public Health 2020, 17, 9284. [CrossRef]

48. Dias, A.F.; Gaya, A.R.; Pizarro, A.N.; Brand, C.; Mendes, T.M.; Mota, J.; Santos, M.P.; Gaya, A.C.A. Perceived and objective
measures of neighborhood environment: Association with active commuting to school by socioeconomic status in Brazilian
adolescents. J. Transp. Health 2019, 14, 100612. [CrossRef]

http://doi.org/10.1016/j.apenergy.2012.11.001
http://doi.org/10.1016/S1361-9209(97)00009-6
http://doi.org/10.1016/j.cities.2017.05.005
http://doi.org/10.1016/j.trd.2015.12.005
http://doi.org/10.1016/j.cities.2018.03.009
http://doi.org/10.1016/j.tra.2021.03.021
http://doi.org/10.1016/j.jtrangeo.2020.102708
http://doi.org/10.1016/j.tranpol.2020.06.017
http://doi.org/10.1016/j.ypmed.2014.06.033
http://doi.org/10.3390/ijerph17186858
http://doi.org/10.1007/s11116-014-9520-y
http://doi.org/10.1016/j.cities.2021.103255
http://doi.org/10.1016/j.jtrangeo.2021.103136
http://doi.org/10.1068/a42477
http://doi.org/10.1016/j.habitatint.2016.03.003
http://doi.org/10.1016/j.jtrangeo.2021.103158
http://doi.org/10.1080/01944361003766766
http://doi.org/10.1007/s11116-013-9462-9
http://doi.org/10.1016/j.trd.2011.03.005
http://doi.org/10.1016/j.trd.2013.10.011
http://doi.org/10.1016/j.jtrangeo.2021.103024
http://doi.org/10.1016/j.jtrangeo.2021.103243
http://doi.org/10.1186/s12889-019-6848-4
http://www.ncbi.nlm.nih.gov/pubmed/31064351
http://doi.org/10.1016/j.amepre.2021.09.006
http://www.ncbi.nlm.nih.gov/pubmed/34810040
http://doi.org/10.1016/j.ypmed.2016.12.033
http://doi.org/10.3390/ijerph17249284
http://doi.org/10.1016/j.jth.2019.100612


Int. J. Environ. Res. Public Health 2022, 19, 7649 17 of 17

49. Sun, G.B.; Han, X.L.; Sun, S.H.; Oreskovic, N. Living in school catchment neighborhoods: Perceived built environments and
active commuting behaviors of children in China. J. Transp. Health 2018, 8, 251–261. [CrossRef]

50. Marquart, H.; Schlink, U.; Ueberham, M. The planned and the perceived city: A comparison of cyclists’ and decision-makers’
views on cycling quality. J. Transp. Geogr. 2020, 82, 102602. [CrossRef]

51. Ao, Y.B.; Yang, D.J.; Chen, C.; Wang, Y. Effects of rural built environment on travel-related CO2 emissions considering travel
attitudes. Transp. Res. Part D-Transp. Environ. 2019, 73, 187–204. [CrossRef]

52. China National Bureau of Statistics. China Urban Statistical Yearbook (2001); China Statistics Press: Beijing, China, 2001.
53. China National Bureau of Statistics. China Urban Statistical Yearbook (2020); China Statistics Press: Beijing, China, 2020.
54. Nanjing Municipal Bureau of Statistics; Nanjing Survey Team of China National Bureau of Statistics. Nanjing Statistical Yearbook

(2001); China Statistics Press: Beijing, China, 2001.
55. Nanjing Municipal Bureau of Statistics; Nanjing Survey Team of China National Bureau of Statistics. Nanjing Statistical Yearbook

(2020); China Statistics Press: Beijing, China, 2020.
56. Liao, Y.; Zhang, J. Hukou Status, Housing Tenure Choice and Wealth Accumulation in Urban China. China Econ. Rev. 2021,

68, 101638. [CrossRef]
57. Li, Y.D.; Lu, H. Book review: China’s Hukou System: Markets, Migrants, and Institutional Change. China Rev. 2014, 14, 259–264.

Available online: https://www.jstor.org/stable/23928514 (accessed on 20 January 2022).
58. Ohnmacht, T.; Z’Rotz, J.; Dang, L.S. Relationships between coworking spaces and CO2 emissions in work-related commuting:

First empirical insights for the case of Switzerland with regard to urban-rural differences. Environ. Res. Commun. 2020, 2, 125004.
[CrossRef]

59. Yang, W.Y.; Zhou, S.H. Using decision tree analysis to identify the determinants of residents’ CO2 emissions from different types
of trips: A case study of Guangzhou, China. J. Clean Prod. 2020, 277, 124071. [CrossRef]

60. Yang, Y.; Wang, C.; Liu, W.L. Urban daily travel carbon emissions accounting and mitigation potential analysis using surveyed
individual data. J. Clean Prod. 2018, 192, 821–834. [CrossRef]

61. Lyu, P.; Lin, Y.J.; Wang, Y.Q. The impacts of household features on commuting carbon emissions: A case study of Xi’an, China.
Transportation 2019, 46, 841–857. [CrossRef]

62. Ma, X.L.; Yang, J.; Ding, C.; Liu, J.F.; Zhu, Q. Joint analysis of the commuting departure time and travel mode choice: Role of the
built environment. J. Adv. Transp. 2018, 2018, 4540832. [CrossRef]

63. Santos, G.; Maoh, H.; Potoglou, D.; von Brunn, T. Factors influencing modal split of commuting journeys in medium-size
European cities. J. Transp. Geogr. 2013, 30, 127–137. [CrossRef]

64. Cao, X.Y.; Mokhtarian, P.L.; Handy, S.L. Do changes in neighborhood characteristics lead to changes in travel behavior? A
structural equations modeling approach. Transportation 2007, 34, 535–556. [CrossRef]

65. Wang, X.Q.; Shao, C.F.; Yin, C.Y.; Dong, C.J. Exploring the effects of the built environment on commuting mode choice in
neighborhoods near public transit stations: Evidence from China. Transp. Plan. Technol. 2021, 44, 111–127. [CrossRef]

66. Jahanshahi, K.; Jin, Y. The built environment typologies in the UK and their influences on travel behaviour: New evidence
through latent categorisation in structural equation modelling. Transp. Plan. Technol. 2016, 39, 59–77. [CrossRef]

67. Sun, B.D.; Ermagun, A.; Dan, B. Built environmental impacts on commuting mode choice and distance: Evidence from shanghai.
Transp. Res. Part D-Transp. Environ. 2016, 52, 441–453. [CrossRef]

68. Wang, Y.Q.; Yang, L.; Han, S.S.; Li, C.; Ramachandra, T.V. Urban CO2 emissions in Xi’an and Bangalore by commuters: Implications
for controlling urban transportation carbon dioxide emissions in developing countries. Mitig. Adapt. Strateg. Glob. Chang. 2017,
22, 993–1019. [CrossRef]

69. Wu, M.L. Structural Equation Model: Operation and Application of Amos; Chongqing University Press: Chongqing, China, 2010;
pp. 52–53. (In Chinese)

70. Liu, D.H.; Zhu, C.H.; Yang, Y.C. Review on urban commuting study of China in the perspective of geography. Urban Dev. Stud.
2012, 19, 55–59. (In Chinese) [CrossRef]

71. Song, J.P.; Wang, E.R.; Zhang, W.X.; Peng, P. Housing suburbanization and employment spatial mismatch in Beijing. Acta Geogr.
Sin. 2007, 62, 387–396. (In Chinese) [CrossRef]

72. Hook, A.; Court, V.; Sovacool, B.K.; Sorrell, S. A systematic review of the energy and climate impacts of teleworking. Environ. Res.
Lett. 2020, 15, 93003. [CrossRef]

73. Shenzhen Urban Transport Planning Center (SUTPC) Co. Ltd.; College of Architecture and Urban Planning Tongji University;
Guangzhou Transport Planning Research Institute; China Academy of Urban Planning and Design; Zhejiang Yunhe Data
Technology Co., Ltd. 2021 Urban Sustainable Mobility Observation Report. World Transport Convention. 2021, p. 8. Available
online: https://www.sgpjbg.com/baogao/41090.html (accessed on 20 January 2022).

http://doi.org/10.1016/j.jth.2017.12.009
http://doi.org/10.1016/j.jtrangeo.2019.102602
http://doi.org/10.1016/j.trd.2019.07.004
http://doi.org/10.1016/j.chieco.2021.101638
https://www.jstor.org/stable/23928514
http://doi.org/10.1088/2515-7620/abd33e
http://doi.org/10.1016/j.jclepro.2020.124071
http://doi.org/10.1016/j.jclepro.2018.05.025
http://doi.org/10.1007/s11116-017-9829-4
http://doi.org/10.1155/2018/4540832
http://doi.org/10.1016/j.jtrangeo.2013.04.005
http://doi.org/10.1007/s11116-007-9132-x
http://doi.org/10.1080/03081060.2020.1851453
http://doi.org/10.1080/03081060.2015.1108083
http://doi.org/10.1016/j.trd.2016.06.001
http://doi.org/10.1007/s11027-016-9704-1
http://doi.org/10.3969/j.issn.1006-3862.2012.10.011
http://doi.org/10.3321/j.issn:0375-5444.2007.04.005
http://doi.org/10.1088/1748-9326/ab8a84
https://www.sgpjbg.com/baogao/41090.html

	Introduction 
	Methodology 
	Study Area and Data Collection 
	Study Area 
	Data Collection 

	Variables Selection and Calculation 
	Calculation of Commuting CO2 Emissions 
	Classification of Commuting Modes 
	Factor Analysis of Perceived Neighborhood Environment 
	Socio-Demographic Characteristics 

	Structural Equation Model and Conceptual Framework 

	Results 
	Calculation Results of Commuting CO2 Emissions 
	Goodness of Fit for Structural Equation Model 
	Effects among Endogenous Variables 
	Effects of Socio-Demographic Variables on Endogenous Variables 

	Conclusions and Discussion 
	References

