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Abstract: To face crises like the COVID-19 pandemic, resources such as personal protection equipment
(PPE) are needed to reduce the infection rate and protect those in close contact with patients. The
increasing demand for those products can, together with pandemic-related disruptions in the global
supply chain, induce major local resource scarcities. During the first phase of the COVID-19 pandemic,
we witnessed a reflex of ‘our people first’ in many regions. In this paper, however, we show that a
cooperative sharing mechanism can substantially improve the ability to face epidemics. We present a
stylized model in which communities share their resources such that each can receive them whenever
a local epidemic flares up. Our main finding is that cooperative sharing can prevent local resource
exhaustion and reduce the total number of infected cases. Crucially, beneficial effects of sharing are
found for a large range of possible community sizes and cooperation combinations, not only for small
communities being helped by large communities. Furthermore, we show that the success of sharing
resources heavily depends on having a sufficiently long delay between the onsets of epidemics
in different communities. These results thus urge for the pairing of a global sharing mechanism
with measures to slow down the spread of infections from one community to the other. Our work
uses a stylized model to convey an important and clear message to a broad public, advocating that
cooperative sharing strategies in international resource crises are the most beneficial strategy for all.
It stresses essential underlying principles of and contributes to designing a resilient global supply
chain mechanism able to deal with future pandemics by design, rather than being subjected to the
coincidental and unequal distribution of opportunities per community that we see at present.

Keywords: COVID-19; resilience; supply chain; collaboration; personal protection equipment

1. Introduction

To keep a pandemic like the one caused by COVID-19 [1] under control, resources
such as personal protection equipment (PPE; i.e., face masks, gloves, and disinfectants)
are critical both for the population and for health care personnel [2]. Unfortunately, the
demand for PPE increases exponentially with the spread of a new epidemic. As the available
resource stock is tailored to the population’s standard use, this poses serious challenges to
the associated resource supply chains. Consequently, several countries with high infection
rates reached a state of low to no resource availability during the various waves of the
COVID-19 pandemic, irrespective of their gross domestic products (GDP) [3,4].

Due to an exponential increase in demand during epidemic waves, local production
increases are rarely fast enough to cover the high need [5]. Moreover, local production
is not the primary provider in many countries that obtain PPE from abroad. In some
places, preventive methods were proposed to mitigate the upcoming shortages [6], such
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as setting guidelines for rational and safe prolonged PPE use or reuse [7] and alternative
solutions for protection [8]. Such mitigation strategies may provide temporary relief but
do not address the bigger scalability problem. Moreover, some of these strategies lead to
healthcare workers feeling inadequately protected and being fearful of getting infected [9].

The primary production of medical products comes from global supply chains (GSC).
GSCs have been optimized for cost-efficiency and may therefore lack resilience, such as
redundant supply lines or large buffers along the chains. For this reason, a major topic of
debate is if and how these GSCs should be restructured or replaced [7,10,11]. An example
of GSC fragility is the disruption of several technological- and health-product factories in
Wuhan during the COVID-19 pandemic and the closing of shipping ports, impacting the
international market and availability of these products on a very short time scale [12,13].

Consequently, due to the resource scarcity threat in the first wave of the COVID-19
pandemic, multiple countries started to stock, confiscate, and prohibit the exportation of
PPE [14,15] and diagnostic testing materials. This affected the global market as a whole
since no country is fully self-sufficient in all the different types of PPE. Furthermore,
it greatly impacted low-income countries that had to deal with increased prices and a
scarcity of goods [14–17]. Although a plausible solution would be to redesign the GSCs for
increased systemic resilience against rare incidents, such as pandemics, the restructuring
of infrastructure may very well pose a prohibitive cost. Additionally, it would require a
globally concerted effort at an unprecedented scale.

Instead, this paper investigates the question of whether implementing a resource-
sharing policy among different regions or countries can enhance essential-resource stock
resilience. A PPE-sharing policy differs from increasing the overall resilience of GSCs:
instead of ensuring the transport lines from producers to each individual consumer region,
a sharing policy entails creating flexible transport lines between the consumer regions.
For this reason, it may provide a more feasible approach that is effective at suppressing
future pandemics. The current research field into epidemic spreading and COVID-19 lacks
studies on sharing strategies for sharing this type of resource. However, the effects of
vaccine sharing between two populations have already been studied using a classical multi-
compartmental susceptible–infected–recovered (SIR)-based model [18], concluding that
overall health outcomes can greatly benefit from cooperative sharing [19]. Although both
vaccine and PPE availability are important factors in successfully mitigating a pandemic,
they are, respectively, aimed at pre-epidemic immunization increase and within-epidemic
disease containment. It is therefore important to study the effects of PPE sharing separately.
A convincing point to share resources used during epidemics was made using a stochastic
model considering ventilator allocation [20]. However, the explicit disease transmission
dynamics within populations could not be taken into account by this approach. Because
so far, concrete studies of PPE-resource-sharing effects on these transmission dynamics
are thus absent, we want to create an SIR-inspired multi-compartmental model to study
this specifically.

In this article we will first present the stylized model we created to investigate coop-
erative resource sharing, followed by a simulation of sharing scenarios between different
GDP-sized community combinations. In brief, the model concerns two communities that
can be interpreted as countries, regions, or even cities. We modeled their local epidemics
and the spread of infections across the communities, in combination with their (unspecified)
PPE resources. PPE availability lowers the infection rate by offering protection and there-
fore enables suppressing the infection spread to some degree. Of interest are the effects
of simulating changes in resource-sharing behavior on the capacity of going through the
entire epidemic without fully depleting the PPE stock.

The specific contribution of this study is thus not the novelty of our modeling techniques,
but presenting an important message to a broad public by using a stylized model. Motivated
by the non-cooperative strategies observed at present, it has the purpose to understand at a
high level the impact of sharing essential resources and which factors should be taken into
account to reach a better local situation for all communities involved.



Int. J. Environ. Res. Public Health 2022, 19, 5930 3 of 17

2. Methods

Here follows a functional description of the model needed to understand the results.
Readers interested in more technical details are referred to the Extended Methods in
Appendix A. Here, Table A1 can also be found with an overview and justification of the
assumed model parameters.

2.1. Coupled SIR and DSP Model

We developed a simplified demand–stock–production (DSP) model to emulate the usage
and production of PPE. PPE can be interpreted here as any physical equipment that may
help limit disease transmission. To cover the disease dynamics, including the transmission-
mitigating effects of PPE, the DSP model is coupled to a classical susceptible–infected–
recovered (SIR) model [21,22] without births and deaths. As we model the occurrence of
one epidemic wave per community at most, we assume a total simulation duration short
enough to justify this simplification. N.B.: throughout this paper the letter S will be used to
refer to the PPE ‘stock’ from the DSP model, as susceptibles (from the SIR model) are never
referred to outside of the appendix.

For the inter-model coupling, the following two assumptions are used: (1) more pro-
tective equipment is needed when the amount of infected increases [3,9]; and (2) the
unavailability of PPE increases the infection rate of the disease [4,5]. This leads to the
following two connecting factors: (1) a community’s current PPE demand in the DSP chain
depends directly on their number of infected and an assumed constant of necessary PPE
per infected case; and (2) the effective reproduction number Re of the SIR model depends
on the available PPE stock. Concretely, this means that in absence of PPE, Re is set to
the standard reproduction number R0 of the virus. In presence of PPE, the Re is reduced
to a lower value with Re < 1. In the appendix, explicit calculations and justifications of
the assumed constant values are found. An important assumption made in this model
implementation is thus that the Re only reduces to R0 upon full PPE stock depletion, a
point we consider further in the discussion.

In all experiments, two communities A and B of n individuals each are simulated. They
differ only in maximum stock (Smax) and epidemic onset time. The results are described
from the point of view of community A. Therefore, we assume epidemic onset in A to
always be at t = 0, with the introduction of one infected individual into this community.
The epidemic onset in B is at a certain time difference ∆t from t = 0, thus at t = ∆t. This
time difference models the time it would take for the epidemic to spread between the two
communities directly, or via another (‘confounding’) community. The difference can be
∆t = 0 days for simultaneous onset and take on both positive and negative values. In
this way, both an epidemic starting in A followed by a spread to B and vice versa can
be investigated. This enables us to study the effects of changes in the time difference
of the epidemic onset between A and B and in their relative order. The differences in
maximum stock reflect the different capacities to directly access the necessary PPE, due
to, e.g., differences in GDP and storage capacity. By using different maximum stock levels
we can investigate how possible asymmetries between communities might impact sharing
behavior outcomes.

2.2. Sharing System

We further implemented a PPE-sharing system between the two communities to simu-
late sharing behavior. Sharing is managed via a switch mechanism that depends on the
ratio between the current and maximum stock of each community S/Smax and a sharing
threshold θ. The sharing threshold is a critical stock ratio agreed upon beforehand by the
communities. We assume the communities want to ensure always having at least this
proportion of stock available to themselves, to increase their chances of weathering a local
epidemic without reaching stock depletion (S = 0). If during an epidemic the stock of
a community falls below the sharing threshold θ, they request support from the other
community. The switch mechanism activates the sharing system if the other community
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has the possibility to share, i.e., if their own stock ratio is above the sharing threshold.
If the second community starts sharing, they are assumed to continue until reaching the
sharing threshold θ themselves or until the other community’s stock is restored to at least
θ again. In summary, the switch mechanism leads to active PPE sharing if and only if
exactly one of the communities’ stock levels is below the sharing threshold and the other
community has a stock level above the threshold. A low sharing threshold θ corresponds
to communities being willing to share a large fraction of their stock with one another, while
a high θ indicates that they intend to keep a large fraction of stock for themselves.

3. Results

The effects of differences in the relative time difference between communities’ epidemic
onset, maximum stock height, and sharing threshold were assessed in different scenarios
that are outlined below. We will first discuss the case where the collaborating communities
have equal maximum stocks Smax and then scenarios where these are unequal.

Our main results are shown in the form of phase plots with a distinctive color scheme.
We discriminate between three qualitative outcomes in the phase plots, shown in red, white,
and blue, in decreasing order of severity. In all phase plots, the total infection incidence
is given as the ratio of individuals within the populations that has been infected during
the disease spread: the infected ratio. If the stocks of both communities would deplete
fully at any point during the epidemic, then their effective infection reproduction numbers
would increase enormously. This would lead to the highest possible total infected ratio,
corresponding to the red state. If only one community would reach zero stock then this
would lead to an intermediate total infected ratio, corresponding to the white intermediate
state. Finally, if both communities could weather the epidemic without reaching zero
stock, the blue state would be reached with the lowest possible infected ratio. Intermediate
transition phases, i.e., those visible in orange, could appear due to small differences in the
total infected ratio, for example due to slight differences in the zero-stock-period duration.

3.1. Equal Maximum Stocks

We can observe that sharing between certain equal maximum stock communities can
prevent stock depletion and the associated high infected ratio. Figure 1 shows typical
epidemic time evolutions for two equal maximum stock communities and the difference
between non-sharing and sharing. This clearly depicts how non-sharing (left column) for
these communities leads to stock depletion. During a stock depletion period (indicated by
the red shading) Re becomes larger and therefore leads to stronger exponential growth and
a high peak of infections. In the sharing condition (right column) we can see that stock
sharing with the community in need can prevent full stock depletion and thus prevent the
Re increase, keeping the associated incidence peak to a manageable level. This ultimately
leads to a significantly lower total of infected cases in both communities (area under the
infected curves).

The size of the time difference (∆t) between epidemic onsets heavily influences if
communities as the ones shown here can reach low infected ratios for one or even both
communities by sharing their stock. This is illustrated by the middle pane of Figure 2 for
medium-stock communities (defined to have a maximum stock of Smax = 3× 107). When
not sharing (θ = 1.0) these communities end up in the red state, both having the highest
infected ratio. However, if the sharing threshold is low enough and there is some time
difference between the epidemic onsets, the communities can reach the white state in which
only one of the two communities (B in this case) reaches stock depletion. Although this
is already a successful sharing example for A, the time difference is still too short for the
combined stocks to be restored sufficiently for the second epidemic in B. That being said,
we can see that when the time difference between A and B epidemic onsets is increased
further, both communities can achieve a low infected ratio (blue state). In the latter case,
there was enough time to replenish the stock levels between the consecutive epidemics to
save both communities.
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Figure 1. Time evolution of epidemic development in two communities without and with sharing
mechanism. Shown are the proportions of infected (blue) relative to the total community population
and the proportions of stock (green) relative to the maximum stock over time. The communities
had an equal maximum stock of Smax = 3× 107. The only difference between the communities was
epidemic onset, with epidemic introduction in A at t = 0 and in B at t = ∆t = 180 days. Critical
zero-stock periods are shaded in red in the no-sharing condition (left column). The lack of stock leads
to an increase in epidemic spread and a high infected peak. The sharing threshold θ = 0.6 (yellow
dotted line) is indicated in the sharing condition (right column). Here, sharing prevents the total
depletion of stock and the associated high infected peak: both the local and total infected ratios are
low. n = 1.7× 107, R0 = 2.3, γ = 1/6, r = 0.4, w = 4, P(0) = 5× 107, Pmax = 4× P(0), D(0) = P(0).

We defined the medium stock category with this maximum stock of Smax = 3× 107 to
explicitly show the above described behavior when cooperating with a community that is
equal in maximum stock. The other distinctive categories we use throughout this paper are
low-stock (Smax = 1× 107) and high-stock (Smax = 7× 107) communities. Low stock is set
at this specific level as these communities show high infected ratios (red state) individually
and for all possible conditions when sharing with another low-stock group, as can be seen
in the left pane of Figure 2. Conversely, high-stock communities always reach low infected
ratios (blue state in the right pane) irrespective of their sharing behavior with an equal-stock
community. As mentioned before, virtually no actual countries exist where (all possible)
PPE stock levels can be high enough to endure a whole epidemic of this sort. The high
stock category is therefore included merely for illustrational purposes.

The observation that sufficient time difference increases the chance of having one or both
sharing communities reach a low infected ratio also holds for more intermediate maximum
stock communities. This becomes apparent from Figure 3, which shows sharing between
more intermediate maximum stock sizes for three time-difference categories that can be
seen as cross-sections (at ∆t = 0, ∆t = 60 and ∆t = 180) of the phase plots in Figure 2 and
vice versa (at the maximum stock categories, see green dashed lines). We can observe that
equal-stock communities can already benefit from sharing from a maximum stock as low
as Smax ≈ 2× 107 for big enough time differences. We also see that the lower the maximum
stock, the more important implementing a low sharing threshold is for sharing success.
The white area in which community B (the community that gets infected secondly) still
reaches high infected numbers even diminishes for the lower maximum stock communities
when ∆t = 180.
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Figure 2. Influence of epidemic onset time difference and sharing threshold on total infected
ratio for equal maximum stock communities. The epidemic is introduced in A at t = 0, and in B at
t = ∆t. The indicated infected ratio is the average of the two communities’ infected ratios. The red
state indicates both communities reaching a high infected ratio and white means that one community
(labeled with the red letter, here B) had a high infected ratio while the other remained low. In the
blue state both communities had a relatively low amount of infected. For each phase plot, the two
communities had the same maximum stock, being either Smax = 1× 107 (Low stock), Smax = 3× 107

(Medium stock) or Smax = 7× 107 (High stock). n = 1.7× 107, R0 = 2.3, γ = 1/6, r = 0.4, w = 4,
P(0) = 5× 107, Pmax = 4× P(0), D(0) = P(0).

Figure 3. Influence of maximum stock size and sharing threshold on the total infected ratio for
three distinct epidemic onset time differences between equal maximum stock communities. In
each simulation, the two communities had equal maximum stock sizes. The white state is labeled with
the community that reached zero stock and a high infected ratio (B). The green dashed lines in the left
panel indicate where cross-sections are taken for the three maximum stock categories used throughout
this paper: Low stock with Smax = 1× 107, Medium stock with Smax = 3× 107 and High stock with
Smax = 7× 107. The values at these lines correspond to those at the different maximum stock phase
plots in Figure 2 for ∆t = 0. Within the ∆t = 60 and ∆t = 180 phase plots, cross-sections at the
same stock values can be imagined for likewise comparison with the previous figure. n = 1.7× 107,
R0 = 2.3, γ = 1/6, r = 0.4, w = 4, P(0) = 5× 107, Pmax = 4× P(0), D(0) = P(0).

In summary, the most important result for equal maximum stock community sharing
is that communities with insufficient stock to weather the epidemic by themselves can,
when agreeing on sufficiently low sharing thresholds, pass the epidemic without reaching
the maximal infected ratio. Crucially, for these communities, a large-scale epidemic can
be averted only for either or both of them when the time difference between epidemic
onsets is sufficiently long. This requires a tailored strategy depending on the dynamics of
the disease at hand, but always with a strong focus on mitigating disease spread between
different regions by, for example, imposing travel restrictions early in epidemic outbreaks.
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3.2. Unequal Maximum Stocks

Upon reading the equal maximum stock results, one could start fearing that sharing
poses a risk to the second community. However, as we will further show by presenting the
unequal maximum stock sharing results, this fear is unjustified for two reasons: (1) for a low-
or medium-stock community, sharing never leads to worse results than non-sharing for both
equal and unequal maximum stock combinations; and (2) for higher-stock communities
there is hardly any risk in unequal sharing - even when the total shared stock turns out
to be insufficiently high for both communities, a higher-stock second community can still
weather the epidemic with a low infected ratio (Figure 4).

Figure 4. Influence of time difference between epidemic onset and sharing threshold on total
infected ratio for unequal maximum stock communities. Respectively showing combinations of
(a) low- and medium-stock (b) low- and high-stock and (c) medium- and high-stock communities.
The epidemic is introduced in A at t = 0, and in B at t = ∆t. In the white areas, a red letter indicates
which of the two communities reached zero stock. The pink dashed line in (b) indicates the settings
taken for the time evolutions shown in Figure 5. n = 1.7× 107, R0 = 2.3, γ = 1/6, r = 0.4, w = 4,
P(0) = 5× 107, Pmax = 4× Pi(0), D(0) = P(0).

Only for very specific low time differences between epidemic onsets, a secondly affected
higher-stock community could possibly be worse off, i.e., experience so-called ‘second
community disadvantage’ (in the white areas indicated with B in the figure). This should
again stress the importance of implementing measures to sufficiently slow down infection
spread between communities, rather than discouraging higher-stock communities from
sharing. Furthermore, in Figure 4c, we can even observe that a low enough sharing
threshold fully abolished the chance for high-stock communities of having the second
community disadvantage. However, as this was only the case for these very specific disease
dynamics and stock levels, communities should not solely rely on a low sharing threshold
and still see increasing the onset time difference as a top priority. The substantial reduction
of the second community disadvantage for higher-stock communities is a major difference
from what we have seen for equal community sharing, in which the white state always
meant full depletion for the community affected secondly by the epidemic.

An additional interesting observation is that sharing between unequal communities
could help both communities weather the epidemic for all maximum stock height combina-
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tions. Even the low- and medium-stock communities can together end up in blue states by
sharing! To reach blue states, the ordering of epidemic onsets is not of major importance,
as we can see from the approximate similar sizes of the blue states for both positive and
negative time differences. What is of major importance to obtain from these results, is
(again) the time differences between these onsets and agreeing on a low sharing threshold.

In other aspects however, the epidemic onset ordering does impact sharing outcomes,
which is indicated by some asymmetries that can be observed in the phase plots around
∆t = 0: an epidemic that starts in the highest-stock community (negative ∆t’s) will in
general less often lead to the highest total infected ratios (red and orange states) than vice
versa. It should be noted, however, that the lowest infected ratio regions (blue states) are
often bigger when the lower-stock community is infected first (positive ∆t’s). If starting in
the lower-stock community, we see that increasing the time difference between onsets is of
utmost importance to avoid high total infected ratios. The longer this difference between
the epidemics, the more time for stock regeneration.

An interesting illustration of the effects of increasing the time difference between onset
in a lower-stock and higher-stock community is shown in Figure 5, for which the relevant
sharing threshold and time-difference settings were indicated in Figure 4 with the pink
dashed line.

Figure 5. Effect of increasing epidemic onset time difference on sharing success of unequal com-
munities. Indicated are the proportions of infected (blue) relative to the total community population
and the proportions of stock (green) relative to the maximum stock over time. Critical zero-stock
periods are shaded in red and the sharing threshold (θ = 0.5) is indicated by the yellow dotted
line. The communities had unequal maximum stocks, with Smax

A = 1× 107 and Smax
B = 7× 107. By

increasing the epidemic onset time difference, the system transitions from only high-stock community
B weathering the epidemic with low infected ratios (for ∆t = 0 days), via both communities reaching
high infected ratios (for ∆t = 25 days) and only low-stock community A reaching a low infected ratio
(for ∆t = 50 days), to both having low infected ratios (for ∆t = 75 days). This behavior is observed for
the specific settings, as indicated by the pink dashed line in Figure 4, but more generally illustrates the
impact of epidemic onset time difference on the possible system outcomes. n = 1.7× 107, R0 = 2.3,
γ = 1/6, r = 0.4, w = 4, P(0) = 5× 107, Pmax = 4× P(0), D(0) = P(0).

By increasing the threshold, the system passes from a state of depleted stock for the
first community, via the maximal total infected ratio and a state of second community
disadvantage, to both communities reaching low infected ratios. This effect is indeed
asymmetric around ∆t = 0 if time evolutions would be taken for the same threshold, but
with negative ∆t’s (the mirror-image of the pink dashed line), we would only observe the
state in which the lower-stock community depletes fully. We can further observe that the
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asymmetry in the phase plots vanishes in the larger time-difference regions. This is because,
after sufficient time, the first epidemic dynamics die out and the stocks replenish enough,
resulting in virtually no interaction effects between the consecutive epidemics.

The results discussed here solely focus on the three stock categories, as we defined
before, to ease result interpretation. For more intermediate stock values, we refer to
Figure A1 in appendix B, where the effect of an increasing Smax

B on infected ratio is shown
for different fixed Smax

A and different onset-time-difference categories.
Summarizing, the unequal maximum stock sharing results presented here again stress

the positive combined effect of a low sharing threshold and a sufficient time difference
between epidemic onsets. Additionally they show (1) that there is no downside from
sharing for lower-stock communities and (2) how high-stock communities may substantially
improve the overall epidemic resilience for both communities combined without much
increased risk for their own population, as long as sufficient measures are implemented to
reduce epidemic spread between the communities.

4. Discussion

We have introduced a stylized PPE production model with a sharing mechanism for
communities facing an epidemic. The model convincingly shows that involved PPE stock
sharing can greatly improve total and local epidemic resilience for all combinations of
maximum stock communities. Crucially, these sharing strategies should be accompanied
by disease spread mitigation measures to increase the time between epidemic peaks. This
ensures that both communities have access to large quantities of stock when they need it
most. First, we saw that completely blocking the circulation of essential supplies can lead
to local stock shortages and subsequently epidemic proliferation. Then, we showed that for
all realistically possible scenarios (where communities never have enough stock to fully
endure exceptional situations, such as the COVID-19 pandemic, by themselves), sharing
leads to better overall and local epidemic outcomes than non-sharing. Even if a high-
stock community would exist, sharing can never lead to a more negative outcome for any
cooperating community as long as the epidemic onset time differences are long enough. It
is good to additionally realize that investing in the global reduction of infection rates helps
to restrict the total viral circulation and the chance of reinfection in each region. Therefore,
these investments are beneficial to all and crucial for final pandemic mitigation. The results
thus strongly advocate for a willingness to share big stock proportions, with a special focus
on accompanying measures to slow down epidemic spread between communities. In this
way, pandemics can be fought way more efficiently and successfully for all parties involved
with their respective PPE production limitations.

We emphasize that the numbers used in the examples are not intended to be realistic
and are merely for illustrational purposes. In particular, what time difference would be
‘sufficient’ will depend on the properties of the virus, the modes in which people have
contacts with other people, the infrastructure and production capabilities of the PPE, the
preventive measures in place, and so on.

As mentioned before: increasing the delay between epidemic onset should evidently be
a major focus when implementing this sharing mechanism. To achieve this, participating
countries must directly focus on, e.g., limiting international travel when a community
gets infected. Interestingly, the process of resource sharing itself could then start posing
a threat, by increasing the chance of importing infection cases [23]. This could limit the
beneficial effects of implementing the proposed sharing method if not attended to well
enough. We believe, however, that setting clear safety guidelines for this process can
lower the risk sufficiently to still make sharing the most viable option. For interested
policymakers, the model could be extended with the possibility to import infection cases
during sharing. In this way, this possible risk and the necessary precautions could be
investigated in more detail.

There are some simplifications in our model, which could possibly be accounted for
in further research. For example, the effective reproduction number Re only changes
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when the community’s stock fully depletes (S = 0). In a more realistic scenario, there
would be a gradual increase in Re as the stock becomes more scarce and less people can be
protected. This would result in smoother phase plots, abolishing the three clear outcome
states observed in this paper. Nevertheless, the general result that sharing reduces the
infected ratio will then still hold. This more realistic approach would therefore make the
model interpretations more complex without adding new insights. Further, parameters
such as the basic reproduction number R0, the population size n, and PPE production rate
P could differ substantially between communities. At the moment, the only characteristic
we varied between communities was their maximum stock Smax, but it could be interesting
to study the effects of greater heterogeneity between communities on the results. One last
simplification worth mentioning is the instantaneous transfer of huge PPE stock quantities
during sharing. In real life, infrastructure limitations could form a barrier to implement
the proposed sharing strategies by slowing down the redistribution process and limiting
sharing effectiveness. Although it was beyond the scope of this paper, it could thus be
interesting to extend the model with some geographical transportation limits and delays
for different distances to ascertain the boundary conditions for sharing to be effective.

Further interesting extensions could be to include more communities and to tailor the
DSP model to specific and possibly multiple resource types. When multiple communities
are involved, the necessary individual sharing amount to sufficiently help a community
in need reduces as the load can be divided over contributing groups. In our model we
have seen that two low-stock communities had too little combined stock to save either of
them, even when sharing major proportions of stock. But a bigger group of solely low-stock
communities could potentially have enough combined stock to successfully avoid high
infected ratios. However, one should note that in this more complex scenario, a more
complex sharing strategy decision structure also arises. To model the politics of this, game-
theoretic approaches could be used [24,25]. For the extensions suggested here, the modeler
should further be aware of the increasing computational costs of solving 3(n + r + 1) ODEs
for n communities and r resource types. Lastly, in all its simplicity, our model could serve
as a basis for models of higher complexity that more closely resemble real-world scenarios.
After fitting the data of manufacturers, resource usage, and epidemic dynamics, optimal
sharing strategies could potentially be estimated with some precision for combinations of
collaborating communities, depending on the uncertainties involved. A similar work of
fitting is done to predict SARS-CoV-2 evolution [26].

Overall, we can see that increasing global resilience to future pandemics is a complex
problem that requires an interdisciplinary effort. Although myriad extensions could be
made to this model, these additions would have unnecessarily distracted the reader from
our main aim of communicating to policymakers how cooperation can improve epidemic
resilience. The strengths of this model are its simplicity and comprehensibility, conveying a
clear message and recommendations.

5. Conclusions

In summary, this work demonstrates how trade barriers for essential healthcare re-
sources can worsen pandemic outcomes, while cooperation between different communities
can successfully avoid resource scarcity and prevent high-infected incidences for all parties
involved. We used a stylized model encompassing disease spread and a resource supply
chain in two communities. If enough measures were taken to slow down infection spread
between them, both communities were able to avoid resource exhaustion at any point
during their epidemics by cooperative sharing. This shows that collaboration is a viable
solution to avoid resource scarcity. This message is similarly true for vaccines, as we have
learned during the current COVID-19 pandemic [19].

The model serves as a proof-of-concept that illustrates how sharing protective equip-
ment resources between communities is a crucial step in epidemic mitigation. Although the
model is stylized, we believe that its general insights are easy to understand and essential
to disseminate to all stakeholders involved. It advocates for involved sharing strategies
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between all types of communities, showing that with a high willingness to share and a
strong focus on slowing international infection spread, total epidemic mitigation outcomes
can be improved greatly. It also successfully demonstrates that high GDP countries should
not be afraid to offer help to countries that need it, as potential negative effects for their
own population can be abolished if the right disease spread mitigation measures are in
place. Furthermore, reducing viral circulation globally reduces each region’s chance of
reinfection and is thus in the interest of all. By taking these insights into account, we believe
that global initiatives can help prevent essential-resource exhaustion during pandemics.
Our study thus shows that mutual resource sharing can potentially support all partici-
pating communities during their local epidemics and ultimately lead to the collaborative
mitigation of a pandemic.
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Appendix A. Extended Methods

Appendix A.1. General Remark

At multiple instances, a gradual input needs to be translated into a clear on/off output
around some boundary value, while ensuring a solvable ODE system. To elegantly solve
for this, a sigmoid function is used, defined by σk(x) = 1

1+exp−k∗x , where k indicates the

function’s steepness. The sigmoid is represented simply as σ(x) wherever the standard
steepness of k = 1 was used.

Appendix A.2. Adapted SIR

We use the classical SIR ordinary differential equation formulation without births or
deaths [21] to calculate the number of susceptible U, infected I, and recovered R individuals
(the regular expression for susceptibles S is already used to refer to ‘stock’ in this paper).
Additionally, we introduce the possibility of a delay in epidemic onset, by multiplying the
differential equations by the sigmoid function σ(t− ∆t). ∆t indicates the number of days
between t = 0 and the start of an epidemic with I(∆t) = 1.

dU
dt

= σ(t− ∆t) ∗ −βUI

dI
dt

= σ(t− ∆t) ∗
(

βUI − γI
)

dR
dt

= σ(t− ∆t) ∗ γI

(A1)

Here β indicates the infection rate and γ the recovery rate. β is calculated from the
effective reproduction number Re. This is defined as the ratio Re = β/γ and is a measure
of the infectiousness of the virus: the average amount of people getting infected from one
infected individual. It is assumed that the availability of PPE lowers the virus’ infectious-
ness. Therefore the effective reproduction number is calculated from the basic reproduction
number R0 (infection spread without any protective measures).

Re(t) = R0

(
1− σ(S(t))r

)
(A2)

with S(t) the stock at time t and r being the reduction in infectiousness if the stock is
non-zero. It is thus assumed that Re is reduced to some fixed lower value depending only
on r and R0 as long as S > 0, but reverts back to the original R0 value as soon as the stock
has depleted (S = 0).

Appendix A.3. DSP Model

The DSP chain was modeled via the following differential equations for demand D,
available stock S, and production P:

dD(t)
dt

= f (t) = wI(t) (A3)

dS(t)
dt

= P(t)− D(t) ∗ σ(S(t)) (A4)

dP(t)
dt

=

(
dD(t)

dt
+
(

Pmax − P(t)
)(

1− S(t)
Smax

)
σ
(

Smax − S(t)
)

−
(

P(t)− D(t)
)

σ
(

P(t)− D(t)
))
∗ σ
(

Pmax − P(t)
) (A5)

Here, w is the PPE needed per infected individual. The demand thus grows linearly
with the amount of infected. Interestingly, this demand equation can be replaced by any
positive and continuous demand equation f (t) of interest and could thus be adapted to be
reused in other supply chain contexts. It is assumed that there is a baseline PPE demand



Int. J. Environ. Res. Public Health 2022, 19, 5930 13 of 17

D(0) for regular non-epidemic-related use. The baseline production P(0) is matched to
this standard demand (D(0) = P(0)). Before epidemic onset, the stock S(t) is thus kept
at a dynamic equilibrium, which we assume to be at its full capacity Smax. The stock
difference is calculated from the difference between production and demand, but demand
can only be subtracted if there is still stock available to prevent a negative stock. When the
demand changes due to differences in the amount of infected, the production difference
follows the difference in demand with a cap of the maximum production per day (Pmax).
Again, sigmoid functions are used to control for different scenario’s in three ways: (1) there
can only be an increase in production when the current production is below maximum
production; (2) when the stock is below Smax, the production is increased further than the
demand to enable stock replenishment; and (3) when production is higher than demand,
an additional force is added to prevent a stock overshoot, which gradually pushes the
production back to the demand level.

We can see how the coupling between the SIR and DSP model parts is realized via
two factors: (1) the DSP demand Equation (A3) that is dependent on I(t); and (2) the Re
calculation (A2) with the current S(t), giving the β in the SIR equations (A1).

Appendix A.4. Sharing Mechanism

The epidemic and production mechanism of each community i can be separately de-
scribed by the coupled SIR and DSP equations above. For product sharing between
communities, a switch mechanism is constructed. As inputs, the current stock - maximum
stock ratios (S/Smax) for both communities and the sharing threshold θ are taken. Sharing
must be enabled when exactly one of the two communities’ stocks drops below this critical
threshold. The switch system is implemented as follows:

switch
( SA

Smax
A

,
SB

Smax
B

, θ
)
= 2×

[
0.5− σk

(
σk

( SA
Smax

A
− θ
)
+ σk

( SB
Smax

B
− θ
)
− 2

)

− σk

(
σk

(
θ − SA

Smax
A

)
+ σk

(
θ − SB

Smax
B

)
− 2

)] (A6)

Due to the need for increased sensitivity, the steepness of the sigmoid was set higher
than before, at k = 1000. The sharing mechanism was added to the separate community
ODEs by adding shared stock (Sshare

j→i ) to Equation (A4) as follows:

dSi
dt

=
(

Pi(t)− Di(t) + switch
( SA

Smax
A

,
SB

Smax
B

, Th
)
∗ Sshare

j→i

)
σ(Si(t) + σ(−Si(t)) (A7)

Here, the size of the shared PPE stock is calculated as Sshare
j→i = (Smax

i + Smax
j )(Si/Smax

i −
Sj/Smax

j )/2. The amount of shared stock is thus related to the difference between the stocks
of both communities. With the system described here, we can simulate a whole spectrum
of willingness to share, from a scenario with no sharing (θ = 1.0) to sharing the total stock
(θ = 0.0). Mathematica [27] was used to solve the system and plot the results. In Table A1,
a brief outline is shown of the parameter settings used in the model.
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Table A1. Parameter settings used for the simulations in this paper.

Parameter Symbol Value Comment

Population size n 1.7× 107
This parameter has no effect in the model but makes
results more easily interpretable. It is roughly the
population size of the Netherlands.

Basic
reproduction

number
R0 2.3

R0 is the reproduction number of the virus in the
absence of countermeasures and without immunity,
i.e., at the start of the pandemic. In their June 2020
report [28] the WHO estimated this number in the
range 2–4. In the Netherlands, the peak estimate [29]
near the start of the pandemic is around 2.2 but this
varies significantly across countries and time. The
most important thing about this parameter is that it
should be larger than 1 in order to lead to exponential
growth and thus a population-wide epidemic.

Recovery rate γ 1/6

This rate defines the average period (1/γ days) during
which an individual is infectious. In the same WHO
report, the curve of virus-shedding appears to be high
for about six days. More recent sources report a
median of 8 days [30]. Together with the infection
rate, this parameter induces the reproduction number,
which in our simulation is the more important
number.

Initial
production P(0) 5× 105

This parameter has an arbitrary unit which has no
effect on the model but makes results more easily
interpretable. According to a news article from April
2020, the Netherlands were using about 4.5× 106/7
face masks per day, which is the most well-known
resource. Our value here is thus chosen to be on the
order of magnitude of the number of face masks.

Maximum
production Pmax 4× P(0)

A community can increase the local production to this
quantity. This includes all sources, such as increasing
local production as well as importing more resources
from global suppliers.

Necessary PPE
per infected

case
w 4

Keeping to face masks for interpretability, numbers
vary wildly: from over a hundred masks per day per
corona patient in the intensive care unit to one or zero
for infected persons who are either unaware of their
infection or remain in quarantine at home. For
interpretability, we turn to what would in principle be
needed to prevent one infected person from infecting
others as much as possible. According to various
sources, a disposable mask should only be used for
about three hours. This would mean that in principle,
in order to cover one’s face for 12 h per day, about 4
masks would be needed, which is the (arbitrary)
quantity we chose here.

Reduction in
Re for S > 0 r 0.4

This factor multiplies with the infection rate and thus
reduces the reproduction number. Its value is arbitrary
with the most important property being that r · R0 < 1.
In other words, this means that having sufficient PPE
would stop the exponential growth of the epidemic.
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Appendix B. Additional Figure

Figure A1. Influence of B maximum stock and sharing threshold on total infected ratio for differ-
ent epidemic-onset time differences and fixed A maximum stock. The epidemic is introduced in A
at t = 0, and in B at t = ∆t. As a special case, the negative ∆t = −60 thus indicates epidemic onset
in B prior to its onset in A. The maximum stock of A is fixed at either Low stock (Smax = 1× 107),
Medium stock (Smax = 3× 107), or High stock (Smax = 7× 107). n = 1.7× 107, R0 = 2.3, γ = 1/6,
r = 0.4, w = 4, P(0) = 5× 107, Pmax = 4× Pi(0), D(0) = P(0).
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