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Abstract: With growing economic policy uncertainty (EPU) and the importance of protecting the
natural environment worldwide, the relationship between EPU and carbon emissions should be
investigated further. However, conclusions in the existing literature on the relationship between
EPU and carbon emission are inconclusive. This paper aims to examine the influence of EPU on
carbon emissions according to the Stochastic Impacts by Regression on Population, Affluence and
Technology (STIRPAT) model. To investigate such essential issues, we conduct GMM estimations
by utilizing cross-country data covering 137 countries during the period 1970–2018, obtained from
World Bank and OECD statistics. Our empirical estimations support that EPU would bring about
more carbon emissions, while we conduct empirical analysis by changing the system of measurement,
employing alternative estimation and constructing new samples. Our study provides substantial
policy implications for government participation in international treaties on environmental protection
to mitigate environmental degradation.

Keywords: economic policy uncertainty; carbon emissions; GMM; multinational research

1. Introduction

Nowadays, due to the outbreak of the COVID-19 pandemic and growing tension
concerning the international environment, economic policy uncertainty (EPU) is growing
rapidly worldwide (Baker et al., 2020; Jordà et al., 2020; Bakas and Triantafyllou, 2020) [1–3].
EPU can not only change economic activities or the attention of policymakers (Balcilar et al.,
2016; Degiannakis et al., 2018; Hailemariam et al., 2019; Phan et al., 2021) [4–7], but
also change a firm’s behaviors or decisions in the direction of environmental protection
(Guidolin and La Ferrara, 2010; Kang et al., 2017; Olanipekun et al., 2019; Akron et al.,
2020) [8–11], since economic activities and the manner of production contribute to air
pollution (Salahuddin et al., 2018; Shahbaz et al., 2019) [12,13]. With growing social
problems such as human diseases, extreme climate events, and natural disasters caused by
serious air pollution (Kompas et al., 2018; Shahbaz et al., 2019; Coskuner et al., 2020) [13–15],
it is generally accepted globally that to reduce air pollution is essential for human survival
and for national sustainable development (Hambira et al., 2020; Huo et al., 2020) [16,17].
Thus, it is necessary to query whether increasing EPU can affect air pollution (Jiang et al.,
2019; Yu et al., 2021; Adams et al., 2020) [18–20].

In fact, a small number of studies have begun to focus on the relationship between EPU
and air pollution, especially after the research of Jiang et al., (2019) [18] who declared that
EPU can affect direct government policy, which may promote or hinder carbon emissions.
Later, scholars began to query the effect of EPU on CO2 emissions. However, there are
some gaps in the existing studies. Specifically, the conclusions are controversial (Gill et al.,
2019; Shabir et al., 2021) [21,22], and while much of the literature has pointed out that
EPU brings more environmentally adverse effects (Yu et al., 2021, Adedoyin and Zakari,
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2021) [19,23], a small number of scholars have argued that EPU does some good in reducing
CO2 emissions (Chen et al., 2021; Doğan and Güler, 2021) [24,25], and other researchers
argue that there is no influence of EPU on CO2 emissions (Abbasi and Adedoyin, 2021; Liu
and Zhang, 2021) [26,27]. Additionally, most studies have utilized the EPU index given
by Baker et al., (2016) [28] to measure EPU, but this index has some limitations in that it
cannot reflect uncertainty related to political events and it is not calculated from a single
base for different countries worldwide, which may bring about biased results (Adams et al.,
2020; Atsu and Adams, 2021) [20,29]. Besides, empirical investigations of the impact of
EPU on CO2 emissions are utilizing simple data for one or a few countries (Pirgaip and
Dinçergök, 2020; Adedoyin and Zakari, 2021; Sohail et al., 2021) [23,30,31]. Aside from
these, some studies have conducted an empirical investigation into this issue by employing
the Stochastic Impacts by Regression on Population, Affluence and Technology (STIRPAT)
model, which is generally utilized to conduct empirical investigation for issues such as
CO2 emissions (Amin and Dogan, 2021; Anser et al., 2021; Yu et al., 2021) [19,32,33].

This scenario naturally motivates us to raise an interesting issue: what effect does
EPU exert on air pollution? To answer this, we conducted an empirical investigation by
employing multinational panel data for 137 countries during the period 1970–2018 via
GMM estimation according to the STIRPAT model. We measured EPU by the variable World
Uncertainty Index provided by Ahir et al., (2018) [34], which can help us to comprehensively
examine the role of EPU in air pollution. Compared to the previous literature, the potential
contributions of this work are as follows. Firstly, we carry out empirical estimation for
the impact of EPU on air pollution based on multinational panel data for 137 countries
via the world uncertainty index for EPU provided by Ahir et al., (2018) [34], which can
offer further common findings on EPU’s influence on air pollution (Chen et al., 2021) [24].
Secondly, only a few studies have utilized the STIRPAT model, which is generally utilized
in order to investigate the influence of EPU on carbon emissions, and in this study we
attempted to examine the impact of EPU on carbon emissions by conducting static and
dynamic estimations using the STIRPAT model.

The rest of this paper is structured in line with previous empirical studies. Specifically,
Section 2 is mainly concerned with the variable data and estimation method. Section 3
offers the main results and discussion. Section 4 gives a brief summary of our empirical
results and proposes some suggestions to policymakers.

2. Materials and Methods
2.1. Variables

Air pollution (CO2): In line with Shao et al., (2011) [35], CO2 emission is the most
critical among environmental pollutants and is generally accepted as an indicator of
environmental impact or climate change. Due to the well-established database on CO2
emission, we also measure CCP by CO2 emissions (denoted by CO2) (the unit of CO2 is
one million tons).

Economic policy uncertainty (Uncertainty): variables for EPU such as the EPU index,
world trade uncertainty index (WTUI) and world uncertainty index (WUI) were generally
utilized in previous studies investigating the issues of EPU (Pirgaip and Dinçergök, 2020;
Adams et al., 2020; Qi et al., 2021) [20,30,36]. However, the data for EPU only covers
28 countries, while the data for WTUI and WUI was constructed for 143 countries from
1996 onwards. Besides, compared to the EPU index, the WUI index can capture the
uncertainty of political events and is built according to a common base for all countries
(Atsu and Adams, 2021) [29]. To come to conclusions on the role of EPU in carbon emissions
worldwide, we utilize the WUI data to measure the EPU in line with Adams et al. (2020) [20].
Specifically, Ahir et al. (2018) [34] construct quarterly indices of EPU by using frequency
counts of “uncertainty” (and its variants) in the quarterly Economist Intelligence Unit
(EIU) country reports, which are scaled by the total number of words in each report and
multiplied by 1000 for worldwide comparability. The EPI data is year-frequency, and takes
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the mean value of quarterly WUI to measure EPU annually (Atsu and Adams, 2021) [29],
denoted by Uncertainty. A higher value of Uncertainty usually stands for higher EPU.

According to previous articles focusing on carbon emissions and the extended STIR-
PAT model (Wen et al., 2016; Wang et al., 2021b; Yang et al., 2021) [37–39], we include the
following variables in our model:

Economic performance (GDP): As suggested in the traditional STIRPAT model, Afflu-
ence is usually measured by national real income or GDP per capital, so in this study we
also measure Affluence by the national real GDP per capita, which is constant in 2011 US
dollars and denoted by GDP.

Population (POP): In the STIRPAT model, Population is often captured by the total
number of people; to control the influence of population on carbon emissions, we also
utilize this indicator to measure population, denoted by POP (Verma et al., 2021) [40].

Green technologies (GI): In the STIRPAT model, T often stands for technologies which
can produce goods in an environmentally-friendly manner or that increase energy efficiency
which can reduce carbon emissions. In this study, we capture T by green technologies, mea-
sured by the total amount of patent applications in environmental management, denoted
by GI.

Density of people (Density): Aside from the total population, we also measure popula-
tion by density, as higher density may bring about more demand in terms of deforestation
in order to offer more space for human living. As provided by Bottero et al., 2017 [41], pop-
ulation density is calculated by the number of people per square km, denoted by Density.

Structure of population (Aging): Since the aging problem can change a government’s
attitude to natural environmental protection, we measure the aging problem by the share
of people aged 65 or above in relation to total population (Wang et al., 2021a) [42], denoted
by Aging.

Industrial share (IND): To control the influence of industrial structure on carbon
emissions, we measure industrial structures by the proportion of industry value added
(including construction) to GDP (Usman et al., 2021) [43].

Process of urbanization (Urban): As suggested by Dale (2018) [44], we use the share of
urban residents to total population to measure the urbanization rate, which can capture
the potential influence of urbanization on carbon emissions.

International trade (Trade): Similarly to Li et al., (2017) [45], we utilize the share of
exports and imports of goods and services as a proportion of GDP to capture the degree of
openness, denoted by Trade.

Utilization of foreign investment (IFDI): To measure production activities created by
foreign direct investment, we include the control variable of FDI as calculated by the ratio
of net inward FDI to GDP, which is supported by Mahadevan and Sun (2020) [46].

Table 1 provides the details of such variables.

Table 1. Variable definition.

Variables Definition Source

Dependent variables
CO2 The total amount of CO2 emissions WDI (2020) [47]

Independent Variables
Uncertainty The world uncertainty index Ahir et al., (2018)

Control variables
GDP GDP per capita (constant 2010 US$) WDI (2020) [47]

POP The number of total population, whose unit is million WDI (2020) [47]
GI The number of patent applications about the environmental management OECD (2020) [48]

Density Population density (people per sq. km of land area) WDI (2020) [47]
Aging Population ages 65 and above (% of total population) WDI (2020) [47]
IND Industry (including construction), value added (% of GDP) WDI (2020) [47]

Urban Urban population (% of total population) WDI (2020) [47]
Trade Share of the sum of exports and imports of goods and services to GDP WDI (2020) [47]
IFDI Foreign direct investment, net inflows (% of GDP) WDI (2020) [47]
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2.2. Data

Data on CO2 are sourced from the database of the World Bank. Data on Uncertainty
are provided by Ahir et al., (2018) [34] (Ahir et al., (2018) [34], The world uncertainty index,
Website of World Uncertainty Index: http://www.policyuncertainty.com/wui_quarterly.
html, accessed on 13 November 2021). Data for GI is obtained from the OECD (2020) [48],
while data for remaining variables are given by World Development Indicators (WDI
(2020) [47] World Bank, World Development Indicators. http://databank.worldbank.org/
data/reports.aspx?source=wdi-database-archives-(beta), accessed on 13 November 2021).
We merge all data together according to dimensions such as country and year, and then
filter the observations by following principles such as dropping observations with missing
values. We finally construct a panel dataset for 137 countries from 1970 to 2018. Similar to
Wang et al., (2021b) [38], we take the log for these variables.

The basic distribution of the variables is listed in Table 2. For the CO2 variable, it is
obvious that the mean for CO2 is 3.133, and the median of is 3.071, while the minimum,
standard deviation (S.D), and maximum are 0.047, 1.953, and 9.206, respectively, which
means that CO2 varies greatly among different countries. When we analyze the distribution
of EPU, we find that the min, mean, median and max of Uncertainty are 0, 0.127, 0.1 and
0.851, respectively, while S.D is 0.112.

Table 2. Summary of descriptive statistics.

Variable N Mean Min P25 Median P75 Max S. D

CO2 4814 3.133 0.047 1.463 3.071 4.569 9.206 1.953
Uncertainty 4814 0.127 0.000 0.044 0.100 0.185 0.851 0.112

GDP 4814 8.201 5.306 6.979 8.117 9.292 11.431 1.501
POP 4814 16.362 13.049 15.377 16.133 17.261 21.055 1.374
GI 4814 0.996 0.000 0.000 0.000 1.386 8.203 1.738

Density 4814 3.986 0.748 3.076 4.089 4.800 8.981 1.375
Aging 4814 1.891 0.522 1.438 1.687 2.417 3.353 0.573
IND 4814 3.309 0.835 3.110 3.316 3.518 4.486 0.383

Urban 4814 3.843 1.347 3.532 3.996 4.295 4.615 0.581
Trade 4814 4.146 0.155 3.836 4.153 4.504 6.095 0.575
IFDI 4814 1.088 0.000 0.449 1.002 1.573 4.648 0.785

2.3. Estimating Methods

According to the previous literature, such as Wen et al., (2016) [37] and Wang et al.,
(2021b) [38], carbon emissions are not only influenced by current situations, but are also
affected by previous environmental performance; to include this dynamic process into our
estimation, we choose the generalized moment method to conduct empirical investigations.
However, as suggested by Wang et al., (2019) [49], the GMM estimation system has some
advantages over other estimation methods, so we finally utilized the GMM estimation
system to conduct our empirical investigation, which is given as following.

CO2it = α1CO2i,t−1 + θUncertaintyit + β′X + ui + ut + εit (1)

where i = 1, 2, 3 . . . N stand for the individual country, whereas t = 1, 2, 3 . . . T represent
the dimension of year. CO2 is the dependent variable, while CO2i,t−1 is the first lag.
Uncertainty is the variable of EPU. X represents the control variables, β is the vector for the
corresponding coefficients, and ui and ut stands for the fixed effect of individual country
and year, respectively.

3. Results and Discussion
3.1. Baseline Results

At first, we estimate the standard STIRAT model with EPU by using the GMM
estimation system, whose results are shown in column (1) of Table 3. The coefficient
of uncertainty is 0.138, which is significantly positive even at 1%, indicating that the EPU

http://www.policyuncertainty.com/wui_quarterly.html
http://www.policyuncertainty.com/wui_quarterly.html
http://databank.worldbank.org/data/reports.aspx?source=wdi-database-archives-(beta)
http://databank.worldbank.org/data/reports.aspx?source=wdi-database-archives-(beta)
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would bring about more CO2 emissions. When we take other variables for the extended
STIRPAT model into account, the coefficient of uncertainty in column (2)–(4) is 0.171, 0.182,
0.172, respectively, and all are significantly positive at 1%, again confirming the idea that
EPU would cause more CO2 emissions.

Table 3. SYS-GMM estimations for EPU’s impact on EPI.

(1) (2) (3) (4)

L. CO2 0.754 *** 0.717 *** 0.505 *** 0.523 ***
(23.278) (17.718) (9.612) (9.848)

Uncertainty 0.138 *** 0.171 *** 0.182 *** 0.172 ***
(4.008) (4.208) (3.688) (3.586)

GDP 0.313 *** 0.430 *** 0.465 *** 0.496 ***
(6.034) (6.617) (5.533) (5.746)

POP 0.522 *** −1.657 *** −7.231 *** −6.725 ***
(6.768) (−3.210) (−6.855) (−6.604)

GI −0.007 *** −0.006 *** −0.005 *** −0.004 *
(−3.168) (−3.091) (−2.603) (−1.949)

Density 1.975 *** 7.262 *** 6.771 ***
(3.848) (7.103) (6.752)

Aging −0.730 *** −1.628 *** −1.513 ***
(−3.858) (−5.329) (−5.231)

IND 0.008 0.007
(0.625) (0.432)

Urban 0.354 *** 0.276 ***
(5.945) (4.464)

Trade −0.004
(−0.260)

IFDI −0.001
(−0.241)

Year FE Yes yes yes yes

N 4667 4667 4667 4667
AR (1) −4.787 −4.749 −3.911 −4.023

AR (1)-P 0.000 0.000 0.000 0.000
AR (2) −1.346 −1.283 −0.926 −0.979

AR (2)-P 0.178 0.200 0.354 0.327
Hansen-P 0.954 0.946 0.983 0.974

Notes: *** and * indicate statistical significance at the 1%, and 10% levels, respectively. Z-statistics are in parenthesis.

These GMM estimation results strongly support that EPU exerts a positive impact
on CO2 emissions, supporting previous literature such as that of Adams et al., (2020) [20]
and Qi et al., (2021) [36]. The potential reason for this is that, once the EPU increases, the
more the attention of policymakers would turn to how to maintain economic growth by
stimulating economic activities, thus reducing the importance of environmental protection
during the implementation of these policies. Furthermore, with increasing EPU, the activity
of research and development in clean energy and energy-saving technologies experiences
some decline and firms prefer to use cheap fossil fuels (Ulucak and Khan, 2020) [50], which
may cause more carbon emissions (Al-Thaqeb and Algharabali, 2019) [51].

3.2. Robustness Test

To prove our idea that EPU positively affects CO2 emissions, we further carried out
several robustness tests.

3.2.1. Other Variables of EPU

Firstly, to avoid the potential bias caused by the measurement, we utilize another three
variables to capture the EPU, provided by Ahir et al., (2018) [34]. The first is trade EPU,
denoted by uncertainty_trade; the second is the absolute count of the word “uncertainty”
in the quarterly Economist Intelligence Unit (EIU) country reports, denoted by uncer-
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tainty_absolute; while the third is similar to the EPU, but is adjusted by the nearest two
seasons, denoted by uncertainty_season. (More detailed information on such variables can
be seen in: http://www.policyuncertainty.com/media/WUI_mimeo_10_29.pdf, accessed
on 13 November 2021) Table 4 provides the estimation results when we utilize these three
variables to measure the EPU. From Table 4 we can obtain that the coefficient of uncer-
tainty_trade is 0.059, which passes the significance test at 5%, suggesting that a higher trade
EPU often brings more CO2 emissions. Moreover, the coefficient of uncertainty_absolute
and uncertainty_season in column (2) and (3) is 0.023 and 0.083, respectively, offering
strong evidence for the conclusion that EPU would lead to more CO2 emissions.

Table 4. Robustness test—changing the measurement of EPU.

(1) (2) (3)

L. CO2 0.403 *** 0.506 *** 0.518 ***
(3.313) (8.662) (9.758)

Uncertainty_trade 0.059 **
(2.244)

Uncertainty_absolute 0.023 ***
(3.390)

Uncertainty_season 0.083 *
(1.667)

GDP 0.983 *** 0.451 *** 0.514 ***

(5.543) (5.259) (5.878)
POP 10.477 * −6.987 *** −6.327 ***

(1.663) (−5.943) (−6.312)
GI 0.002 −0.005 ** −0.004 *

(0.608) (−2.239) (−1.839)
Density −9.044 7.001 *** 6.341 ***

(−1.457) (6.162) (6.430)
Aging −0.453 * −1.438 *** −1.541 ***

(−1.658) (−4.428) (−5.263)
IND −0.022 0.008 0.005

(−0.792) (0.483) (0.316)
Urban −0.095 0.375 *** 0.282 ***

(−0.460) (4.881) (4.541)
Trade 0.007 0.004 −0.003

(0.537) (0.265) (−0.208)
IFDI −0.005 −0.002 −0.001

(−1.198) (−0.457) (−0.181)
Year FE yes yes yes

N 2818 4670 4667
AR (1) −2.964 −4.095 −3.908

AR (1)-P 0.003 0.000 0.000
AR (2) −0.169 −0.922 −0.920

AR (2)-P 0.866 0.356 0.357
Hansen-P 0.733 0.926 0.960

Notes: ***, ** and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. Z-statistics are
in parenthesis.

3.2.2. Changing the Measurement of Carbon Emissions

Secondly, we re-conduct the empirical examination by utilizing another three mea-
surements of GHG emissions, total GHG emissions, CH4 emissions and N2O emissions, as
suggested by Lin et al., (2017) [52]. We offer the results in Table 5. While we control the time
fixed effect, individual fixed effect and other variables which may affect CO2 emissions,
the coefficient of uncertainty in column (1) is 0.293, which is significantly positive, again
indicating that the EPU would bring about more CO2 emissions. Furthermore, while we
capture the carbon emissions by CH4 and N2O, whose results are listed in column (2)–(3),
we can obtain the coefficient of Uncertainty in column (2)–(3) as 0.103, 0.025, respectively,

http://www.policyuncertainty.com/media/WUI_mimeo_10_29.pdf
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which passes the significance test at the 5% level, suggesting that EPU exerts a significantly
positive influence on carbon emissions.

Table 5. Robustness test—changing the measurement of dependent variables.

(1) GHG (2) CH4 (3)N2O

L.dependent 0.440 *** 0.416 *** 0.345 ***
(9.354) (11.024) (6.126)

Uncertainty 0.293 ** 0.103 ** 0.025 **
(1.978) (2.573) (2.456)

GDP 0.375 *** 0.070 ** 0.042
(4.960) (1.973) (0.570)

POP 8.176 *** 1.307 5.663 **
(3.469) (1.269) (2.249)

GI −0.002 −0.001 −0.003
(−0.301) (−0.909) (−1.251)

Density −7.379 *** −0.678 −5.199 **
(−3.038) (−0.649) (−2.092)

Aging 0.200 0.189 ** 0.106
(0.781) (2.112) (0.363)

IND 0.053 * 0.000 0.011
(1.785) (0.019) (0.712)

Urban −0.379 *** 0.049 0.134 **
(−5.771) (1.333) (2.530)

Trade 0.013 0.007 0.030 ***
(0.670) (1.157) (3.281)

IFDI −0.002 −0.001 −0.003
(−0.622) (−0.687) (−1.202)

Year FE yes yes yes
N 3021 3276 3276

AR (1) −2.643 −2.664 −3.275
AR (1)-P 0.008 0.008 0.001
AR (2) 1.231 2.418 1.630

AR (2)-P 0.218 0.016 0.103
Hansen-P 0.403 0.388 0.323

Notes: ***, ** and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. T-statistics are
in parenthesis.

3.2.3. Panel Fixed Effect (FE) Estimation

Thirdly, to avoid the potential bias caused by the estimation method, we re-estimated
the model by employing panel FE estimation which incorporates the individual fixed effect
and time fixed effect, similar to Chu and Le (2021) [53], who also utilized this estimation
to examine the impact of EPU on carbon emissions. We offer the results of panel FE esti-
mation in Table 6. While we control the time fixed effect, individual fixed effect and other
variables which may affect the environmental performance, the coefficient of uncertainty
in column (1) is 8.246, which is significantly positive, again indicating that the EPU would
bring about more carbon emissions. Furthermore, while we capture the EPU by employ-
ing the other three variables, whose results are listed in column (2)–(4), we can obtain
that the coefficient of uncertainty_trade, uncertainty_absolute, and uncertainty_season in
columns (2)–(4) is 0.021, 0.003, and 0.004, respectively, which passes the significance test
at the 5% level, also suggesting that EPU exerts a significantly positive effect on carbon
emissions. In summary, the results of panel FE estimation are similar to those of GMM
estimation in Tables 3 and 4, confirming the reliability of our baseline finding.

3.2.4. New Sample

Thirdly, to avoid the potential bias caused by outliers, we re-constructed new sub-
samples by dropping observations with values smaller than 10% CO2 or larger than 10%
CO2, according to Wang et al., (2021a) [42]. We hence re-estimate the GMM based on such
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a new sample and display the results in Table 7. It is easily to see that the coefficient of
uncertainty, uncertainty_trade, uncertainty_absolute and uncertainty_season are negative
and pass the significance test at the 10% level, indicating that the results based on the
middle 80% sample also support the positive influence of EPU on carbon emissions.

Table 6. Robustness test—changing the estimation.

(1) (2) (3) (4)

Uncertainty 8.246 ***
(6.003)

Uncertainty_trade 0.021 **
(2.437)

Uncertainty_absolute 0.003 **
(2.320)

Uncertainty_season 0.004 ***
(3.081)

GDP 0.636 *** 0.618 *** 0.636 *** 0.636 ***
(6.743) (6.601) (6.724) (6.748)

POP 0.727 2.005 0.726 0.728
(0.936) (1.648) (0.932) (0.936)

GI 0.023 0.031 ** 0.023 0.023
(1.292) (2.597) (1.293) (1.290)

Density 0.904 −0.676 0.906 0.904
(1.232) (−0.555) (1.232) (1.232)

Aging 0.686 *** 0.297 * 0.686 *** 0.686 ***
(4.390) (1.820) (4.392) (4.391)

IND 0.072 0.093 ** 0.071 0.072
(1.089) (2.101) (1.086) (1.091)

Urban 0.132 1.029 *** 0.133 0.132
(0.670) (5.492) (0.675) (0.669)

Trade 0.082 0.008 0.082 * 0.082
(1.653) (0.317) (1.663) (1.652)

IFDI −0.010 0.018 −0.010 −0.010
(−0.873) (1.628) (−0.867) (−0.872)

Year FE yes yes yes yes
Country FE yes yes yes yes

Cons −19.363 ** −36.814 ** −19.341 ** −19.371 **
(−2.004) (−2.457) (−1.998) (−2.005)

N 4814 2956 4814 4814
R2 0.789 0.684 0.789 0.789
F 19.50 21.38 19.57 19.35

Notes: ***, ** and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. T-statistics are
in parenthesis.

Table 7. Robustness test—middle 80% sample.

(1) (2) (3) (4)

L.CO2 0.433 *** 0.608 *** 0.522 *** 0.524 ***
(7.721) (24.505) (14.645) (14.766)

Uncertainty 0.026 ***
(3.556)

Uncertainty_trade 0.052 ***
(5.262)

Uncertainty_absolute 0.005 ***
(2.979)

Uncertainty_season 0.086 *
(1.840)

GDP 0.743 *** 0.329 *** 0.236 *** 0.233 ***
(7.941) (12.833) (5.075) (4.960)
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Table 7. Cont.

(1) (2) (3) (4)

POP −6.951 *** −0.618 −5.807 *** −6.473 ***
(−4.812) (−0.652) (−3.893) (−3.639)

GI −0.006 ** 0.001 −0.005 −0.001
(−2.430) (0.138) (−0.414) (−0.077)

Density 7.644 *** 1.742 * 6.260 *** 6.915 ***
(5.134) (1.856) (4.685) (4.311)

Aging −0.744 *** 0.288 *** −0.455 ** −0.487 **
(−2.586) (3.519) (−2.347) (−2.398)

IND −0.032 0.055 ** −0.011 −0.016
(−1.617) (2.399) (−0.225) (−0.312)

Urban 0.596 *** 0.278 *** 0.733 ** 0.783 **
(4.498) (3.382) (2.295) (2.141)

Trade 0.007 −0.004 0.008 0.007
(0.429) (−0.810) (1.081) (0.990)

IFDI −0.002 0.005 0.012 * 0.012 *
(−0.404) (1.507) (1.775) (1.731)

Year FE yes yes yes yes

N 3556 2248 3556 3556
AR (1) −4.540 −5.508 −5.610 −5.627

AR (1)-P 0.000 0.000 0.000 0.000
AR (2) −0.716 −0.900 −0.822 −0.761

AR (2)-P 0.474 0.368 0.411 0.447
Hansen-P 0.983 0.674 1.000 1.000

Notes: ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. Z-statistics are
in parenthesis.

4. Conclusions

To investigate the influence of EPU on CO2 emissions, we collected the cross-country
data for 137 countries from 1970 to 2018 to carry out a GMM system estimation. The
baseline result confirms that the EPU would bring about more CO2 emissions, which is
also credible when we utilize the new measurement of EPU or the new measurement for
CO2 emissions. In addition, while we examine the moderating effect of other factors in
EPU’s influence on CO2 emissions, we see that the effect of EPU on air pollution among
OECD countries is lower than that in non-OECD countries, suggesting that a higher level
of economic development would reduce the environmental adverse effect of EPU. Besides,
higher globalization and more international trade would weaken the effect of EPU on CO2
emissions, and better governance would reduce EPU’s influence on CO2 emissions. Aside
from this, we also test whether the role of EPU in CO2 emissions varies among different
political regimes; the results support that the influence of EPU on globalization is stronger
in autocracies than that in democracies, whereas left-wing governments can somewhat
reduce EPU’s influence on CO2 emissions.

According to our empirical findings, we offer the following policy implications to
improve environmental performance. Firstly, given that EPU would have some negative
influence on environmental performance, governments could put in more effort to protect
the stability and predictability of economic policies, especially environmentally friendly
policies; if they prefer to conduct new policies, the transition should be smooth, especially
during election periods or when experiencing significant external shock such as coron-
avirus; the stability of economic policies can not only spur economic incentives, but also
improve environmental performance, which are both essential for national sustainable
development. Secondly, among the specific dimension of EPU, trade uncertainty also nega-
tively affects environmental performance, and during the era of post coronavirus, trade
uncertainty also increases. To reduce the negative effect of trade uncertainty, policymakers
should continue their earlier preference for international trade or trade among domestic
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country, and conduct long-term policies to maintain sustainable environments for trade
activities, which are beneficial for environmental protection.

Even if our study comprehensively investigated the impact of economic policy un-
certainty on carbon emissions by using 137 countries and reported that EPU causes more
carbon emissions, this paper did not uncover the transmission channels through which EPU
can affect carbon emissions, nor whether the EPU effect on carbon emissions is constant
among different countries, which need to be further investigated in future studies.
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