Supplementary Materials

Supplementary Material 1: STROBE checklist

TableS1. Strobe checklist.

STROBE item	Item No	Recommendation	Location in manu- script where items are reported	
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the ab- stract	(a) Both in title and abstract (methods and findings section	
		(b) Provide in the ab- stract an informative and balanced sum- mary of what was done and what was found	(b) This was done	
	Int	roduction		
Background/rationale	2	Explain the scientific background and ra- tionale for the investi- gation being reported	Introduction, para graph 1, 2	
Objectives	3	State specific objec- tives, including any prespecified hypothe- ses	Introduction, para graph 2	
	Ν	Methods		
Study design	4	Present key elements of study design early in the paper	Methods, paragrap 1-3	
Setting	5	Describe the setting, locations, and rele- vant dates, including periods of recruit- ment, exposure, fol- low-up, and data col- lection	Methods, paragrapl	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of partici- pants	Methods, paragrapl	
Variables	7	Clearly define all out- comes, exposures, predictors, potential confounders, and ef- fect modifiers. Give diagnostic criteria, if applicable	Methods, paragrap 2-3	

Data sources/ meas- urement	8*	For each variable of interest, give sources of data and details of methods of assess- ment (measurement). Describe comparabil- ity of assessment methods if there is more than one group
Bias	9	Describe any efforts to address potential sources of bias
Study size	10	Explain how the study size was ar- Appendix A rived at
Quantitative variables	11	Explain how quanti- tative variables were handled in the anal- yses. If applicable, de- scribe which group- ings were chosen and why
Statistical methods	12	 (a) Describe all statistical methods, including those used to control for confounding (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) If applicable, describe analytical methods taking account of sampling strategy (e) Describe any sen-
		sitivity analyses Results
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and ana- lyzed

		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram (a) Give characteris-	Appendix A
Descriptive data	14*	tics of study partici- pants (eg demo- graphic, clinical, so- cial) and information	Results, paragraph 1
		on exposures and po- tential confounders (b) Indicate number of participants with	
		missing data for each variable of interest Report numbers of	NA
Outcome data	15*	outcome events or summary measures (a) Give unadjusted	Results, table 1
		estimates and, if ap- plicable, confounder- adjusted estimates and their precision	
Main results	16	(eg, 95% confidence interval). Make clear which confounders were adjusted for and	Results, paragraph 2. Appendix B
		why they were in- cluded (b) Report category	
		boundaries when continuous variables were categorized	NA
		(c) If relevant, con- sider translating esti- mates of relative risk into absolute risk for a meaningful time pe- riod	NA
Other analyses	17	Report other analyses done—eg analyses of subgroups and inter- actions, and sensitiv- ity analyses	Results, paragraph 3
		Discussion	_
Key results	18	Summarize key re- sults with reference to study objectives	Discussion, para- graph 1
Limitations	19	Discuss limitations of the study, taking into account sources of	Discussion, para- graph 5

Interpretation	20	potential bias or im- precision. Discuss both direction and magnitude of any po- tential bias Give a cautious over- all interpretation of results considering objectives, limita- tions, multiplicity of analyses, results from similar studies, and other relevant evi- dence	Discussion, para- graph 1-4
Generalizability	21	Discuss the generali- zability (external va- lidity) of the study re- sults	Discussion, para- graph 6
	Other	rinformation	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present ar- ticle is based	Mentioned in the acknowledgements section.

Supplementary Material 2: Covariate selection criteria and definitions

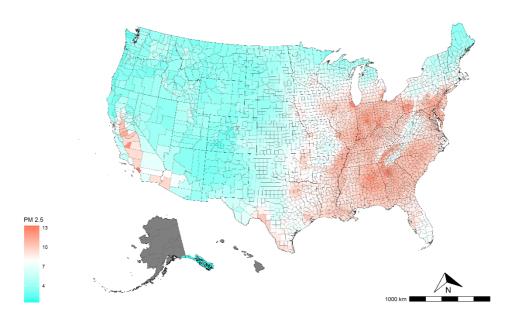


Figure S1. U.S. 2000 to 2018 Long-Term Mean PM2.5 Concentrations by County, mean=7.98 μ g/m (range is 1.42-13.30).

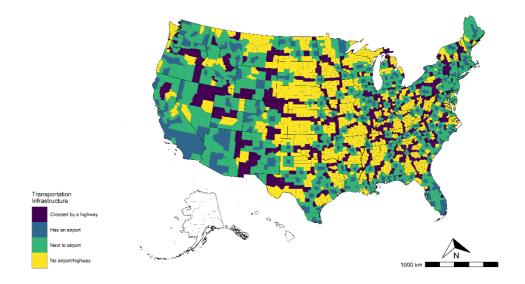


Figure S2. U.S. Connectivity index by county.

All covariates were selected according to an evidence synthesis process of relevant references [1–6].

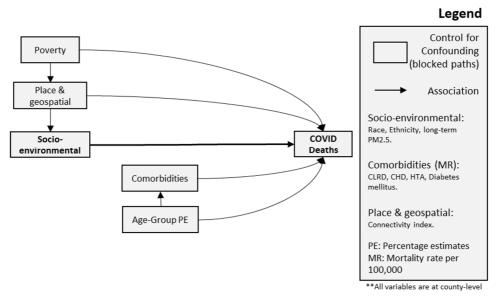


Figure S3. Directed acyclic graph for Coronavirus Disease 2019 (COVID-19) mortality.

The following variables were obtained from the 2014-2018 American Community Survey.

Age: Percent estimate of the population in the following age groups: under 25 years, 25 to 34 years, 35 to 44 years, 45 to 59 years, 60 to 74 years, over 75 years. Variable names: DP05_0005PE, DP05_0006PE, DP05_0007PE, DP05_0008PE, DP05_0009PE, DP05_0010PE, DP05_0012PE, DP05_0013PE, DP05_0014PE, DP05_0015PE, DP05_0016PE, DP05_0017PE.

Poverty: According to the U.S. Census Bureau, the income money threshold and the consumer Price Index (CPI-U). If a family's total income is less than the family's threshold, then every individual of that family is considered in poverty [7]. Variable name: S0601_C01_049E.

Race: Percent estimate of white, black. Variable names: DP05_0037PE, DP05_0038PE.

Ethnicity: Hispanic or Latino origin or not. Percent estimate of Hispanic or Latino population. Variable names: DP05_0071P.

Underlying cause of death: Four COVID-related underlying cause of death including Chronic lower respiratory diseases (ICD-10: J40-J47), diabetes mellitus (ICD-10: E10-E14), hypertensive diseases (ICD-10: I10-I15), and ischemic heart diseases (ICD-10: I20-I25) were extracted from the CDC Wonder database using the ICD-10 standard code [8].

PM2.5: For the exposure estimates, PM2.5 cross-validated exposure estimates were produced by van Donekelaar et al [9].

Table S2. State Abbreviations List.

State	Abbreviation
ALABAMA	AL
ALASKA	AK
ARIZONA	AZ
ARKANSAS	AR
CALIFORNIA	CA
COLORADO	CO
CONNECTICUT	CT
DELAWARE	DE
FLORIDA	FL
GEORGIA	GA
HAWAII	HI
IDAHO	ID
ILLINOIS	IL
INDIANA	IN
IOWA	IA
KANSAS	KS
KENTUCKY	KY
LOUISIANA	LA
MAINE	ME
MARYLAND	MD
MASSACHUSETTS	MA
MICHIGAN	MI
MINNESOTA	MN
MISSISSIPPI	MS
MISSOURI	МО
MONTANA	MT
NEBRASKA	NE
NEVADA	NV
NEW HAMPSHIRE	NH
NEW JERSEY	NJ
NEW MEXICO	NM
NEW YORK	NY
NORTH CAROLINA	NC
NORTH DAKOTA	ND
OHIO	OH
OKLAHOMA	OK
OREGON	OR
PENNSYLVANIA	PA
RHODE ISLAND	RI
SOUTH CAROLINA	SC
SOUTH DAKOTA	SD
TENNESSEE	TN

TEXAS	TX	
UTAH	UT	
VERMONT	VT	
VIRGINIA	VA	
WASHINGTON	WA	
WEST VIRGINIA	WV	
WISCONSIN	WI	
WYOMING	WY	

Supplementary Material 3: Bayesian spatial model

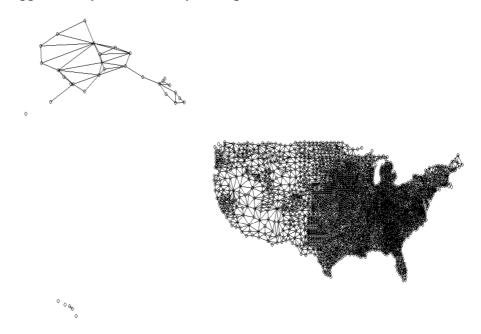
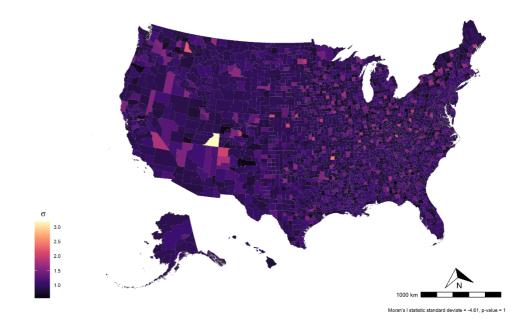
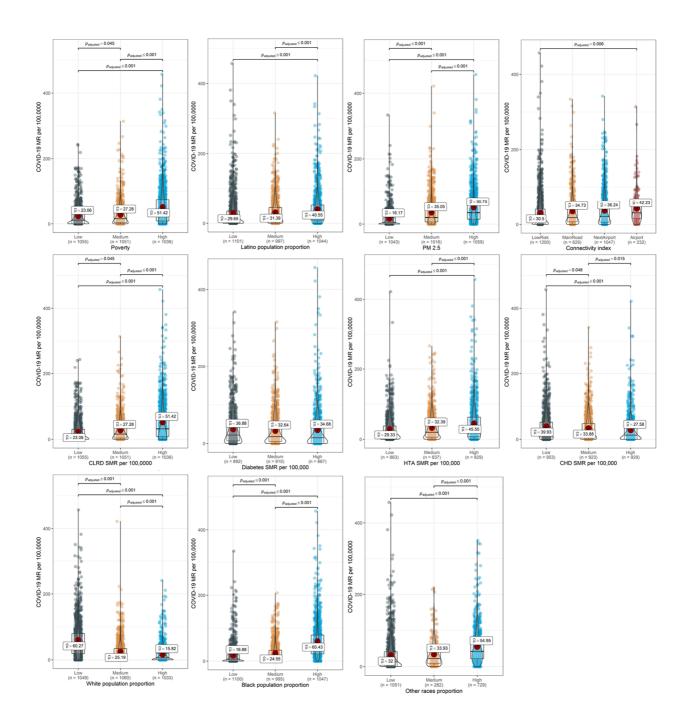



Figure S4. U.S. counties adjacency matrix for the intrinsic CAR model.

Figure S5. Bayesian spatial random effects (σ), Moran's I statistic standard deviate = -4.61, p-value = 1.We used the following Bayesian multilevel spatial regression model to estimate relative risks of COVID-related mortality at the county level.


Number of
$$COVID19_{deaths} \sim Poisson(E * \theta)$$
, (1)

where E denotes the expected number of deaths in the county, θ is the relative risk, and

$$log(\theta) = \beta_{o} + \beta_{1}PM_{2.5} + \beta_{3}Age_{25-34} + \beta_{4}Age_{35-44} + \beta_{5}Age_{35-44} + Age_{45-59} + \beta_{7}Age_{60-74} + \beta_{8}Age_{75+} + \beta_{9}Black + \beta_{9}OtherRaces + \beta_{10}Hispanic + \beta_{11}CLRD + \beta_{12}Diabetes + \beta_{13}HTA + \beta_{14}IHD + \beta_{15}Connectivity + \sigma_{j},$$
(2)

Independent n (0,10) priors for each regression coefficient (β)

$$\sigma_{j} \sim halfCauchy(0,2), j = 1, \dots, 50 \text{ states} + D.C,$$
(3)

FigureS6. Exploratory data analysis covariates vs COVID-19 mortality rate.

CTAT	White Black Dther Poverty Dtor (()						
E	(%)	ыаск (%)	Races	Latino (%)	Poverty (%)	PM2.5 (u/gml)	ICU per 100,000
E	(/0)	(/0)	(%)		(/0)		
AK	50.8	1.3	47.9	5.2	13.3	1.8	NaN
AL	67.0	28.9	4.1	3.4	20.3	10.9	26.6
AR	78.2	16.2	5.6	5.2	19.8	9.0	22.4
AZ	74.6	2.0	23.4	31.1	20.0	5.0	23.6
CA	73.9	3.1	23.0	30.3	15.0	6.8	19.6
CO	90.7	1.6	7.7	20.1	13.1	4.0	28.1
CT	82.3	7.1	10.7	11.7	9.2	8.0	20.4
DC	41.0	46.9	12.1	10.9	16.8	12.0	59.5
DE	71.0	20.9	8.1	8.6	12.2	11.2	24.4
FL	79.1	14.5	6.4	14.0	16.6	8.9	25.3
GA	66.0	28.4	5.6	6.3	20.7	10.6	22.5
HI	28.8	1.4	69.8	9.5	10.8	NaN	NaN
IA	94.4	1.4	4.1	4.7	11.1	8.3	31.3
ID	91.8	0.3	7.9	12.8	15.0	4.5	22.8
IL	90.2	5.3	4.5	4.9	13.6	9.9	20.9
IN	93.0	2.8	4.2	4.0	12.9	11.0	20.4
KS	91.9	1.9	6.2	9.9	12.3	6.5	70.5
KY	93.2	3.6	3.2	2.4	21.0	10.1	23.1
LA	63.8	32.0	4.2	3.6	22.0	9.4	37.8
MA	83.2	6.2	10.6	9.1	10.7	7.4	24.1
MD	71.3	20.2	8.5	6.0	10.4	10.7	15.8
ME	95.2	0.9	3.9	1.5	13.8	4.7	21.2
MI	90.4	3.9	5.7	3.5	15.0	7.0	21.3
MN	91.3	1.8	6.9	4.4	10.8	6.6	33.8
MO	92.4	3.6	4.0	2.9	16.6	8.1	21.0
MS	55.4	41.6	3.0	2.4	24.1	9.5	29.1
MT	88.4	0.3	11.3	3.1	14.2	3.8	66.4
NC	72.3	20.4	7.3	7.2	17.5	9.6	24.5
ND	88.9	1.1	10.0	2.9	10.6	4.4	52.9
NE	94.4	0.9	4.7	6.7	11.0	5.5	43.2
NH	94.3	1.3	4.4	2.5	9.2	5.7	24.3
NJ	72.8	12.0	15.2	17.2	10.2	10.4	19.0
NM	78.2	1.4	20.4	47.7	21.1	3.9	21.7
NV	83.9	2.4	13.6	17.9	12.2	4.3	23.3
NY	85.0	6.3	8.7	7.8	13.6	7.6	19.3
OH	91.7	4.2	4.1	2.7	14.1	10.5	19.5
OK	75.3	3.5	21.2	9.1	17.0	7.6	36.5
OR	89.0	0.8	10.2	11.9	15.3	3.6	20.3
PA	90.6	4.8	4.7	4.3	12.6	9.4	27.2
RI	88.6	3.6	7.9	7.7	10.0	7.5	17.4
SC	59.6	35.7	4.7	4.5	19.4	10.4	20.0
SD	81.5	0.6	17.9	2.8	15.9	5.1	40.7
TN	88.8	7.4	3.9	3.5	17.9	10.0	20.1
TX	83.9	6.3	9.8	34.8	16.1	7.3	27.6
UT	90.8	0.5	8.6	9.1	11.9	4.3	21.5
VA	74.9	18.7	6.4	5.3	14.2	9.3	24.8

 Table S3. State summary for sociodemographic factors.

VT	95.3	1.0	3.7	1.8	11.3	5.6	17.1
WA	83.8	1.4	14.8	14.2	14.2	4.3	27.8
WI	91.4	1.7	6.9	3.7	11.5	7.3	21.4
WV	95.2	2.4	2.3	1.2	18.4	9.2	25.7
WY	92.6	0.5	6.9	8.2	11.5	3.8	39.1

Supplementary Material 4: Disease mapping

The model used for disease mapping of county-level data was:

$$Y \sim Po(E \times \theta) \tag{4}$$

$$\log(\theta_i) = \alpha + \sigma_i + u_i + v_i \tag{5}$$

where α denotes the overall risk level, σ is a state-level random effect, u is a spatially correlated random effect modeled as conditionally autoregressive, and v is a non-spatial random effect.

Table S4. Relative risk by state.

State	Region		RR, CI: [2.5	5%, 97.5%]	
AK	West	0.25	(0.13	,	0.46)
AL	South	0.96	(0.57	,	1.62)
AR	South	1.30	(0.80	,	2.15)
AZ	West	3.09	(1.52	,	6.36)
CA	West	0.94	(0.45	,	1.95)
CO	West	1.12	(0.63	,	2.01)
CT	North-East	1.75	(0.77	,	3.93)
DC	South	1.15	(0.38	,	3.54)
DE	South	1.25	(0.53	,	2.96)
FL	South	1.17	(0.61	,	2.24)
GA	South	1.54	(0.92	,	2.61)
HI	West	0.18	(0.07	,	0.45)
IA	Midwest	1.87	(1.13	,	3.11)
ID	West	1.70	(0.89	,	3.26)
IL	Midwest	1.31	(0.82	,	2.12)
IN	Midwest	1.92	(1.18	,	3.15)
KS	Midwest	0.99	(0.59	,	1.67)
KY	South	1.02	(0.65	,	1.62)
LA	South	2.19	(1.27	,	3.83)
MA	North-East	3.05	(1.51	,	6.08)
MD	South	0.92	(0.52	,	1.64)
ME	North-East	0.83	(0.27	,	2.48)
MI	Midwest	1.44	(0.73	,	2.84)
MN	Midwest	1.26	(0.72	,	2.22)
MO	Midwest	0.89	(0.56	,	1.41)
MS	South	1.76	(1.05	,	2.97)
MT	West	1.06	(0.53	,	2.13)
NC	South	0.85	(0.52	,	1.42)
ND	Midwest	1.60	(0.79	,	3.25)
NE	Midwest	1.09	(0.63	,	1.89)
NH	North-East	0.84	(0.36	,	1.89)
NJ	North-East	1.33	(0.68	,	2.61)
NM	West	0.94	(0.51	,	1.72)
NV	West	1.42	(0.69	,	2.94)

NY	North-East	1.02	(0.57	,	1.82)
OH	Midwest	1.64	(1.00	,	2.70)
OK	South	0.98	(0.57	,	1.68)
OR	West	1.15	(0.56	,	2.37)
PA	North-East	0.83	(0.50	,	1.38)
RI	North-East	0.04	(0.01	,	0.13)
SC	South	1.55	(0.87	,	2.78)
SD	Midwest	0.98	(0.54	,	1.77)
TN	South	1.02	(0.66	,	1.60)
ΤX	South	1.80	(1.07	,	3.04)
UT	West	0.58	(0.29	,	1.15)
VA	South	1.11	(0.68	,	1.80)
VT	North-East	0.57	(0.25	,	1.28)
WA	West	1.15	(0.54	,	2.43)
WI	Midwest	0.84	(0.47	,	1.51)
WV	South	0.87	(0.51	,	1.47)
WY	West	0.11	(0.03	1	0.28)

References

- 1. Niedzwiedz, C.L.; Donnell, C.A.; Jani, B.D.; Demou, E.; Ho, F.K.; Celis-Morales, C.; Nicholl, B.I.; Mair, F.; Welsh, P.; Sattar, N.; et al. Ethnic and socioeconomic differences in SARS-CoV-2 infection: Prospective cohort study using UK Biobank. *medRxiv* 2020, *18*, 1-14, doi:10.1101/2020.04.22.20075663.
- Williamson, E.; Walker, A.J.; Bhaskaran, K.J.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. OpenSAFELY: Factors associated with COVID-19-related hospital death in the linked electronic health records of 17 million adult NHS patients. *medRxiv* 2020, doi:10.1101/2020.05.06.20092999. Available online: https://www.medrxiv.org/content/10.1101/2020.05.06.20092999v1 (accessed on 10 May 2020)
- 3. Halpin, D.M.G.; Faner, R.; Sibila, O.; Badia, J.R.; Agusti, A. Do chronic respiratory diseases or their treatment affect the risk of SARS-CoV-2 infection? *Lancet Respir. Med.* **2020**, *8*, 436–438, doi:10.1016/S2213-2600(20)30167-3.
- 4. Pansini, R.; Fornacca, D. Initial evidence of higher morbidity and mortality due to SARS-CoV-2 in regions with lower air quality. *medRxiv* **2020**, doi:10.1101/2020.04.04.20053595. Available online: https://www.medrxiv.org/content/medrxiv/early/2020/04/07/2020.04.04.20053595.full.pdf (accessed on 10 May 2020).
- Fattorini, D.; Regoli, F. Role of the atmospheric pollution in the Covid-19 outbreak risk in Italy. *medRxiv* 2020, 264, 114732, doi:10.1101/2020.04.23.20076455.
- 6. Team CC-R. Preliminary Estimates of the Prevalence of Selected Underlying Health Conditions Among Patients with Coronavirus Disease 2019. MMWR Morb Mortal Wkly Rep; 2020;69, 382-386. doi:10.15585/mmwr.mm6913e2
- Bureau C. How the Census Bureau Measures Poverty. U.S. Census Bureau, Available online: https://www.census.gov/topics/income-poverty/poverty/guidance/poverty-measures.html Accessed 05/11/2020 (accessed on 5 November 2020).
- Centers for Disease Control and Prevention, National Center for Health Statistics. Underlying Cause of Death 1999–2018 on CDC WONDER Online Database, Released in 2020. Available online: http://wonder.cdc.gov/ucd-icd10.html (accessed on 26 April 2020).
- van Donkelaar, A.; Martin, R.V.; Li, C.; Burnett, R.T. Regional Estimates of Chemical Composition of Fine Particulate Matter Using a Combined Geoscience-Statistical Method with Information from Satellites, Models, and Monitors. *Environ. Sci. Technol.* 2019, 53, 2595–2611, doi:10.1021/acs.est.8b06392.