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Abstract: Aerosols significantly affect environmental conditions, air quality, and public health locally,
regionally, and globally. Examining the impact of land use/land cover (LULC) on aerosol optical
depth (AOD) helps to understand how human activities influence air quality and develop suitable
solutions. The Landsat 8 image and Moderate Resolution Imaging Spectroradiometer (MODIS)
aerosol products in summer in 2018 were used in LULC classification and AOD retrieval in this
study. Spatial statistics and correlation analysis about the relationship between LULC and AOD
were performed to examine the impact of LULC on AOD in summer in Wuhan, China. Results
indicate that the AOD distribution expressed an obvious “basin effect” in urban development areas:
higher AOD values concentrated in water bodies with lower terrain, which were surrounded by the
high buildings or mountains with lower AOD values. The AOD values were negatively correlated
with the vegetated areas while positively correlated to water bodies and construction lands. The
impact of LULC on AOD varied with different contexts in all cases, showing a “context effect”.
The regression correlations among the normalized difference vegetation index (NDVI), normalized
difference built-up index (NDBI), normalized difference water index (NDWI), and AOD in given
landscape contexts were much stronger than those throughout the whole study area. These findings
provide sound evidence for urban planning, land use management and air quality improvement.

Keywords: AOD pollution; land use pattern; urbanization; spatial distribution; correlation analysis

1. Introduction

Aerosols are solid or liquid particles suspended in air with the size ranging from
0.001 to 10 µm. They are often observed as smoke, dust, fog, or haze, which significantly
affect climatic change, environment condition, and air quality not only at a local scale, but
also regional and global ones [1–4]. By absorbing or scattering incident electromagnetic
radiation, aerosols have obvious radiative forcing effects on climate and environment [5,6]
and also influence the radiative energy balance [7,8]. Fine particles and PM2.5, aerosols with
aerodynamic diameters of less than 2.5 µm, can seriously endanger public health [9,10], due
to the harm to the respiration and blood circulation system of inhabitants [11]. According
to the World Health Organization, more than 7 million people in the world lose their lives
every year due to PM2.5 pollution related diseases [12]. Aerosols are considered as one of the
main air pollutants that affect air quality and jeopardize public health [13]. Aerosol Optical
Depth (AOD), an important physical parameter, is defined as the integrated extinction
coefficient over a vertical column of unit cross section [13,14]. It is closely related to the main
pollutants such as PM2.5, PM10, NO2, SO2, and O3 [15,16] and widely used to indicate the
atmospheric conditions, represent air pollution level, and describe climatic effects [13,17,18].
Thus, AOD and its driving factors have recently attracted a lot of attention [19–21].
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Both natural sources and anthropogenic activities contribute to atmospheric aerosols [22].
Compared with natural aerosols such as sea spray, soil ash, volcanic dust, and biomass
burning, those associated with human activities such as transportation, industrial emission,
and household fuel combustion contribute more to aerosol pollution in and near urban
areas [23,24]. Rapid urbanization and industrialization result in heavy urban traffics and
increased industrial emissions. Concentrated and crowded urban residents increase house-
hold fuel consumption and domestic emission. In addition, urbanization tremendously
alters urban surface structures with the original natural resources replaced by dense and
high buildings [25]. Compact city layout reduces wind speed, affects aerosol diffusion
and causes pollutant accumulation [26]. These consequently increase aerosol amount and
concentration. However, the aerosol concentration is discontinuous and varies over the
city due to the high spatial heterogeneity of underlying surfaces and pollution sources.
Detecting the spatial complexity of AOD distribution and its response to urbanization helps
to understand the impact of anthropogenic activities on aerosol pollution [27]. Previous
studies on the relationship between urbanization and AOD spatial distribution confirmed
that AOD distribution was significantly affected by local climate, population density, socio-
economic conditions, and human activities [28–30]. Nevertheless, these variables lack of
spatial accuracy and are difficult to be obtained directly. It limits the quantitative study of
their influence on the spatial variation of AOD on a large scale.

Land use/land cover (LULC) structure or urban form is the direct result of the ur-
banization process [25,31]. The LULC pattern is closely related to the spatial distribution
of population density, pollution sources, and meteorological conditions, which affects
the AOD distribution and pattern. Both remote sensed technology and ground-based
investigation are performed to investigate the relationship between LULC and AOD and
AOD-related pollution [32–35]. The Moderate Resolution Imaging Spectroradiometer
(MODIS) aerosol products provide spatially consistent data, which have been widely used
in recent years [19,28,29,36–38]. For example, Guo et al. (2012) investigated the spatial
distributions and temporal variations of AOD and their affecting factors in central China by
using MODIS-retrieved aerosol level-2 C005 product [20]. Li et al. (2014) assessed the AOD
distribution and its correlation with LULC and socio-economic factors over Guangdong
Province from the aerosol product of MODIS at 10 km spatial resolution [29]. He et al.
(2016) monitored the spatiotemporal variations in AOD and the impact factors over China
based on the Level 2 aerosol products of MODIS with a 3 km spatial resolution [37]. Liu
et al. (2020) examined the impact of LULC on AOD characteristics in central Asia based
on the MODIS products with a spatial resolution of 10 km × 10 km [38]. Massive studies
focused on the AOD properties and the impact factors over national and regional areas at a
coarse spatial scale. However, both the formulation and implementation of the policies
about LULC planning and air pollution management are more active within a city.

It is of great significance to investigate the impact of LULC on AOD and AOD-
related pollution in different case cities. Extensive studies were performed based on the
meteorological station records and in-site observations [13,39–41]. They were efficient in
accurately measuring aerosols in different environmental contexts and offered detailed
explanation for the spatial variation of aerosol size, composition, and concentration [42].
However, the collecting measurements are time-consuming and context-sensitive. The
reliability and invalidity of the research results greatly depend on the number, frequency,
and layout of the measurement points or meteorological stations [41]. The conclusions from
the ground-based measurement provided sound support for policymaking in alleviating
aerosol pollution on fine scales but lack of a synchronized view over the city [31,39].
They could not meet the demand for larger scale AOD assessment oriented to urban
planning [43,44]. It is necessary to take the city as a complete system and monitor the
spatial variation of AOD in it. Nevertheless, to date few studies on AOD distribution and
its response to LULC were performed at the city scale [18,28,38].

This study, therefore, aims to detect the impact of LULC on AOD on the city scale
based on the Landsat 8 image with the resolution of 30m and MODIS aerosol products
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with the resolution of 1km. The specific objectives are to (1) identify the LULC spatial
pattern in Wuhan, China, (2) monitor the spatial variation of AOD values on the city scale,
(3) quantitatively investigate the correlations between AOD and LULC-related variables,
(4) detect how LULC influences the AOD variation in different contexts, (5) and discuss
the implication of study results from the perspective of urban planning. The results can
provide informative data for land use management and air quality improvement.

2. Materials and Methods
2.1. Study Area

Wuhan (113◦41′–115◦05′ E, 29◦58′–31◦22′ N), the capital of Hubei Province, is located
in the eastern margin of the Jianghan Plain and the southern foot of Dabie Mountain
(Figure 1). The altitude of the study area ranges from 19.2 m to 873.7 m, with most regions
being below 50 m. The city center is low and flat, surrounded by low mountains and
hills. The plains and hills account for 81.9% and 18.1% of the total area, respectively. It
has a subtropical monsoon climate with cold winter and hot summer. The annual average
temperature varies between 15.8 ◦C to 17.5 ◦C, and the annual average precipitation
ranges from 1150 mm to 1450 mm. The annual average wind speed is from 1.56 m/s to
2.73 m/s with the main directions of NNE and NE. In summer, the wind speed is relatively
low and stable with the value of 1 m/s from the SW direction [45]. A crisscross water
network was interwoven by different water bodies such as the Yangtze River, the Han
River, Liangzi Lake, Tangxun Lake, and East Lake in Wuhan. Wuhan has a population of
more than 11 million and a total area of over 8500 km2. It is composed of 13 administrative
regions including Jiangan, Jianghan, Qiaokou, Hanyang, Wuchang, Qingshan, Hongshan,
Dongxihu, Hannan, Caidian, Jiangxia, Huangpi, and Xinzhou districts.

Figure 1. Location of Wuhan in China.

With the sustaining and rapid development of urbanization and industrialization
in recent years, Wuhan has been suffering from the serious air pollution and frequent
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extreme pollution events [46]. As recorded, during the four years from 2014 to 2017, about
89.4% of the daily air quality was assessed as polluted in Wuhan. The major pollutants
are PM2.5, PM10, NO2, and O3, which are the main components or sources of aerosols [47].
Higher dustfall pollution level was detected in highly developed areas than that in clean
environment due to the higher building density and lower wind velocity in urban areas [48].
The air pollution degree (with AOD as the indicator) significantly varies over space with
higher spatial heterogeneity in Wuhan [49].

2.2. AOD Retrieval from MODIS Data

Multi-Angle Implementation of Atmospheric Correction (MAIAC) is a new algorithm
for the aerosol retrievals and atmospheric correction of MODIS data [50,51]. The feasibility
and applicability of the MAIAC AOD data have been verified by the ground-based aerosol
records in different areas [52,53]. The MAIACAOD Level-2 gridded products (MCD19A2)
provide informative data with a spatial resolution of 1 km and a temporal one of 1 day.
They were widely used to monitor the spatiotemporal variation of AOD at city scales due
to the high spatial resolution and high accuracy [18,28,51]. In this study, the MCD19A2
products in July, August, and September in 2018 were used to indicate the AOD variation
in summer, which were obtained from the LAADS DAAC (data portal: https://ladsweb.
modaps.eosdis.nasa.gov/search/). The MCD19A2 data offer daily-basis AOD values at the
wavelength of 0.47 µm (blue band) and 0.55 µm (green band). In this study, AOD values at
0.55 µm were selected due to the relatively stable quality.

To alleviate the influence of meteorological conditions on AOD detection, those daily
AOD products obtained in cloudy, rainy, or windy days were excluded. The remained
51 MCD19A2 products were first converted into Tiff format from HDF one using the
MODIS Reprojection Tools (MRT), and then reprojected to the WGS_1984_UTM_Zone_50N
coordinate system. Because the scale factor of the pixel for AOD_0.55 µm band is 0.001,
it is necessary to reduce the pixel value by 1000 times before AOD statistics [54]. After
basic processing, the daily MCD19A2 data were averaged to obtain the mean AOD values
in summer in ArcGIS10.2 software (Esri, Redlands, California, USA). The pixels with
missing AOD values due to the clouds and water vapor were filled in using the Kriging
interpolation method [55]. The spatial distribution of AOD values in Wuhan was masked
and cut out in ArcGIS according to the boundary of the study area.

2.3. LULC Classification Based on Landsat 8
2.3.1. Supervised Classification Method

In this study, Landsat-8 OLI image at a 30 m resolution acquired on 15 September 2018
was used to map the LULC patterns. The data were downloaded from USGS (data portal:
https://earthexplorer.usgs.gov/) with cloud coverage less than 10%, which met the study
requirements. The data preprocessing of the remote sensing images, including geometric
correction, radiometric calibration, atmospheric correction, image enhancement, image
mosaic, and clipping was performed in ENVI5.3 (ITT VIS, Boulder, Colorado, USA) [56].

The supervised classification method was employed in ENVI5.3 to classify the image
by a maximum likelihood algorithm. Considering the surface cover characteristics and
AOD pollution properties, the land cover was divided into five major categories: (1)
Farmland: refers to the agricultural land, including dry land, vegetable land, and paddy
field but not orchards. (2) Forest: mainly includes large area of evergreen or deciduous
arbors/shrubs with the canopy coverage more than 60%. (3) Greening land: refers to the
vegetated areas except forest, including grassland, orchard, and sparse wood grassland. (4)
Water bodies: includes all kinds of water cover such as rivers, lakes, wetlands, reservoirs,
and fish ponds. (5) Construction land: mainly includes industrial areas, commercial
areas, residential areas, transportation facilities, and other infrastructure land. For each
LULC category, more than 250 samples were randomly selected to assess the classification
accuracy based on the Google earth correction. The total accuracy and the kappa coefficient
after classification were 87.64% and 0.83, respectively.

https://ladsweb.modaps.eosdis.nasa.gov/search/
https://ladsweb.modaps.eosdis.nasa.gov/search/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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2.3.2. Derivation of NDVI, NDBI and NDWI

Normalized Difference Vegetation Index (NDVI) is sensitive to vegetation and reflects
the green biomass and plant growth status. It is usually used to indicate vegetation amount
and factional vegetation cover. It can effectively eliminate or reduce the negative effects
of topography, atmospheric radiation, cloud cover, and instrument calibration errors on
vegetation quantification, so it is widely used in urban climate related research. NDVI
integrates the visible and near-infrared reflectance spectral information, which can be
obtained from

NDVI = (ρNIR − ρR)/(ρNIR + ρR) (1)

where ρR is the reflectance value of red band (band 4) and ρNIR is the reflectance value
of near-infrared band (band 5) for Landsat 8 image. The NDVI values range from −1 to
1, where positive values indicate vegetation areas with larger values representing higher
vegetation coverage, and negative values indicate non-vegetated surface features.

Normalized Difference Build-up Index (NDBI), an index sensitive to construction land,
was widely used to indicate the development degree and density of built-up area. It can
be used to differentiate the detailed LULC characteristics by identifying the appropriate
threshold values according to the contexts of study area. Some previous studies suggested
that NDBI was more suitable for quantitatively indicating LULC types and their spatial
variation than NDVI [57]. The NDBI values were used to statistically model its relationship
with AOD variation in this study. The formula is

NDBI = (ρMIR − ρNIR)/(ρMIR + ρNIR) (2)

where ρMIR and ρNIR are the reflectance values of the mid-infrared band and near-infrared
one, respectively. The values range from −1 to 1 with higher values indicating higher
building density.

Another index used in this study is Normalized Difference Water Index (NDWI),
which could effectively express the water information and can be derived by

NDWI = (ρG − ρNIR)/(ρG + ρNIR) (3)

where ρG is the reflectance value of green band (band 3 for Landsat8 images).

2.4. Data Analysis

In order to investigate the spatial relationship between AOD distribution and LULC
pattern at the same resolution, the AOD data and LULC-related indicators were resampled
into the grids sized in 1 km × 1 km in ArcGIS10.2 software using the Fishnet tool. A total
of 9008 grids were generated in the study area. For each grid, the average values of AOD,
NDVI, NDBI, NDWI, and the area proportion of different LULC types such as construction
land (PerCon.), farmland (PerFarm), forest (PerForest), greening land (PerGreen), and
water body (PerWater) were calculated. The Pearson correlation analysis between AOD
and the LULC-related indicators was performed in SPSS19.0 (IBM, Armonk, NY, USA).
In addition, the preliminary quantitative relationship between AOD and the indexes was
analyzed based on scatter diagram.

3. Results
3.1. AOD Spatial Distribution

Figure 2 shows the spatial pattern and histogram distribution of AOD values. As
Figure 2a shown, the AOD pollution was not serious in Wuhan during the study period.
The most frequent AOD values were mainly concentrated from 0.2–0.5, covering about
98.6% of the study area (Figure 2b). Only 1.31% of the Wuhan administrative region was
covered by AOD value higher than 0.5. Nevertheless, the spatial distribution of AOD
values was not stable and continuous and there were significant spatial differences in
varied regions. The AOD values ranged from 0.191 to 0.837 over the study area with the
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average one of 0.32 (standard deviation of 0.06). The highest value occurred in the Yangtze
River, a pixel located in the city core. The lowest one appeared in a water pixel in the
Xiajiasi Reservoir in the north of Wuhan. Higher AOD values were mainly distributed in
the middle and south Wuhan, especially in the water bodies in highly developed areas.
Lower ones were almost concentrated in the north and northeast Wuhan, where natural
mountains with high vegetation coverage prevailed. Generally, the AOD variation over
study area was related to the LULC pattern.

Figure 2. The distribution maps of AOD (Aerosol Optical Depth) values in Wuhan: (a) spatial distribution and (b) histogram
distribution.

3.2. Land Use Pattern

Land use is the closest link between human beings and nature. LULC patterns record
the way and result of human action on nature and the environment. Figure 3a shows the
spatial distribution of LULC pattern in Wuhan in 2018. Table 1 displays the area statistics
of different LULC categories. The results indicated that the farmland areas were about
2514.2 km2, accounting for the largest proportion of 29.3%. They were mainly distributed
in the suburbs such as Huangpi, Jiangxia, Xinzhou, and Hannan districts, around the city
core. The construction lands were mostly concentrated in the city center or sprawled along
the main roads in suburbs, covering approximately one-quarter of the whole study area
(2022.3 km2). Together with the urban lakes such as East Lake, South Lake, Shahu Lake,
and Liangzi Lake, the Yangtze River and Han River pass through Wuhan City. With the
covering area of 1706.2 km2, water bodies accounted for a large percentage (19.9%) in the
study area. Vegetated areas, namely, forests and greening lands, were staggered with the
other LULC types throughout the whole study area. They had a total area of 2336.4 km2

(27.2%), among which forests covered 533.3 km2. The concentrated forest was detected
mainly in the north and northeast in Wuhan.
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Figure 3. Spatial distribution maps of (a) LULC (Land use/Land cover), (b) NDVI (Normalized Difference Vegetation
Index), (c) NDBI (Normalized Difference Built-up Index) and (d) NDWI (Normalized Difference Water Index) values.

Table 1. Area statistics of different LULC (Land use/Land cover) categories in 2018 in Wuhan.

LULC Type Area (km2) Proportion (%)

Water body 1706.2 19.9%
Farmland 2514.2 29.3%
Greening land 1803.1 21.0%
Forest 533.3 6.2%
Construction land 2022.3 23.6%
Total 8579.1 100%

Figure 3b illustrates the spatial distribution map of NDVI values in Wuhan in 2018.
Higher NDVI values typically represent larger vegetation amount and greater vegetation
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coverage. The dark blue areas with negative NDVI values were almost restricted to water
bodies. The light blue areas covered by medium NDVI values were detected to well
correspond to the construction land both in urban built-up areas and rural developed
areas. As expected, higher NDVI values were found in the surrounding suburb areas
where plantation or native forests dominate. The NDBI distribution map is illustrated in
Figure 3c, which was obtained from Landsat 8 image. It provided continuous variation
trends with the increasing gradation in positive values from undeveloped area to slightly
developed area to moderately developed area then to highly developed area. The areas
covered by negative values expressed good spatial consistency with the distribution of
water bodies. Figure 3d drafts the NDWI distribution map with the values ranging from
−1 to 1. It expressed continuous variation of water properties at pixel level and provided
specific data for the impact analysis of water body on AOD variation.

3.3. Impact of LULC on AOD Spatial Distribution
3.3.1. Impact of LULC on AOD Variation

To compare the AOD variation within and among different LULC types, the mini-
mum, maximum, average, and standard deviation (SD) values of AOD in different LULC
categories were counted, as shown in Table 2. The areas covered by Water body exhibited
the highest mean AOD value of 0.358, followed by Construction land (0.326), Farmland
(0.317), Greening land (0.311), and Forest (0.294). Although the reservoirs in the northern
suburbs had relatively low AOD values, most of water bodies (especially in urban areas)
had significantly higher ones (Figure 2a), which led to the highest mean AOD value in
water bodies. It was noticeable that both the minimum value and maximum one were
detected in water bodies, which had the widest range of AOD values. Significant variation
of aerosols existed within Water body category with the SD value of 0.081, the largest in all
LULC types. Generally, vegetated areas covered by Forest, Greening land, and Farmland
had relatively lower mean AOD values. Among them, Forest had the lowest mean and SD
values of AOD, indicating that densely vegetated areas provided a cleaner environment.

Table 2. Statistics of mean AOD (Aerosol Optical Depth) values in different LULC (Land use/Land
cover) types in Wuhan.

LULC Type Min Max Mean AOD SD

Water body 0.191 0.837 0.358 0.081
Farmland 0.196 0.748 0.317 0.042
Greening land 0.196 0.537 0.311 0.040
Forest 0.202 0.474 0.294 0.051
Construction land 0.202 0.799 0.326 0.044

To better understand the relationship between LULC and AOD values, several indexes
associated with LULC were selected and their correlations with AOD were assessed in this
study. The correlation coefficients between AOD values and LULC-related variables were
calculated and shown in Table 3. Results indicated that all the selected indexes except NDBI
were closely correlated with AODs at the significance level of 0.01. As expected, the indexes
associated with built-up areas such as PerCon. and NDBI, were both positively correlated
with AOD. However, the correlation coefficients were only 0.025 and 0.045, respectively.
Significant negative relationships existed between AOD values and all the indicators related
to vegetation coverage, namely, NDVI, PerForest, PerGreen, and PerFarm. Vegetation was
confirmed to have a positive purification effect on aerosols due to the adsorbing and
removing capacity of green leaves. It is noteworthy that there were significant positive
correlations between NDWI, PerWater, and AOD values, with relatively higher coefficients
of 0.423 and 0.425, respectively.
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Table 3. Correlation coefficients between AOD (Aerosol Optical Depth) and LULC (Land use/Land cover) -related variables.

NDVI NDBI NDWI PerCon. PerForest PerGreen PerFarm PerWater

AOD −0.422 ** 0.025 * 0.423 ** 0.045 ** −0.314 ** −0.298 ** −0.210 ** 0.425 **

Note: ** Correlation is significant at the 0.01 level 2-tailed; * Correlation is significant at the 0.05 level 2-tailed. NDVI, normalized difference
vegetation index; NDBI, normalized difference built-up index; NDWI, normalized difference water index; PerCon., area proportion of
construction land; PerFarm, area proportion of farmland; PerForest, area proportion of forest; PerGreen, area proportion of greening land;
PerWater, area proportion of water body.

3.3.2. Relationships between AODs and the Values of NDVI, NDBI and NDWI

The above results indicated that AOD values were significantly affected by LULC
types. To further investigate the impact of LULC on AOD distribution, the scatter plots
with density for the relationships between NDVI, NDBI, NDWI, and AOD were illustrated.
In addition, a method of zonal analysis was carried out to evaluate the mean AOD values
at each 0.01 increment of NDVI, NDBI, and NDBI from −1 to 1.

Figure 4 displays the quantitative relationship between AOD and NDVI values. As
shown in Figure 4a, though negative correlation was detected between AOD and NDVI, the
relationship in scatterplots with density between AOD and NDVI was weak and nonlinear.
This means that no strong spatial relationship exists between vegetation and aerosols. This
was partly attributed to the wide and fragmented distribution of the vegetated areas on the
city scale. The scatter plots were mainly clustered in the NDVI values of 0–1, where the
densely vegetated areas were dominant and concentrated. Figure 4b drafts the regression
equation between the mean AOD and mean NDVI values, expressing the changing trend
of AOD as the mean NDVI varied. The mean AOD was found to be correlated to the mean
NDVI with the R2 value of 0.3436, suggesting that aerosol concentration was influenced by
vegetation coverage. The negative relationship indicated that AOD decreased as NDVI
increased. Increasing vegetation coverage is of great significance to alleviate air pollution.
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Figure 5 indicates the quantitative relationship between AOD and NDBI values. For
the whole study area, natural areas covered the majority and construction land accounted
for about 25% (shown in Table 1). The built-up areas were fragmented by water bodies
and the vegetated areas, which resulted in the densely distributed cluster with the NDBI
from −0.5 to 0.1. The weak relationship in scatterplots with density between AOD and
NDBI, shown in Figure 5a, meant that NDBI alone might not efficiently explain the aerosol
spatial variation. The association between mean AOD and mean NDBI (Figure 5b) was
nonlinear and relatively weak with the R2 value of 0.4537. The regression curve of these
two elements first showed a negative correlation and then a positive one. In the areas with
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NDBI less than 0, the mean AOD values decreased with the mean NDBI increased. The
effect of built-up area on aerosol concentration was significantly influenced by other factors
in natural context, which weakened their correlation.
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Figure 6 demonstrates the quantitative relationship between AOD and NDWI values.
Due to the limited area and sparsely distributed pattern of water bodies (Table 1 and
Figure 2), the majority of pixels were concentrated in the range with the NDWI values of
−0.8 to −0.2. The scatterplots with density between AOD and NDWI (Figure 6a) exhibited
a relatively weak spatial correlation between aerosol amount and water body distribution
on city scale. However, AOD values were more consistent with NDWI in urbanized
areas than in suburbs, which was also supported by the AOD distribution characteristics
(Figure 2a) and NDWI pattern (Figure 3d). As Figure 6b shows, the regression equation
between the mean AOD and mean NDWI first showed strong relation and then weak
one. With the mean NDWI increasing, the correlation between mean NDWI and mean
AOD was affected by other factors more frequently. The positive correlation between these
two elements meant that increasing the area of water bodies could promote the aerosol
deposition.
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4. Discussion
4.1. Basin Effect of AOD Distribution in Urbanized Area

When masking the AOD pattern (Figure 2a) over the LULC map (Figure 3a), we
found that the aerosol distribution did not always correspond to land use types. However,
relatively higher AOD values tended to be concentrated in the water bodies in the urban
development areas. As shown in Figure 1, the urban development area of Wuhan was
mainly located at flatland with less internal variation in altitude. Surrounded by the dense
and high buildings, water bodies in urbanized areas formed vivid “basin” shapes. Urban
development increased the requirement of infrastructure construction, led to frequent
human activities and consequently resulted in increasing emission of anthropogenic aerosol
pollutants in urban areas [27,28]. On one hand, the surrounding buildings disrupted the
horizontal dispersion of the aerosol pollutants, forcing aerosols to concentrate in open areas
with lower terrain [58]. On the other hand, higher relative humidity over the water bodies
increases the particle hygroscopic and volume of fine particles, which raises the aerosol
concentration [59]. Thus, water bodies within or near to the urban development areas,
such as the Yangtze River, Han River, Liangzi Lake, and Wu Lake, were covered by the
highest AOD values. In contrast, the other LULC areas such as construction land, greening
land, and farmland were generally captured by relatively low AOD values (Figure 2b). The
AOD spatial distribution expressed an obvious “basin effect” [60,61]: high AOD values
primarily concentrated in water bodies with lower terrain, and low AOD ones generally
distributed in the surrounding areas with high buildings or mountains.

Noticeably, there was a significant difference in AOD values between urban and
suburb water bodies. In our study, the “basin effect” was only detected in urbanized areas.
The water bodies in the city core had higher AOD concentrations. However, those in the
north and northeast of Wuhan, such as the Meidian Reservoir, Yuanjisi Reservoir, and
Xiajiasi Reservoir, were covered by lower AOD values. There was no difference in AOD
between the reservoirs and the surrounding forests (Figure 2b). It was partly attributed to
the clean environment in the natural mountains, which was less disturbed by human beings
and far away from the anthropogenic pollution sources. Lower aerosol concentrations were
diluted or absorbed by the natural vegetation.

4.2. “Context Effect” of LULC on AOD Variation

The mean AOD values and their variation range over different LULC categories
showed discernible differences (Table 2) and the LULC-related indicators were all signif-
icantly correlated with AOD (Table 3). LULC and its structure did contribute to AOD
variation on different scales [13,38,42]. Nevertheless, the correlation coefficients between
NDVI, NDBI, NDWI, and AOD were not high enough, with the values of 0.3436, 0.4537,
and 0.5127, respectively (Figure 4b, Figure 5b, and Figure 6b). It meant that there was
no distinct and continuous relationship between AOD and LULC on the city scale [37],
and the indexes of NDVI, NDBI, and NDWI alone could not effectively explain the AOD
variation over the study area.

It is remarkable that the regression correlations between NDVI, NDBI, NDWI, and
AOD became much stronger when appropriate landscape context was identified or limited.
Appendix A Figure A1 displays the relationship between NDVI and the associated AOD
values during the range of NDVI from 0 to 1 (defined as vegetated area). The correlation
coefficient was 0.7131, much higher than that over the study area (0.3436). Increasing
vegetation coverage in vegetated or natural context was more efficient in removing aerosols
than in the whole study areas. The removal and purification effect of vegetation on aerosols
in artificial environment was less effective because it was significantly influenced by other
factors such as ventilation, topography, and pollutant concentration [29,47].

In general, the effect of NDVI and vegetation on AOD varied with different landscape
contexts [37,47]. Similar conclusions can be drawn in the other two cases. As shown in
Appendix A Figures A2 and A3, the relationships between the mean NDBI, NDWI, and
AOD were much stronger in the range of NDBI from 0 to 1 (R2 of 0.5986) and NDWI from
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−1 to 0 (R2 of 0.7122) than those throughout the study area. The impact of LULC on AOD
was significantly influenced by the context characteristics, showing a “context effect”. It
suggested that appropriate indexes should be chosen to indicate LULC according to varied
landscape contexts, so as to better explain AOD variation.

4.3. Enlightenment on Urban Planning to Alleviate AOD Pollution

Our study confirmed that land use and its distribution significantly influenced AOD
variation over space at a city scale (Figures 2 and 3 and Table 3). Optimization of city layout
and rationalization of land use allocation can play a vital role in mitigating air pollution
and improving air quality [43,62,63]. In recent years, more and more researchers have been
suggesting that climatic knowledge should be incorporated into urban planning practice
to adapt to climate change and deal with negative environmental problems at the city
scale [31,33,36,44].

Vegetation had the purification capacity of AOD pollution with the significant correla-
tion between AODs and vegetation-related variables (Table 3). However, the influence of
vegetation coverage in urban areas was more complex than that in other areas (Figures 3b
and 4b). Vegetation plays an important role in improving air quality by affecting both
the deposition and dispersion of pollutants [47,62]. Green leaves of plants can absorb or
remove air pollutants from the surrounding areas, and the rough leaf surface and complex
canopy properties can increase the deposition velocity of pollutants and clear the environ-
ment [64,65]. Urban green areas with enough open spaces and sparse tree canopy form
a ventilation channel and allow the air pollutants to pass through, which increases the
pollutant dispersion and reduces the pollutant concentration in urbanized areas [62,66]. In
contrast, densely planted large trees with crowed branches and canopies in urban areas are
natural barriers between pollution sources and the surroundings, which may reduce the
dispersion and increase the local pollution levels [67]. Thus, in terms of the alleviation of
AOD pollution, urban vegetation should be dense enough to provide deposition area and
porous enough to increase dispersion [67,68].

High concentration of AOD was mostly concentrated in large water bodies in and
near the city core (Figure 2). Aerosol particles are blocked in urban areas by high-rise
buildings, and they can be deposited when they pass over the open spaces [67]. The
probability of pollutant deposition may be increased over water bodies due to the higher
vapor content and the large open surface area [36]. Water bodies in urban areas then become
the important sinks of air pollutants, which changes the distribution of pollutants within
the city and reduces the pollution concentration in human living space indirectly [63,67].
Protecting large water bodies or connecting small-sized ones to form a water network are
necessary for air quality improvement in urbanized areas. However, the transportation of
the pollutants is closely related to meteorological conditions [4,20,30]. When wind speed
and direction significantly change, the AOD pollutants gathered in water bodies may
become pollution source and be blown back to residents’ living space. Urban blue-green
infrastructure development mainly alters the internal deposition and dispersion of AOD
pollutants, instead of the total pollutant amount in urban areas. Comparatively, suburb
forests are more efficient in air pollution removal due to the large amount of green biomass
(Figure 2 and Appendix A Figure A1). They can be used as natural sinks of urban AOD
pollution. Connecting urban open spaces with suburban natural resources to build urban–
rural ventilation corridor and ecological network is an effective measure to accelerate AOD
dispersion and alleviate urban pollution.

4.4. Limitations and Research Prospects

Atmospheric aerosol concentration was mainly attributed to the anthropogenic emis-
sion of air pollutants in urban areas [40]. Investigating the impact of LULC on aerosols
helps urban ecologists, climatologists, and planners to understand the interaction between
human activities and environmental quality [38,69,70]. The results provided sound evi-



Int. J. Environ. Res. Public Health 2021, 18, 1132 13 of 18

dence for land use planning and air quality management. However, there still existed some
limitations in this study.

First, in our study, water bodies, especially those in urbanized areas, were observed to
be covered by high AOD values (Figure 2). Positively significant correlation was detected
between AOD and water body (Table 3 and Figure 6). This finding was consistent with
the results from Luo et al. (2001) [61] and Che et al. (2009) [59], but contrary to those from
Zhu et al. (2019) [56] and Halim et al. (2020) [34]. Rich water resources and the crisscross
water network in our study area were partly responsible for it. However, how water bodies
influence the aerosol concentration and AOD distribution in detail is still unknown, which
needs further investigation.

Second, vegetation affects aerosol and its distribution both directly and indirectly, by
absorbing or depositing pollutants and influencing pollutant diffusion [71]. The purification
capacity of vegetation varied with the biomass, vegetation coverage, vertical structures,
and plant characteristics [72,73]. It is necessary to distinguish different vegetation types
when observing the effect of vegetation on AOD [47,72]. Taking this into account, forest
was discussed separately from vegetation in this study. Difference was found between
forests and the other vegetated areas (Tables 2 and 3), which supported the necessity.
Further studies may focus on the detailed classification in vegetation and its impact on
aerosols and air pollution.

Finally, our study focused on the impact of LULC on AOD based on the character-
istics of different LULC underlying types without considering the interaction effects of
LULC-related variables on AODs. While correlations were generally detected among
all involved LULC-related variables when considering their impact on AOD variation,
shown in Appendix A Table 1. In addition, AOD variation over spaces was also related to
the specific land use properties. For example, pollutant amounts and types significantly
varied in industrial land, commercial land, residential land, and traffic land, which then
had different contributions to aerosols and their distribution [74]. Yet, most present stud-
ies grouped the above land types into built-up areas when discussing their effect on air
pollution [33,34,38,75]. These need to be further improved in the future research.

5. Conclusions

This study focused on the impact of LULC on AOD in Wuhan, China. It provides a
new perspective to understand how aerosol variation responds to land use layout at a city
scale. The MODIS aerosol products with a spatial resolution of 1km×1km were used to
map the AOD distribution. The Landsat 8 image with a spatial resolution of 30m×30m
was used to obtain the LULC classification. Based on these databases, variability in AOD
values over different LULC categories was counted, and correlation analysis between AOD
and LULC-related variables was performed. Generally, the AOD distribution expressed an
obvious “basin effect”: high AOD values primarily concentrated in water bodies with lower
terrain, and low AOD ones usually distributed in the surrounding areas with high buildings
or mountains. Among different LULC types, water bodies exhibited the highest mean
AOD value (0.358), followed by Construction land (0.326), Farmland (0.317), Greening land
(0.311), and Forest (0.294). AOD was confirmed to be closely correlated with NDBI and
the other variables at the significance levels of 0.01 and 0.05, respectively. The positive
correlation between AOD and built-up areas meant that urban development increased the
aerosols and air pollution on a city scale. AOD was negatively correlated to vegetated
areas such as forest, farmland, and greening land. Increasing vegetation coverage helps
to promote the purification efficiency in aerosols. Our results confirmed that LULC and
its structure did contribute to aerosols and its variation. However, the impact of LULC on
AOD varied with different contexts in all cases, showing a “context effect”. For example,
the “basin effect” was only detected in water bodies in urbanized areas. The purification
effect of vegetation on aerosols was more efficient in vegetated areas than in the whole
study area. Building urban–rural ventilation corridor and systemic ecological network
can be effective in accelerating AOD dispersion and alleviating urban pollution. These
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findings could help urban planners and managers to develop appropriate strategies in
urban planning and land use management.
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Appendix A

Figure A1. Relationship between NDVI (Normalized Difference Vegetation Index) and associated
AOD (Aerosol Optical Depth) values in the NDVI range of 0 to 1.

Figure A2. Relationship between NDBI (Normalized Difference Built-up Index) and associated AOD
(Aerosol Optical Depth) values in the NDBI range of 0 to 1.
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Figure A3. Relationship between NDWI (Normalized Difference Water Index) and associated AOD
(Aerosol Optical Depth) values in the NDWI range of −1 to 0.

Table 1. Pearson correlations among the AOD values and the LULC-related variables.

AOD NDVI NDBI NDWI PerCon. PerForest. PerGreen. PerFarm. PerWater.

AOD 1
NDVI −0.422 ** 1
NDBI 0.025 * −0.283 ** 1
NDWI 0.423 ** −0.987 ** 0.147 ** 1
PerCon. 0.045 ** −0.210 ** 0.820 ** −0.243 ** 1
PerForest. −0.314 ** 0.346 ** −0.260 ** −0.311 ** −0.256 ** 1
PerGreen. −0.298 ** 0.682 ** −0.467 ** −0.644 ** −0.443 ** 0.365 ** 1
PerFarm. −0.210 ** 0.550 ** −0.153 ** −0.546 ** −0.236 ** −0.240 ** 0.193 ** 1
PerWater. 0.425 ** −0.769 ** −0.243 ** 0.839 ** −0.301 ** −0.248 ** −0.503 ** −0.499 ** 1

Note: ** Correlation is significant at the 0.01 level 2-tailed; * Correlation is significant at the 0.05 level 2-tailed. NDVI, normalized difference
vegetation index; NDBI, normalized difference built-up index; NDWI, normalized difference water index; PerCon., area proportion of
construction land; PerFarm, area proportion of farmland; PerForest, area proportion of forest; PerGreen, area proportion of greening land;
PerWater, area proportion of water body.
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