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Abstract: Background: Potential unreported infection might impair and mislead policymaking for
COVID-19, and the contemporary spread of COVID-19 varies in different counties of the United
States. It is necessary to estimate the cases that might be underestimated based on county-level data,
to take better countermeasures against COVID-19. We suggested taking time-varying Susceptible-
Infected-Recovered (SIR) models with unreported infection rates (UIR) to estimate factual COVID-19
cases in the United States. Methods: Both the SIR model integrated with unreported infection rates
(SIRu) of fixed-time effect and SIRu with time-varying parameters (tvSIRu) were applied to estimate
and compare the values of transmission rate (TR), UIR, and infection fatality rate (IFR) based on US
county-level COVID-19 data. Results: Based on the US county-level COVID-19 data from 22 January
(T1) to 20 August (T212) in 2020, SIRu was first tested and verified by Ordinary Least Squares (OLS)
regression. Further regression of SIRu at the county-level showed that the average values of TR, UIR,
and IFR were 0.034%, 19.5%, and 0.51% respectively. The ranges of TR, UIR, and IFR for all states
ranged from 0.007–0.157 (mean = 0.048), 7.31–185.6 (mean = 38.89), and 0.04–2.22% (mean = 0.22%).
Among the time-varying TR equations, the power function showed better fitness, which indicated a
decline in TR decreasing from 227.58 (T1) to 0.022 (T212). The general equation of tvSIRu showed that
both the UIR and IFR were gradually increasing, wherein, the estimated value of UIR was 9.1 (95%CI
5.7–14.0) and IFR was 0.70% (95%CI 0.52–0.95%) at T212. Interpretation: Despite the declining trend
in TR and IFR, the UIR of COVID-19 in the United States is still on the rise, which, it was assumed
would decrease with sufficient tests or improved countersues. The US medical system might be
largely affected by severe cases amidst a rapid spread of COVID-19.

Keywords: SIR; time-varying parameters; unreported infection rate; infection fatality rate; COVID-19

1. Introduction

Although COVID-19 was reported several months ago [1], the coronavirus is still
raging on a global scale, and is especially surging in the United States, which is one of the
most important engines of the global economic network. The pandemic in the United States
will have an important impact on the global economy and politics. It is fundamental to
make relatively accurate estimates for preventing and controlling the COVID-19 pandemic
in the United States [2,3], wherein the transmission rate (TR) and infection fatality rate
(IFR) are key indicators [4].

The main obstacle to calculating such indicators is the unreported infection rate (UIR),
which might be caused by insufficient testing, data depression of mild or asymptomatic
patients, and a time-lag bias [5,6]. Direct use of IFR values derived from official data might
lead to larger errors [7]. Similar research on SARS pointed out that preferential ascertainment
of severe cases and delayed reporting of deaths are the main two reasons for case fatality risk
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(CFR) error [8]. Beyond insufficient early testing, mild and asymptomatic patients might cause
most unreported cases. In Brazil, only some moderate and severe infectives in hospitalizations
are recorded thus far [9]. On the other hand, the time lag deviation could be explained by
the incubation period of COVID-19, which fluctuates in a wide range [10] and still possess a
high transmittance [11]. The incubation period is also correlated to the age of the infectives,
which can directly affect IFR [12]. It was concluded that the unreported cases might lead to
four kinds of uncertainty in IFR calibration, with the unclear denominator, unknown infection
time, unknown incubation, and undiagnosed asymptomatic infections [13].

Characterizing unreported cases has become a popular question in the epidemic mod-
eling of COVID-19. The recent literature attempts to calculate the UIR or the reported rate
(RR) based on country-level data [14–16], wherein, a single country-level data might lead
to a greater bias [17]. Moreover, the county-level data in the United States on recovered
infectives are not released. Thus, the calculation of IFR depends merely on the national
aggregate data, which might further amplify the error. More and more studies use multi-
national data [18], county-level data [19], or country-county mixed regional data [20] for
analysis, which greatly improves the accuracy of modeling by increasing the dimensionality
and quantity of data.

However, previous studies seldom investigated the time effect of UIR, which might
affect the accuracy of all indicators. A recent study suggested using a time-varying SIR
model to capture the changing transmissive rate [21]. Moreover, the incubation period was
shown to change in different stages of transmission [22]. Some studies showed that the
possible value of COVID-19 IFR of China should be 2.3% [23], while another study showed
that the early COVID-19 IFR in Wuhan might be as high as 20% [24]. Such disputes might
also imply a changing trend in IFR.

This study proposes an SIR regression model with an unreported infection rate (SIRu)
and SIRu, with time-varying parameters (tvSIRu) to estimate the values of TR, UIR, and
IFR, and assess the impact of the time effect. The US county-level data used in this study
comes from the open-source data of Johan Hopkins University on GitHub [25]. This study
provides the first insights into the time series values of TR, UIR, and IFR of COVID-19,
contributing to a deeper understanding of the trend of COVID-19 in the United States.

2. Materials and Methods
2.1. Data Source

The COVID-19 data used in this article contained 3142 counties in the United States,
which included the number of daily new infectives, cumulative infectives, and deaths,
while the population of recovered infectives remained unreported.

The date of the data ranged from 22 January 2020 to 20 August 2020, which contained
666,104 (3142 × 212) records. As a time-lag order (tk, tk+1) was applied in the data analysis,
the number of whole records used for regression was 662,962 (3142 × 211).

2.2. tvSIRu Model with Fixed UIR

In the classic SIR dynamic model, the number of daily infectives (Id
tk+1) at time t1

could be expressed by the function of the infection rate β, the number of susceptible persons
(Stk ), infected persons (Itk ), and the total population (N) at time tk (Equation (1)).

Id
tk+1 =

βStk Itk

N
(1)

The SIR model with unreported infection rate (SIRu) could be illustrated in Figure 1.
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Figure 1. Susceptible–Infected–Recovered (SIR) model with unreported infection cases. The three big dashed boxes represent
typical cabin parameters in the SIR model, wherein the infection data could be divided into two parts—reported and
unreported. The solid green boxes represent the official released daily data on new infections, cumulative infections, and
deaths, and might not represent the actual data on COVID-19 infection. Three new parameters were introduced to bridge
such type of data suppression problem: ϕ’ is the unreported infection rate (UIR) of newly reported infections, ϕ is the UIR
of cumulative reported infections, and λ represents the recovery/mortality rate of reported deaths (RDR).

As the population of the recovered infectives was not released, two kinds of parame-
ters were added to the SIR model, λ for the recovery/death rate (RDR), ϕ and ϕ′ for the
unreported infection rate (UIR) of cumulative cases and daily cases, respectively. Such
variables could be described as the following equations:

Ic
tk = ϕIcr

tk , Rc
tk = λRdr

tk , Id
tk+1 = ϕ′ Idr

tk+1 (2)

where Ic
tk represented the total cumulative infectives at time tk, and Icr

tk denoted the
cumulative cases reported. Rc

tk reflected the whole population of removals at time tk,
Rdr

tk as the cumulative death reported. The daily new infectives at time tk+1 (Id
tk+1) was

calculated by ϕ′ and the corresponding data were reported (Idr
tk+1 ).

RDR could also be transformed into the infection fatality rate (IFR):

IFR = 1/(λ + 1) (3)

while considering a fixed UIR with no time effect, the UIR of total cumulative infectives
and daily new cases could be considered equivalent, thus:

ϕ = ϕ′ (4)

The two explanatory variables in Equation (1), Stk , Itk , could be calculated as

Stk = N − Ic
tk , Itk = Ic

tk − Rc
tk (5)

The SIR model (Equation (1)) could be developed into Equation (6) by substitut-
ing Equations (2)–(4).

ϕIdr
tk+1 =

β
(

N − ϕIcr
tk
)(

ϕIcr
tk − λ Rdr

tk
)

N
(6)

Through further simplification and operation, Equation (6) could be transformed into
Equation (7), which could be taken as the general tvSIRu model:

Idr
tk+1 = βIcr

tk − βλ

ϕ
Rdr

tk − βϕ
(Icr

tk )
2

N
+ βλ

Icr
tk Rdr

tk

N
(7)

Since the four combined variables, Icr
tk , Rdr

tk , (Icr
tk )

2

N , Icr
tk Rdr

tk
N , could be acquired or

calculated by the data released, Equation (7) could be regarded as the primary linear
function, Equation (8) with coefficients, a, b, c, d:



Int. J. Environ. Res. Public Health 2021, 18, 1090 4 of 13

Idr
tk+1 = aIcr

tk + bRdr
tk + c

(Icr
tk )

2

N
+ d

Icr
tk Rdr

tk

N
(8)

while considering the fixed-time effect of all three parameters in Equation (7), the corre-
sponding average value (β, λ, ϕ) could be calculated in Equation (9).

Idr
tk+1 = β0 Icr

tk − β0λ0

ϕ0
Rdr

tk − β0 ϕ0
(Icr

tk )
2

N
+ β0λ0

Icr
tk Rdr

tk

N
(9)

where the values of β0, λ0, ϕ0 are constants.

2.3. tvSIRu Model with Time-Varying UIR

If the UIR varied over time, the UIRs of the cumulative cases and daily new cases were
different, which was defined as ϕ and ϕ′, respectively. Equation (6) could be rewritten as

ϕ′ Idr
tk+1 =

β
(

N − ϕIcr
tk
)(

ϕIcr
tk − λ Rdr

tk
)

N
(10)

To simplify the computation, a new parameter β′ was introduced:

β′ = β/ϕ′ (11)

Then Equation (10) could be transformed into a similar form of Equation (7):

Idr
t1 = β′ Icr

tk − β′λ

ϕ
Rdr

tk − β′ϕ
(Icr

tk )
2

N
+ β′λ

Icr
tk Rdr

tk

N
(12)

To verify the assumption of time-varying parameters, the coefficients in Equations (7)
and (12) could be represented by the initial values and time effect functions. Such functions
were substituted into the two models gradually, resulting in several sub-equations with
time effects.

β = β0g(t) (13)

β = β0g(t), λ = λ0h(t) (14)

β′ = β′0g′(t), λ = λ0h(t), ϕ = ϕ0 f (t) (15)

Substituting Equations (13)–(15) into Equations (7) and (12), three complete equations
could be generated:

Idr
t1 = β0g(t)Icr

tk − β0λg(t)
ϕ

Rdr
tk − β0g(t)ϕ

(Icr
tk )

2

N
+ β0g(t)λ

Icr
tk Rdr

tk

N
(16)

Idr
t1 = β0g(t)Icr

tk − β0g(t)λ0h(t)
ϕ

Rdr
tk − β0g(t)ϕ

(Icr
tk )

2

N
+ β0g(t)λ0h(t)

Icr
tk Rdr

tk

N
(17)

Idr
t1 = β′0g′(t)(ϕ0 f (t)Icr

tk − λ0h(t)Rdr
tk − ϕ0

2 f (t)2 (Icr
tk )

2

N
+ λ0h(t)ϕ0 f (t)

Icr
tk Rdr

tk

N
) (18)

In terms of the specific functions reflecting time effect, the power, exponential, and
periodic function were tested and compared in this article:

τ1(t) = x t, τ2(t) = t x, τ3(t) =
1
2

(
1 + cos

(
t
x

π

))
(19)

This study tested the five equations, (8), (9), (16), (17), and (18), where Equation (8) is
the OLS linear regression derived from the SIRu model, Equation (9) is SIRu with fixed-time
effect, Equations (16), (17), and (18) are tvSIRu with single time-varying β, time-varying β
and λ, all time-varying parameters of β, λ, and ϕ, respectively.
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3. Results
3.1. OLS and SIRu Regressions

The linear regression derived from the SIRu model showed acceptable fitness and
the adjusted R2 was 0.4813 (n = 662,962) (Table 1). The negative value of coefficients b
and c were consistent with the corresponding operation signs in Equation (7). Such results
verified the assumption of the SIRu model to a certain extent.

Table 1. Linear SIR Regression estimated by Equation (8).

Estimate Std. Error t Value p-Value Significance

Intercept 0.9445 0.0617 15.29 <0.001 ***
a 0.0283 0.0001 421.44 <0.001 ***
b −0.1853 0.0011 −161.50 <0.001 ***
c −0.5392 0.0023 −227.86 <0.001 ***
d 4.6718 0.0241 193.40 <0.001 ***

Adjusted R2 0.4813 <0.001 ***
AIC 7,059,288

Note: AIC: model fitness based on Akaike information criterion; ***: significant at 0.001 level.

The SIRu model with a fixed-time effect in Equation (9) further provided the estimated
value of TR, UIR, and RDR (Table 2). The results showed that the average β0 value from
22 January to 20 August was 0.0339 (95%CI 0.0338–0.0340), and the ϕ0 value was 19.5
(95%CI 19.38–19.54), which implied that there might be 19.5 undiagnosed cases while one
infection was reported in US counties, on average. Meanwhile, the λ0 value of 192.5 (95%CI
191.790–193.243) could be interpreted as an IFR value of 0.516%.

Table 2. SIR Regression estimated by Equation (9).

Estimate Std. Error t Value p-Value

β0 0.0339 0.0001 604.4 <0.001
ϕ0 19.4603 0.0415 468.7 <0.001
λ0 192.5163 0.3707 519.3 <0.001

AIC 7,080,522
Note: β0: the average transmission rate; ϕ0: the average unreported infection rate; λ0: the average recov-
ery/mortality rate of reported deaths; AIC: Akaike information criterion.

3.2. SIRu at the State Level

The study further utilized county-level data to compare state-level parameters based
on fixed-time effects. Figure 2 shows the fitness of Equation (8) across the whole states,
most of which were above 0.5 (Figure 2), and each state had different TR, UIR, and RDR
values in Equation (9), which indicated an obvious spatial heterogeneity in the transmis-
sion of COVID-19 (Figure 3). All parameters and statistical descriptions are reported in
Appendices A–C.
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Figure 2. State-level fitness of Equation (8) with county-level data. The scaled density curve of adjusted R2 shows that
Equation (8) was generally applicable, and its mapping indicated that the potential spatial heterogeneity of the states would
affect the results of the SIRu modeling. Among them, the states in the southeastern, the west coast, and the Great Lakes
Region showed higher adaptability.

Figure 3. State-level parameters of Equation (9) with county-level data. (a) Transmission rate—three obvious clusters could
be identified, Nevada–Arizona, Illinois, and Massachusetts–New Jersey, wherein the coefficient of New York could not be
applied due to the non-significant p-value. (b) Unreported infection Rate. The UIR in the northeast was relatively high, but
there were also two central states with high values. (c) Recovery/Death Rate. Blank blocks indicate that the RDR in the area
was not applicable due to the insignificant p-value, wherein, the RDR of the northeastern cities was relatively higher, while the
west coast states had both a high TR and RDR. (d) Correlation Test. The Pearson correlation test of all states’ parameters with
significant p-values showed an obvious connection between RDR and TR, UIR. Note: *: significant at 0.05 level; ***: significant
at 0.001 level.

Most states had a TR between 0.018–0.053, seven states with relatively high values
were Illinois (0.146), Massachusetts (0.109), Connecticut (0.104), New Jersey (0.098), Nevada
(0.080), Arizona (0.087), and Alaska (0.076) (Figure 3a).
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In terms of UIR, most states were concentrated between 28–50 (Figure 3b). Some states
had relatively lower values, such as New York (7.31) and Oregon (8.64), while the top five
states were Maine (122.84), Vermont (185.66), Alaska (85.69), and West Virginia (80.90).

The fitting results on RDR in some cities were not significant, but most significant
values were between 200–500, which was equivalent to the value of IFR ranging from 0.2%
to 0.5% (Figure 3c). Wherein, eight cities were reported below 99 (IFR > 1%), including Ohio
(44.29), Oklahoma (49.35), Florida (77.97), Alabama (66.40), Mississippi (98.32), Kentucky
(74.40), Iowa (58.45), New Mexico (62.18), and California (55.91).

The Pearson correlation between the three state-level indicators was also tested, show-
ing a positive correlation between UIR and RDR. In other words, the lower the IFR, the
higher the UIR (Figure 3d).

3.3. tvSIRu Regression at the Country Level

The tvSIRu model with time-varying TR was first tested by three sub-equations of
Equation (16), and the AIC of all equations was reduced, by comparing to the SIRu model of
fixed-time effect (Table 3). Meanwhile, all estimated TR displayed a declining trend (Figure 4).
Wherein, the power function showed the best fitness with an initial extremely high value
of 227.58 (95%CI 219.89–235.27) decreasing to 0.022 on 20 August. Such a high value might
reflect the high contagiousness of COVID-19 in the early stage. The corresponding UIR and
RDR were 18.61 (95%CI 18.52–18.69) and 183.34 (95%CI 182.63–184.05), which were slightly
higher than the values in Equation (9).

Table 3. Time-varying TR estimated by Equation (16).

g(t)=mt g(t)=tm g(t)= 1
2
(
1+cos

( t
m π

))
Estimate p-Value Estimate p-Value Estimate p-Value

β0 0.2498 <0.001 227.5862 <0.001 0.0525 <0.001
ϕ 18.5069 <0.001 18.6100 <0.001 19.7915 <0.001
λ 181.9526 <0.001 183.3437 <0.001 196.0005 <0.001
m 0.9883 <0.001 −1.7229 <0.001 43.5300 <0.001

AIC 6,982,233 6,962,783 7,076,624
Note: β0: the initial constant in the function of time-varying transmission rate; ϕ: the unreported infection rate; λ:
the recovery/mortality rate of reported deaths; m: the estimated constant in power/exponential function of the
time variable; AIC: model fitness based on Akaike information criterion.

Figure 4. Time-varying TR estimated by Equation (16). Although the initial values of the power
function were much higher than the exponential function in the medium term, the two values tended
to be the same, while the periodic function showed that it was in the third wave.

When the time effect of RDR was further added to Equation (17), the AIC of the
power function displayed a slight decrease in Equation (17) (Table 4). Wherein, the UIR
was 19.02 (95%CI 18.93–19.12), which was similar to the value in Equation (9). However,
both equations showed decreasing trends in the changing RDR, implying an increase of
IFR (Figure 5).
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Table 4. Time-varying TR and RDR estimated by Equation (17).

g(t)=mt, h(t)=kt g(t)=tm, h(t)=tk

Estimate p-Value Estimate p-Value

β0 0.25239807 <0.001 241.912633 <0.001
ϕ 18.66057736 <0.001 19.024919 <0.001

λ0 196.63534702 <0.001 284.386081 <0.001
m 0.98828594 <0.001 −1.734960 <0.001
k 0.99949887 <0.001 −0.085439 <0.001

AIC 6,980,073 6,959,144
Note: β0: the initial constant in the function of time-varying transmission rate; ϕ: the average unreported infection
rate; λ0: the initial constant in the function of time-varying recovery/mortality rate; m,k: the estimated constant in
power/exponential functions of the time variable; AIC: model fitness based on Akaike information criterion.

Figure 5. Time-varying RDR with 95% CI estimated by Equation (17). If the time effect of UIR was not considered, the fitting
results showed that RDR exhibited a decreasing effect over time, which meant that IFR might be slowly increasing.

The power function also showed better performance in tvSIRu with all three time-
varying parameters estimated by Equation (18), which indicated a gradual increase in both
UIR and RDR (Table 5). This trend indicated that the initial UIR and RDR were relatively
low (Figure 6). The value of UIR and RDR achieved 9.1 (95%CI 5.7–14.0) and 141.706
(95%CI 103.3358–189.9486) at T212 on 20 August, respectively. IFR could be calculated as
0.70% (95%CI 0.52–0.95%). Based on the officially released data on 20 August 2020, it might
be concluded that about 30% of the whole population was infected.

Table 5. Time-varying UIR and RDR estimated by Equation (18).

g(t)=mt, f(t)=nt, h(t)=kt(E.1) g(t)=tm, f(t)=tn, h(t)=tk(E.2)

Estimate p-Value Estimate p-Value

β′0 0.2507 <0.001 40.1660 <0.001
ϕ0 15.2287 <0.001 0.0109 <0.001
λ0 143.4179 <0.001 0.0001 <0.001
m 0.9838 <0.001 −2.6890 <0.001
n 1.0018 <0.001 1.2555 <0.001
k 1.0013 <0.001 2.6687 <0.001

AIC 6,969,888 6,813,832
Note: β’0: the initial constant in the time-varying function of the transmission rate and the unreported rate of
new reported infections; ϕ0: the initial constant in the time-varying function of the unreported rate of cumulative
reported infections; λ0: the initial constant in the function of time-varying recovery/mortality rate; m,n,k: the
estimated constants in power/exponential functions of the time variable; AIC: model fitness based on Akaike
information criterion.
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Figure 6. Time-varying UIR and RDR with 95%CI estimated by Equation (18). Equation (18) only provided the estimated
values of UIR and RDR. Both the power function and the exponential function implied an increasing effect, wherein, the
power function was much smaller than the exponential function in terms of UIR estimation.

4. Discussion

Few studies analyzed the time-varying UIR of COVID-19, and its impacted on the
estimation of TR and IFR. This study estimated the values of UIR, TR, and IFR of both
time-fixed effect and time-varying effect with tvSIRu models, based on county-level data.

In terms of the fixed-time effect, the results showed that from 22 January to 20 August,
the average TR and UIR at the country level in the United States were 0.03 and 19.5,
respectively, and the RDR was 192.5, which also meant that the IFR was 0.516%. The IFR
was slightly lower than the overall IFR of 0.66% estimated in China [17], while the CDC in
the United States recommends 0.65% [26].

In a further analysis on the state level, the UIR of all states ranged from 7.32–185.66
(mean = 38), and the IFR ranged from 0.037–2.20% (mean = 0.21%). A related study on
20 US counties estimated that the range of UIR was 4.32–776.68 (mean = 27.7) and IFR
was 0.02–1.81% (mean = 0.027%), the range of UIR estimated by the SIRu model was more
concentrated, and the IFRs had a similar upper boundary [27]. Another previous study
estimated four states’ upper boundary of UIR—Illinois (40.86), Massachusetts (38.28), New
Jersey (29.22), and New York (35.17) [19]. Among these, the first three were similar to the
values estimated by the SIRu model, which were 41.51, 39.22, and 31.83, only New York
had a different value of 7.32. However, interestingly the study also pointed out that the
UIR estimated by an antibody test in New York State in early May was around 7.6, which
might indicate the stability of the SIRu method.

Based on the tvSIRu model, UIR and IFR increased by following the power function
rather than the exponent function, which was the default setting in previous research [21].
Other than the average value of 0.03 in SIRu, the TR estimated by the tvSIRu model
decreased from a large value of 227 to a value of 0.022 on 20 August, which was much lower
than the fixed value 0.05–0.06 reported in related research [21]. It might further explain
the high contagiousness in the initial stage in COVID-19 transmission. The increasing
UIR estimated by the tvSIRu model had a similar value of 9.1 (95%CI 5.7–14.0) at T212
(20 August), which was very close to the value of 9 estimated in a former study in April [20],
and the latest study in September [28]. The UIR value was also close to the value reported
in Brazil (Reported rate = 9.2%, UIR = 10.8) [18]. Such similarity in the estimated UIR in
different periods might be caused by the fixed-time effect in the former models, which only
represented the average values of UIR, as calculated by the SIRu model. The increasing
UIR meant that the IFR was on a downward trend. The value of IFR on August 20 was
0.70% (95%CI 0.52–0.95%), which was still close to the value recommend by CDC [26].
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Many studies supposed that the UIR would decrease with the improvement of COVID-
19 testing and increased hygiene awareness, but our research showed that UIR in the United
States is increasing, which might have a great impact on policy-making for COVID-19 preven-
tion. On the other hand, empirical TR is often used in contemporary COVID-19 modeling, but
the tvSIRu model indicates that the COVID-19 infection rate changed dramatically. The initial
value of TR was 246, reflecting that this pandemic was extremely contagious in the early
transmission stage of the United States. Previous SIR modeling seldom characterized such a
feature, which might lead to large estimation errors. The reducing TR, IFR, and increasing
UIR indicated by the model showed that the epidemic was rapidly spreading in the United
States with a large number of self-healing populations. However, it is noteworthy the potential
increasing cases of severe illnesses might greatly affect the medical system, and the relevant
departments still need to provide more protection to high-risk groups.

As shown in Figure 3, with the potential pattern of spatial correlation, the tvSIRu
model could be developed by integrating models considering the spatial weight, to detect
the spatiotemporal features of COVID-19 transmission, such as Geographical Weighed
Regression model (GWR) [29], Spatial Panel Model, etc. Meanwhile, the regression used in
the tvSIRu models could also be extended by a non-linear method, such as the Artificial
Neural Network (ANN) [30].

5. Conclusions

This article indicates that there might be an increasing number of unrecorded COVID-
19 cases in the official U.S. data, wherein, the tvSIRu model provides a simple, convenient,
and relatively accurate calculation of the unreported parameters of COVID-19 with time
effect, based on official released data. Moreover, this method can be easily transplanted to
analyze the epidemic modeling of other countries.

It must be admitted that if single level geography units of data are used, the inde-
pendent variables might display strong collinearity, leading to overfitting. It is therefore
necessary to use proper sub-geographical level data to fit the national-level or state-level
data. Furthermore, the non-linear model regression was based on the Gauss-Newton
iteration, which could be further optimized with machine learning models.
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Appendix A

Table A1. Parameters Estimated by Equation (7) on State Level.

State R2 β (TR) ϕ (UIR) λ (RDR) IFR

Alabama 0.6800 0.0384 28.1118 66.4050 0.0148
Alaska 0.7043 0.0758 85.6993 2677.0740 0.0004

Arizona 0.8344 0.0873 31.8510 459.3959 0.0022
Arkansas 0.4323 0.0202 14.4224 −103.5099 *
California 0.7199 0.0337 31.9797 55.9131 0.0176
Colorado 0.6327 0.0324 55.2171 395.2257 0.0025

Connecticut 0.4209 0.1039 55.4896 389.6164 0.0026
Delaware 0.3171 0.0875 38.4571 708.5320 0.0014

District of Columbia 0.7049 0.1575 50.9941 780.3851 0.0013
Florida 0.7076 0.0391 13.4101 79.9765 0.0123
Georgia 0.7657 0.0402 28.1156 195.6581 0.0051
Hawaii 0.8935 0.0928 70.3956 2208.2030 0.0005
Idaho 0.7048 0.0588 33.2108 466.1497 0.0021
Illinois 0.7909 0.1457 41.5079 693.7160 0.0014
Indiana 0.6182 0.0301 29.8719 255.2491 0.0039

Iowa 0.4786 0.0190 15.7639 58.4500 0.0168
Kansas 0.5360 0.0230 16.0095 −81.6163 *

Kentucky 0.5781 0.0259 25.9078 74.4067 0.0133
Louisiana 0.4316 0.0658 25.3544 284.9328 0.0035

Maine 0.5311 0.0223 122.8401 −543.0694 *
Maryland 0.6333 0.0406 35.1383 325.5810 0.0031

Massachusetts 0.6904 0.1089 39.2230 448.5265 0.0022
Michigan 0.4950 0.0533 56.0760 339.5087 0.0029
Minnesota 0.7441 0.0068 30.1427 −1098.4030 *
Mississippi 0.5179 0.0349 21.9778 98.3266 0.0101

Missouri 0.7096 0.0412 31.3774 188.5405 0.0053
Montana 0.5230 0.0229 11.8879 −139.4672 *
Nebraska 0.5644 0.0250 13.2247 400.8106 0.0025
Nevada 0.9250 0.0806 35.9869 514.9621 0.0019

New Hampshire 0.4695 0.0446 40.4871 486.1162 0.0021
New Jersey 0.5094 0.0986 31.8312 323.4239 0.0031

New Mexico 0.5075 0.0197 13.4675 62.1788 0.0158
New York 0.4734 −0.0221 * 7.3187 244.7202 0.0041

North Carolina 0.7307 0.0355 39.0629 182.6843 0.0054
North Dakota 0.6131 0.0511 49.7167 715.7587 0.0014

Ohio 0.6007 0.0213 28.9136 46.3505 0.0211
Oklahoma 0.7452 0.0362 33.4416 44.2904 0.0221

Oregon 0.6663 0.0166 8.6465 −24.6175 *
Pennsylvania 0.5268 0.0547 47.0019 407.8571 0.0024
Rhode Island 0.2214 0.0373 40.5705 −56,191.3200 *

South Carolina 0.6950 0.0563 31.2758 433.8097 0.0023
South Dakota 0.4069 0.0500 39.8930 1084.9280 0.0009

Tennessee 0.6854 0.0200 17.9252 −388.7768 *
Texas 0.5605 0.0424 28.6138 250.5731 0.0040
Utah 0.9043 0.0361 42.7415 119.1223 0.0083

Vermont 0.1490 0.0322 185.6625 1314.2170 0.0008
Virginia 0.5568 0.0299 48.3013 259.4586 0.0038

Washington 0.5531 0.0213 15.1840 115.7273 0.0086
West Virginia 0.3163 0.0346 80.9098 497.3075 0.0020

Wisconsin 0.7368 0.0206 28.0754 −231.9747 *
Wyoming 0.2622 0.0185 34.7665 404.7622 0.0025

* p value > 0.05.
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Appendix B

Table A2. Statistical Prescription of State Level Parameters on COVID-19.

Min. 1st Qu. Median Mean 3rd Qu. Max.

TR 0.006824 0.0235 0.036772 0.047826 0.055902 0.157463
UIR 7.318659 25.63112 31.9797 38.89121 42.12469 185.6625
RDR 44.29042 135.0128 332.5448 456.1626 481.1246 2677.074

Note: TR: the transmission rate; UIR: the unreported infection rate; RDR: the recovery/mortality rate.

Appendix C

Table A3. Parameters Table List.

Parameters References

β the transmission rate of COVID-19 in SIR model
ϕ′ the unreported infection rate of new reported infections
ϕ the unreported infection rate of cumulative reported infections
λ the recovery/mortality rate of reported deaths
Ic

tk the total cumulative infectives at time tk
Icr

tk the cumulative cases reported at time tk
Rc

tk the whole population of removals at time tk
Rdr

tk the cumulative death reported at time tk
Id

tk+1 the factual daily new infectives at time tk+1
Idr

tk+1 the reported daily new infectives at time tk+1
Stk the number of susceptible persons at time tk
Itk the number of infectives at time tk
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