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Abstract: How to effectively identify the spatial effect of the emissions trading system(ETS) on
urban green total factor productivity(GTFP) generated through the linkage of economic factors
between cities is a necessary part of scientifically evaluating the effect of ETS policy in emerging-
market countries. This study aims to examine the spatial effect, mechanism, and heterogeneity of
the ETS on urban GTFP based on the panel data of 281 cities from 2004 to 2017 in China, applying
spatial difference-in-differences(DID) Durbin model (SDID-SDM) with multidimensional fixed effect
(FE). The results show that ETS significantly improves the GTFP of the pilot cities, produces a
spatial spillover effect and the results are robust to the placebo test, propensity score matching SDID
(PSM-SDID) test, and Carbon-ETS interference test. Further analysis shows that the policy effect
is mainly driven by improving energy efficiency, promoting green innovation, and optimizing the
industrial structure. In addition, we found that ETS performs better in regions with a high degree of
marketization, strong environmental law enforcement, and a low proportion of coal consumption. In
general, the identification method of this study can be used as a scientific reference for conducting
similar research in other emerging countries.

Keywords: emissions trading system; green total factor productivity; spatial difference-in-difference;
energy efficiency; green innovation; industry structure; spatial heterogeneity

1. Introduction

China is the world’s largest developing country and an important member of emerging-
market countries. In the past four decades, the gross domestic product (GDP) of China has
maintained an average of more than 9%. Even under the negative impact of the 2008 inter-
national financial crisis, it has maintained a high growth rate of more than 6.5% (excluding
the impact of price factors). However, such rapid economic growth data is accompanied
by excessive energy consumption and serious environmental pollution problems [1–3]. In
2010, the former Ministry of Environmental Protection, the National Bureau of Statistics,
and the former Ministry of Agriculture jointly issued the “First National Pollution Source
Census Bulletin” (census in 2010). The communique data shows that the total emissions of
major pollutants are 2.32 million tons of sulfur dioxide(SO2), 30,289,600 tons of chemical
oxygen demand, and 179.777 million tons of nitrogen oxides. To deal with the environ-
mental challenges caused by pollutant emissions, many developed countries such as the
European Union and the United States first launched the emissions trading system(ETS),
such as the US SO2 emission allowance trading project, nitrogen oxides (NOX) trading
project, etc. [4–6]. China formally approved 11 pilot provinces (cities) including Zhejiang,
Jiangsu, Inner Mongolia, Hubei, and Hunan as national-level pilot units in 2007 and actively
explored and implemented the paid use and transaction system of pollution rights. ETS
is an important institutional arrangement aimed at using market mechanisms to reduce
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pollutant emissions, which can internalize corporate emission reduction costs through total
pollutant control and quota trading. The policy goal is to establish a long-term mechanism
for energy conservation and emission reduction [7,8]. Therefore, investigating the impact
mechanism of the pilot emission trading system on green total factor productivity is crucial
to how the government uses market-oriented environmental policy tools to deal with the
dual challenges of green sustainable development and high-quality economic growth.

Cities are the main spatial carrier of environmental pollution control, and they are
the key to achieving the goal of total pollutant emission, promoting the sound operation
of the ETS, and then achieving the goal of green and high-quality development; the
environmental regulation goals at the provincial level that are broken down to the enterprise
execution level are also implemented at the city level. Due to the circulation connection
of resources and factors between cities, the impact of the emission trading system within
the city on the emission behavior of enterprises will inevitably produce a certain degree
of spatial externality on the surrounding areas through the economic connection between
cities [9–11]. Nevertheless, previous studies have seldom paid attention to the mechanism
of the city-level ETS on the green total factor productivity(GTFP) of the city itself and
surrounding areas, and the spatial effect of this market-oriented environmental policy
cannot be ignored [12,13].

Theoretically, within the city, the influence of ETS on the territorial GTFP is mainly
realized by influencing the decisionmaking of micro-enterprises. Specifically, the pilot
policy transfers the cost of emission reduction directly to pollutant producers, who can
make flexible choices among pollutant emission quota trading, emission reduction deci-
sions (enhancing energy efficiency, launching green innovation activities, etc.), and location
decisions to effectively respond to the policy pressure of the pilot policy [14,15]. In general,
when the cost of pollutant emissions is lower than its revenue, these companies choose to
purchase pollutant emission quotas; when the revenue from pollutant emissions cannot
cover the cost, companies often make active emission reduction decisions such as optimiz-
ing resource allocation, improving energy efficiency, and investing in green technologies
innovation, etc., for example, when the benefits of green innovation are higher than the cost
of emission reduction, companies often choose green technology innovation to solve the
pollution problem; and when the benefits of green innovation cannot cover local emission
reduction costs, companies often choose to relocate which makes the green innovation
benefits of the new location higher than the emission reduction costs. Producers’ emission
reduction decisions, green innovation decisions, and relocation decisions at the macro level
drive capital and economic factors to gradually withdraw from polluting industries to
clean industries, affecting energy efficiency, technological innovation and the adjustment of
industrial structure, and then improving the overall GTFP of the city. Among cities, due to
the policy pressure of ETS, some emission companies cannot cover emission reduction costs
through green innovation and other emission reduction decisions. These companies will
choose to withdraw from the local market and relocate. The relocation of these polluting
companies can increase the overall GTFP level of the original location. On the other hand,
because these companies have technical efficiency advantages relative to the new location,
they passively improve the technical efficiency of the new location, thereby generating the
spatial spillover effect of GTFP [16].

We use China’s ETS to empirically test the impact mechanism of market-oriented
environmental tools on GTFP, which has the following significance: firstly, China’s rapid
economic growth is accompanied by serious environmental pollution problems, such as ex-
cessive energy consumption and excessive pollutant emissions. These are typical problems
that have occurred or are about to occur in developing countries and some emerging-
market countries [17]. Secondly, the pilot areas approved by the Chinese government
have different geographical locations in which the spatial heterogeneity of humanities,
economics, and geography is significant. It is possible to comprehensively examine the
possible potential spatial heterogeneity of the effects in areas with different economic
development levels and different cultural and geographical characteristics [15]. In ad-
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dition, the ETS is a typical market-oriented environmental policy tool, and the effect of
the policy is sensitive to the degree of marketization in the pilot area and the intensity of
environmental law enforcement, and it is a challenge to China, which has been criticized
by the West for “low marketization and strong government intervention”. Therefore, it
has great practical value to examine the effect of the ETS in the context of government
intervention to understand how environmental governance policies improve GTFP in a
complex market environment.

In summary, this study is based on the panel data of 281 cities across the country from
2004 to 2017 and takes the spatial difference-in-differences(DID) Durbin model (SDID-SDM)
as the benchmark model to empirically examine the impact mechanism of the ETS on GTFP.
This study carried out a parallel trend test and found that there is no significant difference
between the treatment group and the control group before the implementation of ETS,
which means the treatment group and the control group meet the parallel trend assumption.
The estimation results of the SDID-SDM model show that the GTFP in the pilot cities has
increased significantly, and the ETS also has a positive spatial spillover effect on the GTFP
in the surrounding areas of the pilot cities. In addition, to eliminate the potential influence
of selectivity bias and possible confounding factors, a series of tests such as placebo test,
propensity score matching SDID (PSM-SDID) test, and triple-difference test to exclude the
effects of Carbon-ETS were further conducted, and the empirical results remained robust.

In addition, we also conducted empirical tests on the three potential mechanisms
of the ETS on GTFP. The mechanism analysis results show that the ETS may achieve
the policy effect of improving GTFP by improving energy efficiency, promoting green
technology innovation, and optimizing industrial structure. Secondly, by grouping the
samples according to the degree of marketization, environmental enforcement, and energy
consumption endowment level, we thoroughly investigate the heterogeneity of policy
effects. The estimation results show that the positive policy effect of the ETS on GTFP
performs better in regions with a high degree of marketization, strong environmental law
enforcement, and a low proportion of coal consumption.

The marginal contribution of this research to the existing literature is mainly in the
following three aspects: first of all, this study enriches the empirical test of the spatial
effect of ETS in improving GTFP. Previous studies were mainly based on the perspective
of panel data [18–20], ignoring the circulation of resources and factors between cities, and
the impact of ETS on corporate emissions behavior will inevitably affect the policy effect
through the cross-regional economic connections, which forms the spatial externality of
policy effects. It means that the application of panel data model estimation results may
lead to model setting bias. This study applies the SDID-SDM approach to estimate the
policy effect to avoid this model setting bias which may truly reflect the GTFP promotion
effect of the ETS.

Secondly, this study enriches the empirical test of the effectiveness of the ETS in
emerging-market countries and developing countries. Previous studies tend to focus on the
evaluation of environmental policy effects in developed countries such as in Europe and the
United States [15,21], and they easily ignored the effects of environmental policies in coun-
tries with poor economic and social development. On the one hand, underdeveloped areas
themselves lack the motivation for active market-oriented environmental regulation. On
the other hand, it is also related to the reality that underdeveloped regions will undertake
the transfer of polluting industries due to the global industrial layout. Developed countries
in Europe and the United States have a relatively developed market and economic system
and are equipped to effectively implement market-oriented environmental policies. It is
worthy of thorough analysis and research on whether emerging-market countries that
are under market-oriented construction and developing countries with relatively under-
developed economic and social development can effectively take market-oriented policy
tools to achieve green and sustainable development. Our research results show that even
in emerging-market countries and developing countries, market-oriented environmental
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policy, such as the ETS, can still exert policy effects and bring positive spatial economic
effects on GTFP.

Finally, based on the benchmark model, this research further examines the impact
mechanism of the ETS on urban GTFP through mechanism analysis and enriches the spatial
dimension of the existing ETS mechanism analysis.

The study is organized as follows: Section 2 summarizes the relevant literature and
policy implementation background of China’s ETS. Section 3 introduces the empirical
research design based on the SDID-SDM. Section 4 reports the estimation results of the
benchmark model. Section 5 analyzes the influence mechanism of the policy effect, and
Section 6 examines the heterogeneity of the policy effect. Section 7 details the different
robustness tests carried out, and the last section gave the main conclusions and policy
recommendations of this study on the impact of China’s ETS on GTFP.

2. Literature
2.1. Green Innovation Effect of ETS

In 1990, Article 4 of the US “Clean Air Act” amendment proposed the “Acid Rain
Plan”, which was approved by Congress to use SO2 emission allowance trading as a
means of emission reduction. It was an early and successful environmental policy tool to
achieve reductions through market-based emissions allowance trading [22,23]. Pollutant
emission trading refers to the use of emission quota trading to reduce the emissions of
major pollutants and reduce the negative impact on the environment. It aims to use market
competition and price mechanisms to guide producers to emission reduction behaviors and
to achieve the goal of total pollutant control. At the same time, it reduces the overall cost of
pollution control in society and realizes green technological innovation. In terms of existing
research on the policy effects of the emission trading system, scholars have focused on the
following aspects: one is emission reduction effect, which is the core policy goal [24,25]; the
other is the economic growth effect, which is the policy economic development goal [26,27];
the third is the green innovation effect which is the efficiency goal, and few scholars have
conducted analysis and research on the relationship between the ETS and GTFP [28–30].
The first two aspects are the key research content of environmental economics in the
past decades, and the green innovation effect of environmental regulations has been the
research focus in recent years; of note, the research on the impact of GTFP is becoming an
academic hotspot. This study summarizes previous studies on the impact of the ETS on
green technology innovation and GTFP, and it shows that the academic community has not
reached a consensus on the green innovation effect of the ETS, and the existing research
conclusions mainly have three aspects, namely: promotion theory, Inhibition theory and
(U-shaped and inverted U-shaped relationship, etc.) nonlinear relationship theory.

First of all, many scholars support the promotion theory based on the classic “Porter
Hypothesis” [31,32], that is, environmental policies represented by the ETS have a positive
effect on green technology innovation and improves GTFP [33,34]. Zhang L et al. (2019)
based on the empirical analysis of the regulatory data of listed companies in seven pilot
provinces and cities showed that China(CN)-ETS is significantly positively correlated with
green innovation, while market competition has weakened this positive correlation [30].
However, some other scholars in the empirical research found that the classic “Porter
hypothesis” conclusion did not appear, and environmental policies brought more negative
externalities, that is, environmental policies represented by the ETS restrained the green
technological innovation and hindered the green technological innovation process of
enterprises [35,36]. In addition, some studies found that both the promotion theory and
the suppression theory are valid. They are just the results of different effects shown in
different stages of nonlinear policy effects. Therefore, the impact of environmental policies
represented by the ETS on GTFP is a process of non-linear change with both promotion
and suppression effects [20].

In summary, the research on the impact of ETS on GTFP is important, but the academic
community has not yet reached a consensus. Moreover, the sample areas for this type
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of research are mostly developed countries such as regions in Europe and the United
States, and they lack extensive attention to relatively underdeveloped economies such
as emerging-market countries and developing countries. However, it is precisely these
relatively underdeveloped economies that are facing more complex environmental is-
sues. In recent years, scholars have begun to pay attention to the treatment effects of
market-oriented environmental policy tools in emerging-market countries and developing
countries [37–39], such as Oliveira et al. (2019), who applied the Economic Projection and
Policy Analysis (EPPA6) model to assess ETS cooperation between Brazil and Europe. This
showed that a domestic ETS reduces emissions and promotes technological substitution
towards alternative energy for both participants [40]. Therefore, we use China’s ETS as
a research sample which is a typical representative of emerging-market countries and
developing countries, to examine the identification of the policy effects of the ETS. It will
help to investigate whether economies facing the dual pressure of economic growth and
sustainable development can adopt market-oriented environmental policy tools to a green
effect, and how the influence mechanism works on the green economy effect.

2.2. ETS in China

To reverse the extensive economic growth mode with high pollution, high energy
consumption, high emissions, and low efficiency and to quickly realize the sustainable
development of a green economy, the Chinese government has conducted a great deal of
environmental policy exploration, especially about the issue of pollutant emissions [41,42].
In 1987, the Minhang District of Shanghai launched a water pollutant discharge transaction.
In 1988, the former National Environmental Protection Agency approved 18 cities including
Shanghai, Beijing, Tianjin, Shenyang, Xuzhou, and Changzhou as pilot areas developing
water pollution discharge permits. In 2003, the former State Environmental Protection
Administration cooperated with the US Environmental Protection Association to carry out
training on total sulfur dioxide control and emissions trading across the country. In 2007, the
Ministry of Finance together with the former Ministry of Environmental Protection and the
National Development and Reform Commission successively approved 11 provinces (cities)
including Tianjin, Hebei, Shanxi, Inner Mongolia, Jiangsu, Zhejiang, Henan, Hubei, Hunan,
Chongqing and Shaanxi as national pilot units to carry out the pilot work of the ETS. In
2014, Qingdao City of Shandong Province was included in the pilot program (see Figure 1).
The emission trading training in cooperation with the U.S. Environmental Protection
Association makes China’s ETS design similar to that of the United States, including total
amount control, initial allocation, quota period, quota use, and penalties for violations,
while the specific content is subject to adaptive adjustments by the local government which
are significant regional differences, such as transaction methods (competitive transactions,
negotiated transactions, public auctions, quota transfers, etc.) and transaction price systems
(paid use prices, transaction benchmark prices, government repurchase prices).

Based on the statistical data officially released by China, the ETS in China has achieved
its policy results. The first is the effect of pollutant emission reduction. The “Second Na-
tional Pollution Source Census Bulletin” jointly issued by the three departments in 2020
(the census period is 2017) shows that compared with the data of the first national pollution
source census, the emissions of pollutants in 2017 such as the sulfur dioxide, chemical
oxygen demand, and nitrogen oxides decreased by 72%, 46%, and 34% respectively com-
pared with 2007. The second is the scale of emissions trading. As of August 2018, the
total amount of paid use fees for emission rights collected on the primary market was
11.77 billion yuan, and the cumulative transaction amount in the secondary market was
7.23 billion yuan. It shows that China’s pilot policy for emissions trading has achieved
goals in pollutant reduction and economic benefits, but official statistics have not disclosed
the green innovation effect of the pilot policy, so it is necessary to conduct a more in-depth
analysis to examine whether the pilot policy achieves the policy goal of improving GTFP
and to deeply explore the internal mechanism of the pilot policy affecting GTFP and the
heterogeneity of policy effects.
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3. Research Design
3.1. Samples and Data

In 2007, the Ministry of Finance, the former Ministry of Environmental Protection, and
the National Development and Reform Commission successively approved 11 provinces
(cities) including Tianjin, Hebei, Shanxi, Inner Mongolia, Jiangsu, Zhejiang, Henan, Hubei,
Hunan, Chongqing and Shaanxi as national pilot units to carry out the pilot work of the ETS.
In 2014, Qingdao City in Shandong Province was included in the pilot program. This study
uses 2003–2017 as sample period, deleting the cities adjusted by administrative divisions
during the sample period, and replacing them with newer administrative divisions, such as
Chaohu City in Anhui Province and Longnan City in Gansu Province, also deleting areas
with missing data such as Tibet et al. In addition, Hong Kong, Macao, and Taiwan, all with
different statistical calibers, were deleted. Finally, the panel data of 281 cities from 2003
to 2017 were selected as the research data set for empirical testing. Economic data at the
city level were deflated based on prices in 2003. The input-output data required for GTFP
calculations including undesired output and control variable data are all from the “China
Statistical Yearbook”, “China Regional Economic Statistical Yearbook”, and “China City
Statistical Yearbook”. The city patent authorization data comes from the China Research
Data Service Platform (CNRDS) database.

3.2. Variables
3.2.1. Dependent Variable—GTFP

The measurement of GTFP is mainly based on the malmquist-luenberger(ML) index
method of the slacks-based measure(SBM) directional distance function [43]. The input
factors include labor (employed population), capital (capital stock), and energy (industrial
electricity). The expected output is the actual GDP of the region after price deflation. The
undesired output is industrial smoke and dust emissions (tons), wastewater emissions,
sulfur dioxide emissions (tons), and PM 2.5.

3.2.2. Key Explanatory Variable—ETS Dummy

The key explanatory variable of this study is the multi-period combined dummy
variable of the ETS, which is composed of the pilot group dummy variable and the pilot
time group dummy variable. When a city belongs to the pilot group, the pilot group
dummy variable is 1; otherwise, it is 0. The pilot cities include 12 provinces (cities), which
are Tianjin, Hebei, Shanxi, Inner Mongolia, Jiangsu, Zhejiang, Henan, Hubei, Hunan,
Chongqing, Shaanxi, and Shandong Qingdao, that is, there are 109 cities in the treatment
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group, and the remaining 172 cities are the control group. In addition, since the approval
time of the above 109 pilot cities is not uniform and belongs to the multi-phase DID
situation, it is assumed that when city i is approved as a pilot in year t, the value of the city
will be 1 for each subsequent year (because the months of approval for the pilot project
are all at the end of the current year, so the second year of approval is used as the starting
point of the pilot. For example, Qingdao City in Shandong Province was approved as a
pilot in December 2014, so 2015 is the starting year of the Qingdao pilot.).

3.2.3. Control Variables

Based on existing literature [18,20], we controlled for a set of variables to capture the
influence factors of the GTFP. The control variables mainly include economic development
level (measured by per capita GDP), population size (measured by population density),
energy consumption scale (measured by industrial electricity consumption), industrial
structure (measured by industrial output value to GDP), and innovation level (measured
by the number of invention patents).

3.3. Empirical Model

We applied SDID-SDM to study the impact of ETS on GTFP. The SDID-SDM model is
setting as follows:

gt f pit = α0 + ρ(Ω′ ⊗W ′)itgt f pit + α1DIDit + γ1(Ω′ ⊗W ′)itDIDit + γ2(Ω′ ⊗W ′)itcontrolit + α2controlit + cityi + yeart + εit (1)

where the dependent variable gtfpit denotes the GTFP measured by SBM-ML in city i at
year t. the independent variable DIDit denotes the dummy variable of ETS, which equals 1
if the city i at year t is approved as the pilots; otherwise, it equals 0. controlit denotes
control variables. (Ω′ ⊗W ′)it denotes the space-time weight matrix, while Ω′ denotes the
temporal weight matrix, and W′ denotes the spatial weight matrix. α0 denotes the constant,
ρ denotes the coefficients of spatial lag of dependent variable, α1 denotes the coefficients
of the independent variable, α2 denotes the coefficients of control variables, γ1 denotes
the coefficients of spatial lag of independent variable, and γ2 denotes the coefficients of
spatial lag of control variable. cityi is urban fixed effects absorbing all unobserved city-
specific, time-invariant factors that may influence the dependent variable. yeart is the year
fixed effect to control for the general macroeconomic factors affecting all cities. εit is a
random error.

4. Empirical Analysis
4.1. Parallel Trend Test

The key identification hypothesis of the DID model is that non-pilot areas provide
effective counterfactual changes for the policy treatment effects of pilot areas [44,45], that
is, before the implementation of the ETS, urban GTFP maintained relatively stable changes,
while there is a significant difference between the treatment group and the control group
after the pilot implementation. To ensure the basic assumption is met, this study follows
the parallel trend test method of multi-period DID, and performed SDID-SDM regression
for the first three years and the last three years of the treatment period. The regression
results show that before the implementation of the emission trading system, there was no
systematic difference in the time trend between the pilot area and non-pilot area which
means it satisfies the parallel trend assumption. It should be noted that there is a certain
time lag effect in the emission trading system, as shown in Figure 2, three years after the
treatment time.
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4.2. Baseline Regression

As shown in Table 1, column (1) is the estimated result of the panel-DID model as a
comparison to investigate the average treatment effect when there is no spatial dimension,
and column (2) is the estimated result of Equation (1). The results show that after controlling
for city-fixed effects, year-fixed effects, and control variables, without considering spatial
effects, the ETS has a significant positive effect on GTFP in pilot cities. After considering
the spatial effects in this study, the ETS still significantly improves the GTFP of the pilot
cities, and the coefficient is significant at the 1% confidence level. In addition, the ETS
also drives the growth of GTFP in the surrounding areas of the pilot cities, and the spatial
lag coefficient is significant at the 5% confidence level. This finding is consistent with
existing relevant research conclusions and theoretical hypotheses [18,20,46], that is, after
the implementation of the ETS, the GTFP of the territorial cities and surrounding areas
increased significantly.

Table 1. Baseline regression results.

Model Panel-DID SDID-SDM

Variables (1) (2)

DID
0.491 *** 0.662 ***
(11.57) (2.93)

W × DID
2.190 **
(2.11)

Control Y Y
Year-fe Y Y
City-fe Y Y
Obs. 3934 3934
R2 0.440 0.472

Note: DID is short for difference-in-differences, SDID-SDM is short for spatial difference-in-differences Durbin
model. The parentheses are the t-values. *** and ** represent significant levels at 1% and 5%, respectively.

5. Mechanism Analysis

As discussed in Section 1, the ETS may affect GTFP changes through energy efficiency,
green innovation, and industrial structure. We empirically tested these potential impact
mechanisms respectively.
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5.1. Impact of Energy Efficiency

When faced with the policy pressure of the emission trading system, producers in pilot
cities often choose different emission strategies based on the relationship between emis-
sion quota expenditures and emission benefits and between emission reduction costs and
emission reduction benefits. When the emission quota expenditure is higher than the emis-
sion income, producers will adopt corresponding energy-saving and emission-reduction
measures under policy pressure, such as improving energy efficiency by reforming energy
technology and changing energy consumption structure [47]. The improvement of energy
efficiency can significantly improve the allocation efficiency of energy resources, thereby
realizing the improvement of GTFP. In addition, there are still some companies that cannot
cover costs even if they improve energy efficiency. These producers often choose green
technology innovation or relocation. Relocation will not only improve the overall energy
efficiency level of the original location but also relies on the energy efficiency advantages of
the original location relative to the new location to indirectly improve the energy efficiency
level of the new location, and then turns out a positive spatial spillover effect. We used
the ratio of industrial electricity consumption to regional GDP, that is, the level of energy
consumption per unit of GDP, to measure city-level energy efficiency and examine the
mechanism through the following model:

gt f pit = α0 + ρ(Ω′ ⊗W ′)itgt f pit + γ2(Ω′ ⊗W ′)itcontrolit + α2controlit + cityi + yeart + εit
+(α1DIDit + α3eeit + α4DIDit × eeit) + (Ω′ ⊗W ′)it(γ1DIDit + γ3eeit + γ4DIDit × eeit)

(2)

Table 2 column (1) gives the estimated results of Equation (2). It is shown that the
interaction coefficient of the emission trading pilot DID and energy efficiency is significantly
positive at the 5% level, and the spatial lag coefficient of the interaction term is significantly
positive at the 10% level, indicating that the emission trading system can improve the energy
efficiency of territorial cities, and it can also positively promote GTFP in the surrounding
areas of the pilot cities.

Table 2. Results of the impact mechanism analysis.

Model Energy Efficiency Green Innovation Industry Structure
Variables (1) (2) (3)

DID × ee
0.036 **
(2.21)

W × DID × ee
0.413 *
(1.65)

DID × gti 0.280 *
(1.83)

W × DID × gti 3.725 *
(1.91)

DID × str
−0.295 **
(−2.26)

W × DID × str
1.857 *
(1.75)

Control Y Y Y
Year-fe Y Y Y
City-fe Y Y Y
Obs. 3934 3934 3934
R2 0.356 0.359 0.355

Note: DID is short for difference-in-differences. The parentheses are the t-values. ** and * represent significant
levels at 5%, and 10%, respectively.

5.2. Impact of Green Innovation

The impact of the ETS on green technology innovation is mainly reflected in two
aspects. On the one hand, the classic Porter hypothesis, strict and flexible environmental
regulations can provide incentives for clean technology innovation ([48]). The ETS will
not only stimulate quota income companies to obtain higher quota sales profits through
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innovation but also stimulate emission companies that purchase quotas to reduce pollution
costs and increase profits through green innovation. These two ways work together to
enhance the overall green technological innovation of the city. On the other hand, for those
companies that are unwilling to innovate or have low innovation gains, they will relocate
the companies from the pressure area through relocation decisions, thereby improving the
green efficiency in the region, and the companies that move away will also increase the
technological efficiency of the new location. Therefore, it produces the spatial spillover
effect of green innovation, which we call the Porter spatial effect. We use the ratio of
the number of green patents to the total number of patent grants to measure the level
of green innovation at the city level and examine the above mechanism through the
following model:

gt f pit = α0 + ρ(Ω′ ⊗W ′)itgt f pit + γ2(Ω′ ⊗W ′)itcontrolit + α2controlit + cityi + yeart + εit
+(α1DIDit + α3gtiit + α4DIDit × gtiit) + (Ω′ ⊗W ′)it(γ1DIDit + γ3gtiit + γ4DIDit × gtiit)

(3)

Table 2 column (2) gives the estimated results of Equation (3). The interaction coeffi-
cient of the emission trading pilot DID and green innovation is significantly positive at the
10% level, and the spatial lag coefficient of the interaction term is significantly positive at
the 10% level, indicating that the emission trading system can improve the green innovation
of territorial cities, and it can also positively promote GTFP in the surrounding areas of the
pilot cities which verifies the Porter spatial effect of the ETS.

5.3. Impact of Industry Structure

The ETS can also affect the macro-industrial structure of cities [49] and affect GTFP
through industrial structure adjustments. In the pilot areas, due to severe environmental
protection policy pressures, operating costs of pollutant producers have significantly in-
creased, such as the cost of pollutant emission quotas, pollutant reduction cost, monitoring
and verification cost of pollutant emissions, etc., which directly or indirectly affect the
resource allocation decision of the enterprise which may gradually fade out of polluting
industries; this will reduce the proportion of the secondary industry [15,50]. In addition,
the total emission limit and the market-oriented quota trading mechanism will promote
the gradual transfer of pollution capital from the pollution industry to the clean industry
or other industries, promote the green innovation of the pollution industry, and further
accelerate the shrinkage of the traditional pollution industry. Therefore, the ETS can the-
oretically affect GTFP by affecting the adjustment of the industrial structure. We use the
proportion of the secondary industry to measure the city-level industrial structure, and the
estimation model is set as follows:

gt f pit = α0 + ρ(Ω′ ⊗W ′)itgt f pit + γ2(Ω′ ⊗W ′)itcontrolit + α2controlit + cityi + yeart + εit
+(α1DIDit + α3strit + α4DIDit × strit) + (Ω′ ⊗W ′)it(γ1DIDit + γ3strit + γ4DIDit × strit)

(4)

Table 2 column (3) gives the estimated results of Equation (4). The interaction coeffi-
cient between the DID and the industrial structure is significantly negative at the 5% level,
and the spatial lag coefficient of the interaction term is significantly positive at the 10% level,
indicating that ETS can increase urban GTFP by reducing the proportion of the secondary
industry in pilot cities, and it can also increase the GTFP in the surrounding areas by
increasing the proportion of the secondary industry in the surrounding cities to produce a
positive spatial spillover effect.

6. Heterogeneity Analysis

The effective implementation of market-based environmental governance policies
depends on the pilot areas with a high level of marketization. When the pilot areas have
a low level of marketization, a market-based environmental policy, such as ETS, will be
greatly restricted and then unable to handle the internalization of pollution emissions cost,
and the quota revenue cannot cover the cost of reduction well, which makes the policy
effect greatly discounted [18]. Therefore, the treatment effect of the ETS will show spatial
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heterogeneity due to the different degrees of regional marketization. Secondly, the effective
implementation of market-oriented environmental policies is also closely related to the
implementation of regional environmental enforcement [51,52]. Strong environmental
enforcement by local governments will improve environmental governance efficiency. As
known, the environmental enforcement of environmental policies in developing countries
and some emerging-market countries is weak, and previous studies have shown that the
effectiveness of environmental policy is greatly reduced in areas where environmental
enforcement is low (poor supervision). Regulatory power rent seeking is an important cause
of environmental economic corruption that leads to weak environmental enforcement [53].
In addition, the region’s energy consumption endowment (mainly the proportion of coal
consumption) is also an important source of the spatial heterogeneity of environmental
policy effects [54].

According to the research of Li R, Ramanathan R (2018, [55]), Hou B et al. (2020, [18]),
we adopt the provincial marketization data disclosed by Fan Gang et al. (2011, [56]),
according to the median of the total marketization index divides the sample cities into
two groups, namely, regions with a higher degree of marketization and regions with a
lower degree of marketization. Secondly, different from Hou B et al. (2020, [18]), this study
used the ratio of the number of environmental administrative punishment cases to the
total energy consumption in the provincial environmental law enforcement data disclosed
in the “China Environmental Statistics Yearbook” to measure the intensity of regional
environmental enforcement. This measurement can avoid differences in environmental
enforcement caused by differences in energy consumption between provinces. Cities are
also grouped according to the median of the number of cases and divided into two groups:
strong law enforcement and weak law enforcement. Similarly, we used provincial energy
structure data to measure urban energy consumption endowment, which is measured by
the proportion of provincial coal consumption in energy consumption based on the data
from the “China Energy Statistics Yearbook”, to group it by the median, and classify it into
high coal consumption group and low coal consumption group. It should be noted that the
above three data sources are all province-level data. It is reasonable to use province-level
data to assign value to cities for which spatial heterogeneity of China’s environmental
enforcement and marketization is mainly driven by provincial differences because differ-
ences in culture, economic development, and energy consumption endowments within the
province are generally significantly smaller than inter-provincial differences. The group-
ings in the heterogeneity analysis all adopted the data before the pilot period which may
somehow avoid possible selectivity deviations, and in this study, we adopted the data
from 2007.

Table 3 shows the estimated results of the heterogeneity analysis of policy effects.
Columns (1)–(2) are the estimated results of different marketization levels. Coefficients in
column (1) are significant, and column (2) is not significant, indicating that the average
treatment effect of the pilot policies in regions with a high degree of marketization on
GTFP is still significant, and the ETS in regions with a low degree of marketization have no
significant impact on GTFP. Secondly, the coefficients of the DID and W*DID in column (1)
are higher than those of column (2), indicating that the pilot program in regions with a
higher degree of marketization performs better. This heterogeneous result is relatively
easy to understand. The ETS is a typical market-oriented environmental policy, and the
degree of marketization of the pilot city will directly affect the effectiveness of the pilot
policy on market. The higher the marketization, the clearer the pilot policy signals will
be communicated, and the easier it will be to influence enterprises’ pollution discharge
decisions, green innovation decisions, and relocation decisions through policy pressures,
resulting in better effects on GTFP.
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Table 3. Heterogeneity analysis results.

Model
Marketization Level Environmental Enforcement Energy Consumption

Endowment

(1) (2) (3) (4) (5) (6)
Variables High Low Strong Weak Heavy Light

DID 0.758 *** 0.014 0.680 0.433 **
(2.29)

0.611 *** 11.394 ***
(3.08) (0.03) (1.06) (2.74) (5.25)

W × DID 3.189 *** 2.496 −6.246 *** 6.064 *
(1.958)

2.732 ** −6.434 ***
(3.76) (1.20) (−2.77) (2.24) (−2.59)

Control Y Y Y Y Y Y
Year-fe Y Y Y Y Y Y
City-fe Y Y Y Y Y Y
Obs. 2268 1666 2240 1694 2450 1484
R2 0.434 0.501 0.486 0.519 0.412 0.536

Note: DID is short for difference-in-differences. The parentheses are the t-values. ***, ** and * represent significant levels at 1%, 5%, and
10%, respectively.

Columns (3)–(4) are the estimated results of different environmental enforcement. The
coefficient of the DID in column (3) is not significant, the coefficient of the W × DID is
significant, and the estimation results in column (4) are significant. It shows that the ETS
in different environmental enforcement groups still significantly affects GTFP, and there
are differences between groups in treatment effects. It shows that the average treatment
effect of the regional pilot policies with strong environmental enforcement on GTFP is
mainly achieved through negative spatial externalities, while the impact of the regional
pilot policies with weak enforcement on GTFP is consistent with the benchmark model.
Secondly, the coefficient of the W × DID in column (3) is negative, which may indicate that
areas with strong environmental law enforcement will increase the burden of environmental
PR costs for companies in the pilot city. Compared with areas with weak law enforcement,
more companies will consider relocation decisions, and these relocation companies only
relocate due to the strong environmental enforcement rather than the pressure from ETS,
which makes the new location have a green productivity advantage over the old location.
Therefore, this relocation decision will increase the GTFP of the old location while reducing
that of the new location. The objective reason is that excessively strict environmental
enforcement has distorted the market-oriented allocation process of the ETS.

Columns (5)–(6) are the estimation results of different energy consumption endow-
ments. The coefficients of columns (5)–(6) are all significant. The coefficient of DID in
column (5) is significantly lower than column (6), the W*DID coefficient in column (5)
is positive, and the W*DID coefficient in column (6) is negative, which means there are
significant differences between the group. The DID coefficient in column (5) is signifi-
cantly lower than that in column (6). It indicates that the effect of the ETS in areas with
a higher proportion of coal consumption is significantly lower than that in areas with a
lower proportion of coal consumption, which means that pilot cities in regions with the
lower coal consumption are more inclined to use clean technologies (non-fossil energy)
for production, so producers’ emission reduction decisions are more inclined to improve
energy efficiency, carry out green innovation activities, etc., which then more significantly
improve productivity. Moreover, these tendencies to clean technology indicate that pilot
cities in regions with a low proportion of coal consumption have higher innovation gains.
It will attract companies with higher green productivity in surrounding cities to move to
pilot cities, which will cause negative spatial externality, so the coefficient of the W*DID
in column (6) is negative. The effects of pilot policies in areas with a higher proportion of
coal consumption are different. Producers in high coal consumption areas tend to make
emission reduction decisions in improving energy efficiency while purchasing emissions
quota. The green innovation income of these producers is relatively weaker than the first
two, and the effect is consistent with the benchmark model, that is, it positively promotes
GTFP in territorial cities and has a positive spatial spillover effect on surrounding cities.
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Above all, we believe that the treatment effect of the ETS on GTFP shows significant
heterogeneous characteristics under different marketization levels, environmental enforce-
ment efforts, and energy consumption endowments, and the promoting effects perform
better in regions with high marketization, strong environmental enforcement, and low
coal consumption.

7. Robustness Test
7.1. Placebo Test

To further eliminate the influence of other unknown factors on the selection of pilot
cities, this study conducted 999 samplings in all 281 cities and randomly selected 108 cities
as the virtual treatment group for each sampling (the original number of treatment groups
was 108), and the remaining 173 cities were used as a randomized control group. We
estimated the placebo test by adopting the SDID-SDM approach, and the results are as
shown in Figure 3. Figure 3a,b are, respectively, the distribution diagrams of the coefficients
of DID and WDID in the random sampling estimation results. It can be found that the
t value of most sampling estimation coefficients changes within a small range, and the
significance fails (that is, the pass rate is still low even under the 10% confidence level),
indicating that the ETS did not show a significant treatment effect in the random sampling
simulation. It can be considered that the conclusion of the treatment effect identified by the
benchmark model estimation passed the placebo test.
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7.2. PSM-SDID

Although the ETS has a significant promotion and positive spatial spillover effect on
GTFP, the result may be caused by potential selectivity bias [49]. Therefore, we used the
propensity score matching (PSM) method to solve the problem of selective bias that may
exist in the grouping by identifying and matching to form a new treatment group and
control group and then continued to use the SDID-SDM model to identify and evaluate
the treatment effect. The results of the estimation of the PSM-SDID method are shown
in Table 4 (1). This study found that the ETS still significantly improves the GTFP of the
territorial cities and has a positive spatial spillover effect on the GTFP of the surrounding
cities, indicating that the research conclusions of the benchmark model are robust.



Int. J. Environ. Res. Public Health 2021, 18, 9040 14 of 18

Table 4. Estimation results in PSM-SDID and effect with Carbon ETS.

Model PSM-SDID Carbon ETS
Variables (1) (2)

DID
0.640 ***

(2.84)

W × DID
3.110 **
(2.56)

DDD
0.195 *
(1.87)

W × DDD
43.441 ***

(6.63)
Control Y Y
Year-fe Y Y
City-fe Y Y
Obs. 3201 3934
R2 0.150 0.271

Note: DID is short for difference-in-differences, PSM-SDID is short for propensity score matching spatial difference-
in-differences, ETS is short for emissions trading system, DDD is short for difference-in- difference-in-difference.
The parentheses are the t-values. ***, ** and * represent significant levels at 1%, 5%, and 10%, respectively.

7.3. Carbon ETS

Many existing policy studies on the carbon ETS have used the ETS as a confusing factor.
These studies control the possible confusion caused by the ETS by constructing dummy
variables of the ETS [18]. Therefore, in contrast to these studies, this study constructed
a combined dummy variable for the carbon ETS, that is, during the treatment period,
the value of the dummy variable of carbon emission trading pilot is 1but otherwise 0.
Then we bought it into the benchmark SDID-SDM model, and adopted the difference-in
difference-in-differences(DDD) method to identify and estimate the model. The results
are shown in column (2) of Table 4. After controlling the confusing effects of the carbon
ETS, the ETS still significantly increases the GTFP of the territorial cities and has a positive
spatial spillover effect on the GTFP of the surrounding cities, indicating that the results of
the policy effects are robust.

8. Discussion and Conclusions
8.1. Discussion

To accelerate the transition from extensive economic growth to green and high-quality
development, the Chinese government has carried out more environmental policy explo-
rations. Among them, the market-oriented environmental policy tool ETS has achieved
remarkable green economic benefits. Adopting the SDID-SDM model with multidimen-
sional FE, we examined the spatial policy impact of ETS on urban GTFP.

Benchmark regression results showed that, after controlling for individual fixed effects,
time fixed effects, and the influence of control variables, the ETS policy implemented by
China has effectively increased the GTFP of territorial cities, which is consistent with the
existing research conclusions [18,20]. In addition, as mentioned above, the effect of ETS
policy will accompany the commodity trade between cities and the circulation of resource
elements to produce spatial correlation, which is ignored or less mentioned in previous
studies [20,30]. Ignoring the impact of inter-city spatial interactions on policy effects will
bias the identification results of ETS policy effects. In this regard, we effectively identified
the spatial effects of ETS policies by applying the SDID-SDM model.

Subsequently, we also discussed in detail how ETS influences urban GTFP through
energy efficiency, green technology innovation, and industrial structure and the identifi-
cation of spatial effects under the corresponding mechanism. This verifies the important
role of urban spatial connections in energy efficiency improvement, green innovation,
and industrial structure adjustment [57]. The possible explanation behind this is that we
believe it is related to the location decision making of pollutant companies. The research on
heterogeneous enterprise location selection theory shows that enterprise location selection
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will directly or indirectly affect regional efficiency, regional innovation, regional industrial
structure, and regional spatial structure [58], and the policy pressure of ETS will drive some
pollutant companies to relocate. The spatial redistribution process of a large number of
pollutant companies will promote ETS policy effects to show more spatial effects through
macro-level energy efficiency, green technology innovation, and industrial structure.

In addition, the heterogeneity analysis results show that the level of marketization,
environmental law enforcement, and regional energy consumption endowments are im-
portant sources of heterogeneity in the effectiveness of ETS policies. Firstly, a higher level
of market-oriented reform will bring about a more obvious effect of improving territorial
GTFP and the spatial spillover effect of surrounding GTFP. The policy effect of lower
regions is not significant. This result on the one hand confirms that China’s market reform
has achieved certain results and refutes the doubts of some foreign scholars [20,59]. It also
shows the spatial heterogeneity of China’s market-oriented reforms. In the future, China
needs to continue to explore market-oriented reforms in areas with low levels of marketiza-
tion and further guide the market to play an important role in the allocation of resource
elements. At the same time, it also means that China should extend the successful experi-
ence of emissions trading pilots to more regions; expand other possible market-oriented
environmental policy tools, including intertemporal emissions rights, cross-regional trade,
and green financial instrument design, etc.; accelerate the improvement of the regional
green policy system; actively integrate into the international environmental governance
system; learn from the advanced environmental governance experience of developed
countries; and enhance the right to speak in international environmental governance.

Secondly, areas with strong environmental law enforcement have a negative siphon
effect, and areas with low environmental enforcement have a positive spillover. This result
confirms that the difference in supervision will have opposite spatial effects. When the
supervision is strong, the companies that choose to actively respond to the strategy of
polluting companies will benefit more, which will form a trend of gathering in regions with
strong supervision, and those pollutant companies that respond negatively will spread to
the surrounding area and then cause a negative siphon effect. On the contrary, in regions
with loose supervision, the profits of pollutant companies that adopt active strategies have
dropped significantly. More companies choose to purchase pollutant emission rights for
negative response strategies such as pollutant emission. In turn, innovative enterprises
move abroad, and there is a positive spatial spillover effect. In this regard, we propose the
following suggestions: one is to strengthen the supervision of local government environ-
mental law enforcement departments [60], take a zero tolerance stance for environmental
corruption, increase the rent-seeking cost of local government officials’ environmental
supervision powers and avoid the harmful impact of environmental economic corruption
on the burden of enterprises; the other is to increase the transparency of the environmental
law enforcement process, make the law enforcement process open and transparent, and
disclose information on law enforcement documents.

Finally, the heterogeneity brought about by the endowment of urban energy con-
sumption shows that coal consumption has a certain path dependence. To break this
path, we must start with the energy consumption structure, use compulsory or semi-
compulsory policy tools to guide areas with a high proportion of coal consumption to carry
out energy efficiency improvement and green innovation activities and guide the use of
clean technology.

8.2. Conclusions

In general, our research provides empirical support for the significant spatial effects
of ETS’s impact on urban GTFP and shows that the spatial correlation between cities has
significant spatial effects in terms of policy effect, influence mechanism, heterogeneity, etc.,
which makes up for the neglect of the existing ETS policy effect identification research on
the spatial dimension. In addition, the identification method of this study can be used as a
scientific reference for conducting similar research in other emerging countries.
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Although this research provided some valuable findings and enlightenment for the
government’s decision making and research in the field of emission reduction and green
growth, it inevitably has certain limitations. First of all, our research only takes China’s ETS
as a case. No cases of other emerging-market countries were introduced, and there is a lack
of more extensive identification verification. Secondly, there is a lack of finer-grained analy-
sis on the heterogeneity of policy spatial effects. For example, the introduction of spatial
measurement technologies such as multiscale geographically weighted regression(MGWR)
and geographical and temporal weighted regression (GTWR) allows finer-grained space
correlation effects, which will provide help for the precise identification of policy effects.
Finally, we did not conduct a more in-depth analysis of areas with weak environmental
law enforcement and did not examine in detail the possible role and influence mechanism
of corruption in the heterogeneity of spatial effects.
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