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Abstract: Land use regression (LUR) models are used for high-resolution air pollution assessment.
These models use independent parameters based on an assumption that these parameters are ac-
curate and invariable; however, they are observational parameters derived from measurements
or modeling. Therefore, the parameters are commonly inaccurate, with nonstationary effects and
variable characteristics. In this study, we propose a geographically weighted total least squares
regression (GWTLSR) to model air pollution under various traffic, land use, and meteorological
parameters. To improve performance, the proposed model considers the dependent and independent
variables as observational parameters. The GWTLSR applies weighted total least squares in order to
take into account the variable characteristics and inaccuracies of observational parameters. More-
over, the proposed model considers the nonstationary effects of parameters through geographically
weighted regression (GWR). We examine the proposed model’s capabilities for predicting daily PM2.5

concentration in Isfahan, Iran. Isfahan is a city with severe air pollution that suffers from insufficient
data for modeling air pollution with conventional LUR techniques. The advantages of the model
features, including consideration of the variable characteristics and inaccuracies of predictors, are
precisely evaluated by comparing the GWTLSR model with ordinary least squares (OLS) and GWR
models. The R2 values estimated by the GWTLSR model during the spring and autumn are 0.84
and 0.91, respectively. The corresponding average R2 values estimated by the OLS model during the
spring and autumn are 0.74 and 0.69, respectively, and the R2 values estimated by the GWR model
are 0.76 and 0.70, respectively. The results demonstrate that the proposed functional model efficiently
described the physical nature of the relationships among air pollutants and independent variables.

Keywords: land use regression; PM2.5; weighted total least squares; geographically weighted regres-
sion; ordinary least squares

1. Introduction

Urban population growth and industrial development have led to several adverse
environmental impacts, including land use change and widespread land degradation [1,2].
These changes contribute to high pollutant concentrations and increased air pollution.
Long-term exposure to pollution sources poses the highest risk to human health. Studies
have investigated long-term pollution exposure, which can increase mortality rate even
if other risk factors, such as smoking, are controlled [3,4]. According to the World Health
Organization (WHO), 4% of global mortality can be attributed to air pollution [5]. Due to
economic reasons, Asian countries are experiencing greater air pollution levels and higher
mortality rates [6,7]. The WHO reported that approximately 4.2 million deaths were due to
air pollution in 2016. Every year, worldwide, air pollution is estimated to cause about 16%
of mortalities due to lung cancer, 17% due to heart disease, 25% due to brain stroke, and
26% due to respiratory diseases [8–11].
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Due to their minute dimensions, PM2.5 particles can penetrate into various body
tissues and cause high pathogenicity [12–14]. Urban traffic is the most significant con-
tributor to increased PM2.5 pollution [15–17]; industries are another significant source of
the increase in PM2.5 concentration. Therefore, populations in highly dense industrial
cities are more vulnerable to air pollution-related diseases. For this reason, in such areas,
high-resolution estimation of air pollution concentration has become an important issue.

Previous studies have used air pollution monitoring stations to determine levels
of exposure. However, considering the variation in pollution concentrations in cities
and the costs associated with a large number of monitoring stations, such methods are
inefficient at an urban scale [18–20]. Alternatively, another group of studies employed
portable monitoring devices to explore spatial variations in air pollution; however, these
devices pose several limitations when used in large regions [21–23]. Due to the difficulties
associated with direct measurements of pollutant concentrations, several methods, such
as interpolation, dispersion, and LUR have been developed to generate high-resolution
data [24–27]. LUR is a spatial modeling method introduced by Briggs et al. [24]. LUR-based
methods entail lower computational costs and have broader applications as compared with
dispersion models. Furthermore, they produce small-scale pollutant variations, and thus
outperform the interpolation methods for estimating pollution concentration [28].

Models have been developed following the LUR method by considering the pollutant
concentration at monitoring stations as the dependent variable and using independent
variables such as traffic, land use, and meteorological parameters with the strongest
correlations with pollutant concentration [24,29–32]. Among the various techniques for
LUR-based air pollution modeling, there are nonlinear methods with different time scales
(daily, monthly, or annual) that use a weighted support vector regression. Such methods
consider the relationships among the dependent variable and the independent variables to
be constant.

If spatial heterogeneity is present in the observations, an OLS regression yields inaccu-
rate regression coefficients. As a result, studies have considered GWR and mixed-effect
models to address this issue [33–36]. These methods consider the spatial heterogeneity in
the observational data and apply a weight matrix to develop the model and to determine
the coefficients. The weight matrix is based on the distances between the observation points
and monitoring stations. In areas with spatial heterogeneity, the GWR method reveals
more details than the OLS method, since the GWR model considers spatial variations at
every location, thereby producing more reliable results. However, both of the GWR and
OLS models consider the independent variables as accurate and invariable parameters [37].

Solving a regression problem starts by determining a functional model for evaluating
the issue. Physical phenomena are described by various functional models specified by
dependent and independent variables and their relationships [38]. The primary point
when solving a LUR problem is the method used for calculating the functional model
coefficients. Most studies have used standard linear regression techniques to develop
models for estimating air pollution concentration. The least squares method is commonly
used to determine linear regression models’ coefficients by minimizing the root squared
error. The coefficient calculation in regression models is performed to improve the accuracy
of estimation and modeling of dependent variables. Air pollution modeling commonly
considers independent variables such as traffic, meteorological parameters, and land use,
all of which are determined by measurement or modeling. Although measurement and
modeling inaccuracies and variabilities associated with independent variables have an
adverse effect on the estimation accuracy, land use regression models do not take into
account the impact of measurement or modeling errors on the independent variables.

In this study, we propose an integrated GWR and a weighted total least squares
(WTLS) regression model to improve the existing relations and modeling accuracy. The
WTLS method can take into account observational inaccuracies in LUR models. The
proposed GWTLSR model introduces random errors into both the design matrix and the
observation vector. Hence, the measurement inaccuracies are taken into account when
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calculating the independent variables. Furthermore, the method’s accuracy and reliability
are improved by considering the spatial heterogeneity through GWR. To evaluate the
GWTLSR method’s efficiency, a nonlinear weighted LUR model is developed to model the
nonlinear relationships among the independent variables, including traffic, meteorological
parameters, and land use, and the dependent variable PM2.5 for Isfahan, Iran.

2. Methods and Data

This section starts with an introduction to OLS regression. Next, the development
of the OLS-based GWR is described. The capabilities of the WTLS method for estimating
regression coefficients are subsequently discussed. Then, it presents how GWR and WTLS
are integrated to develop an accurate and reliable model to describe the nonlinear relation-
ship among the independent variables, including traffic, meteorological parameters, and
land use on the one hand and PM2.5 concentration on the other hand.

2.1. Ordinary Least Squares Regression

The ordinary least squares method is a statistical technique for estimating the un-
known parameters of a linear regression model. OLS minimizes an objective function ∅
representing the sum of squares of the differences between the observed values and the
values obtained from the data-fitted model [39]. The objective function to be minimized in
the OLS regression is as follows:

∅ = eT
yQ−1

y ey (1)

where ey is the error matrix of the observation vector y, if the dimensions of the observation
vector are m × 1, then, the dimensions of ey will also be m × 1 and Qy is the m × m
covariance matrix of observations (observations weight matrix). In the OLS model, an
equal weight of 1 is assigned to all the observations. Therefore, the covariance matrix in this
model is an identity matrix that can be ignored. This model considers that the independent
variables are invariable and error-free observations and uses a simple functional model
(Equation (2)). The unknown coefficients are calculated based on the method of least
squares according to Equation (3) as follows:

y = Ax + ey (2)

x̂ =
(

ATA
)−1

ATy (3)

In Equation (3), A is the m× n design matrix and x is the n× 1 vector of unknowns.

2.2. Geographically Weighted Regression

On the basis of the theory of OLS, the GWR method was developed by Fotheringham
et al. (2003) to consider spatial heterogeneity. The GWR model is the same as a modified
moving windows model. The difference is that the points within the windows of interest
are weighted differently, i.e., proportional to the target points [39,40]. In other words, the
GWR model provides a local estimation rather than a global estimation of the parame-
ters. Therefore, GWR is one of the best modeling techniques for spatially heterogeneous
phenomena. Its general form can be expressed as follows [35,40]:

yi = x0(ui.vi) +
m

∑
k=1

xk(ui.vi)aik + εi (4)

where (ui.vi) represent the coordinates of the ith sample in the study space; x0(ui.vi) is
the intercept of the linear data-fitted model at location i; x1(ui.vi) to xk(ui.vi) are the local
regression coefficients of the 1st to the kth independent variables at location I; yi represents
the dependent variable at location i; and aik is kth independent variable at location i [40].
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Since samples (observations) usually outnumber unknowns, the unknown coefficients
should be estimated using the least squares method, which is given by:

x̂(ui.vi) =
(

ATW(ui.vi)A
)−1
∗ATW(ui.vi)y (5)

where W(ui.vi) is an n × n diagonal matrix whose main diagonal entries represent the
weights of the GWR model kernel at location i [40,41]. In this study, a fixed Gaussian-based
kernel was used (Equation (6)) as follows:

Wk(ui.vi) = exp

(
−
(
ds

k(ui.vi)
)2

b2

)
(6)

where Wi is the geographical weight of the kth observation at location i, b is bandwidth,
and d is the distance between the location of the kth observation and the location of i.

2.3. GWTLSR

The regression coefficients in both of the GWR and OLS models are calculated by
minimizing the sum of squared errors. These models use the standard least squares method.
These models only consider errors in the observation vector, and the design matrix (A)
is assumed to be accurate and error free. In air pollution modeling, PM2.5 concentration
and also the values of independent variables are obtained by measurement or modeling.
Hence, there are errors-in-variables (EIV). The ordinary least squares method does not yield
accurate solutions for such problems. Weighted total least squares can be used to solve the
previously mentioned problem, introduced by Markovsky et al. in 2006 [42]. Due to the
widespread use of least squares methods in various scientific fields, different formulations
have been proposed for the WTLS method. In this study, an OLS-based formulation for the
total least squares [43] was applied to develop the land use regression model.

Contrary to OLS, the WTLS model considers errors in the design matrix and the
observation vector. Therefore, the total least squares method can improve modeling
accuracy if random errors influence the coefficient matrix. In air pollution modeling, the
design matrix entries are the independent variables that include modeled traffic variables,
land use parameters derived from aerial images and field surveys, and meteorological
parameters measured at synoptic stations. Each of these parameters has an independent
measurement accuracy. As a result, WTLS enables taking the independent variables’
inaccuracies into account along with the dependent variable’s inaccuracies and can be used
more efficiently to determine the model coefficients.

Similar to OLS, the total least squares method minimizes the sum of squared differ-
ences between observational values and the data-fitted model’s values. The difference is
that it must also simultaneously minimize design matrix errors along with minimizing
the observation vector errors. To solve the WTLS problem, this study used Lagrange
multipliers to minimize the objective function ∅ given by the following:

∅ = eT
yQ−1

y ey + eT
AQ−1

A eA + 2λT
(

y−Ax− ey +
(

xT ⊗ lm

)
eA

)
(7)

where lm is an m×m identity matrix, λ represents the m× 1 vector of Lagrange multipliers,
eA is an mn× 1 vector of design matrix errors, and x indicates the n× 1 vector of unknown.

Taking the first derivative of Equation (7) with respect to each of the main values, one
obtains the following four equations:

1
2

∂∅
∂eT

y
= Q−1

y ẽy − λ̂ = 0 (8)

1
2

∂∅
∂eT

A
= Q−1

A ẽA + (x̂T ⊗ lm)λ̂ = 0 (9)
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1
2

∂∅
∂λT = y−Ax̂− ẽy + (x̂T lm)ẽA = 0 (10)

1
2

∂∅
∂xT = −(ATλ̂− Ẽ

T
Aλ̂) = 0 (11)

By simultaneously solving the set of Equations (8)–(11), the λ̂, ẽA, Qỹ, and x̂ values
are obtained as follows:

λ̂ =
(

Qy + (x̂T ⊗ lm)QA(x̂⊗ lm)
)−1

(y−Ax̂) (12)

ẽA = vecẼA = −QA(x̂
T ⊗ lm)λ̂ (13)

Qỹ = Qy + (x̂T ⊗ Im)QA(x̂⊗ Im) (14)

x̂ = ((A− ẼA)
T

Q−1
ỹ (A− ẼA))

−1
(A− ẼA)

T
Q−1

ỹ (y− ẼAx) (15)

The vec operator in Equation (13) reshapes the mn vector to an m × n matrix. The rela-
tions for total least squares and ordinary least squares are similar in form, as indicated by
Equation (15). In Equation (15), Ã = A − ẼA is the design matrix,
Qỹ = Qy + (x̂T ⊗ lm)QA(x̂⊗ lm) represents the covariance matrix, and ỹ = y − ẼAx
is the observation vector. Here, the aim is to calculate x̂ to determine the modeling coeffi-
cients. Considering the general forms of these equations, the equation can be solved using
an iterative mechanism and determining the unknowns’ initial values by employing OLS.

A hybrid method that consolidates WTLS and GWR is proposed to consider spatial
heterogeneity, variable characteristics, and inaccuracies in air pollution modeling variables.
This model applies WTLS to determine the GWR coefficients. The general formula used in
the model has the following form:

y = (A− EA)x + ey (16)

where y is the observation matrix consisting of the dependent variables, A is the design
matrix carrying the values of the independent variables as well as a column of coefficient
1 representing the intercept of the model, x represents the coefficient values of the inde-
pendent variable, and EA is the random errors of the design matrix A, which is defined
as follows:

A =

 a11 · · · a1k 1
...

. . .
...

...
am1 · · · amk 1

 (17)

where aik is the value of the kth independent variable in location i.

y =

 y1
...

ym

 (18)

where yi is the value of the dependent variable in location i.

x =


x1(ui.vi)
x2(ui.vi)

...
xk(ui.v)
x0(ui.vi)

 (19)

where xk(ui.vi) is the coefficient of the kth variable and x0(ui.vi) is the intercept, located
at (ui.vi).

EA = −vec−1
(

QA(x̂⊗ Im)Q−1
y ê
)

, ê = y−Ax (20)
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where the operator, vec−1, converts an mn × 1 vector to an m × n matrix; Q−1
y is the

matrix of the measured weights in the GWR model; and QA is the weight matrix of the
independent variables. QA and Qy are defined as follows:

QA =



δ2
a11

0 0 0 · · · 0

0
. . . 0 0 · · · 0

0 0 δ2
amk

0 · · · 0
0 0 0 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 0


(21)

Qy = W−1 =

 W1(ui.vi) 0 0

0
. . . 0

0 · · · Wm(ui.vi)


−1

(22)

where δ2
aik

represents the measurement accuracy (variances) associated with the kth in-
dependent variable in the ith sample, and the values Wm(ui.vi) in Equation (22) are the
measured weights in GWR based on the neighboring distance.

Once the covariance matrices are determined, Equation (15) and total least squares are
used to calculate the model coefficients following an iterative process (Figure 1).
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2.4. Comparison of Regression Models

The Akaike information criterion (AICc) coefficient, the coefficient of determination,
the root mean squared error (RMSE), and the mean absolute error (MAE) were employed
to assess the regression models’ performance. AICc is calculated as follows:

AICc(b) = 2nln(σ̂) + nln(2π) + n
{

n + tr(S)
n− 2− tr(S)

}
(23)

where n, b, and σ̂ are the sample size, bandwidth, and standard deviation of the model,
respectively. Each row of the matrix S that contains independent variables is determined
according to Equation (24) [44]:

ri = A(i, :)
(

ATWiA
)−1

ATWi (24)

R2 = 1− ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − y)2 (25)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (26)

MAE =
∑n

i=1|yi − ŷi|
n

(27)

In Equations (25)–(27), n is the sample size, yi is i-th station observed to be dependent
variable, y is the mean values of the independent variable, and ŷi is the estimated value of
the dependent variable.

Moreover, two statistical metrics, the probability of false alarm (POF) and the probabil-
ity of detection (POD) [45,46], were applied to evaluate the regression model’s performance
for estimating PM2.5 concentration.

POD =
a

a + b
(28)

POF =
c

a + c
(29)

where a is the number of events in which both observed and estimated PM2.5 concentrations
are higher than the 90th percentile (successful predictions); b is the number of events in
which the estimated PM2.5 concentration is lower than the 90th percentile, whereas the
observed PM2.5 concentration is higher than the 90th percentile (unsuccessful predictions);
c is the number of events in which the estimated PM2.5 concentration is higher than the
90th percentile, whereas the observed PM2.5 concentration is lower than the 90th percentile
(wrong alarms). In a perfect prediction, POD equals one, and POF equals zero.

2.5. Study Area and Data Preparation

With a population of more than 2.1 million, Isfahan is one of the most populous and
polluted industrial cities in central Iran (Figure 2). It is home to many industrial units as
one of Iran’s industrial hubs. According to previous studies, traffic, residential land use,
and nonresidential land use are responsible for 76%, 11%, and 13% of emissions in Isfahan
on a daily basis, respectively [47]. Therefore, in this study, the LUR model was developed
based on these predictors to estimate the PM2.5 pollutant concentration.
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Figure 2. Distribution of air pollution monitoring stations in zone 39N of the universal Transverse
Mercator (UTM) coordinate system and seasonal PM2.5 concentrations.

The study area included nine monitoring stations and the target pollutant concen-
trations were measured in one-hour intervals from 2017 to 2019 during the spring and
autumn. The seasons are considered according to calendar seasons. The calculated average
daily concentrations were used for modeling purposes. After checking the quality of the
measured data at each station and removing the biased samples, on average, each station
contained 260 and 240 measurements in spring and autumn, respectively (Figure 2).

The independent variables used in this study were traffic, land use, and meteoro-
logical parameters, as they have the most significant effect on PM2.5 concentration in
Isfahan [48,49]. These variables are described as follows.

1. The meteorological parameters included temperature, humidity, precipitation, pres-
sure, and wind speed measured by the Isfahan Weather Forecast Organization at the
synoptic stations. The measurements were taken in three-hour intervals during the
spring and autumn from 2017 to 2019. The daily average of the measured value was
considered to be an independent variable at each station.

2. The traffic data obtained from the Isfahan Municipality included traffic volume from
a four-stage transportation model. First, the hourly traffic counts were determined
for sample days during the spring and autumn from 2017 to 2019. Second, they were
extracted in buffers around the monitoring stations of 150, 300, 600, and 1200 m radius.
Finally, the buffers with the highest correlation were eventually kept in the model.

3. The land use data were derived from a 2019 map (scale = 1:2000). The original
land use classes were reclassified into residential and non-residential classes. Sub-
sequently, buffers of 100, 200, and 500 m radius were used to estimate the relevant
independent variables.

In order to improve modeling accuracy, the significant independent variables were
selected from all variables using a two-stage process. The first stage used Pearson’s
correlation coefficient to choose the variables bearing the strongest correlation to the
independent variables (Figure 3). In the second stage, various combinations of the selected
variables were applied to develop OLS-based models. The variables with p-values more
than 0.05 were ignored. Finally, the variables having the most significant effect on the R2

were selected to develop the OLS, GWR, and GWTLSR models.
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Figure 3. Correlation coefficients between PM2.5 concentration and independent variables ((a) traffic and (b) land use) for
various buffers in spring and autumn.

Figure 3 shows the correlation coefficients between the independent variables and
PM2.5 concentration in the spring and autumn. On the one hand, the results showed that, in
the autumn, the following variables had the highest correlation with PM2.5 concentration:
the 1200 m buffer traffic volume with a negative relationship and residential and non-
residential land use in the 100 m and 500 m buffers with a direct relationship. Among the
meteorological parameters, temperature with a negative relationship and pressure directly
bore the highest correlations with PM2.5 concentration. In the spring, on the other hand,
the variables bearing the highest correlation with PM2.5 concentration were residential and
non-residential land use in the 100 m and 500 m buffers and traffic in a 150 m buffer, all with
a direct effect. In addition, temperature and pressure were among the variables bearing the
highest correlation with PM2.5 concentration with positive and negative relationships. The
temperature relationship with PM2.5 was considerably more significant in autumn than
spring due to lower temperatures and thermal inversion.

3. Results and Discussion

Figure 4 presents the distribution of RMSE in the OLS model using combinations
of one to five independent variables, which are most closely correlated with PM2.5. As
shown in Figure 4, once the number of independent variables increased from one to five,
the value of RMSE decreased accordingly. Therefore, a combination of five independent
variables was eventually used in the final model. The selected independent variables
applied in the spring were traffic in the 150 m buffer, residential and non-residential land
use in the 100 m and 500 m buffers, respectively, temperature, and pressure. The selected
independent variables applied in the autumn were traffic in the 300 m buffer, residential
and non-residential land use both in the 200 m buffers, temperature, and pressure.
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Figure 4. Distribution of root mean square error (RMSE) in autumn and spring with respect to the number of
independent variables.

In order to examine the selected independent variables, the p-value and variance
inflation factor (VIF) index of the selected variables have been presented (Table 1). The
closer the VIF index values of each independent variable are to one, the better the variable
is selected in the model. There are no multiple alignments among the chosen variables.

Table 1. Comparison of p-value and variance inflation factor (VIF) values in selected indepen-
dent variables.

Season Variables p-Value VIF

Spring Temperature 4× 10−3 1.28
Pressure 3× 10−5 3× 10−4

Traffic 8× 10−6 1.04
Residential land use 7× 10−7 1.004
Non-residential land use 8× 10−8 1.012

Autumn Temperature 2.5× 10−3 1.007
Pressure 2× 10−9 6× 10−4

Traffic 5× 10−9 1.06
Residential land use 5× 10−3 1.04
Non-residential land use 4× 10−3 1.01

Table 2 shows the results of the three models for the spring and autumn. Model
performance was evaluated by cross-validation. Given the number of stations in the study
area, the models were validated by the leave-one-out cross-validation method. One station
was left out from the observations at each stage in this method, and the models were
developed using the remaining stations. According to the number of monitoring stations in
the study area, the data used were divided into nine sections. At each stage, observations of
one station were considered to be testing data and the remaining stations were considered
to be training data. This process was repeated nine times and, in each step, observations of
one station were considered to be test data. The modeling accuracy was determined at the
end of the process based on the mean accuracy of all stages. The mean values of RMSE
and MAE for the test and training data sets and AICc of the models are shown in Table 2.
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The results demonstrated the superior performance of the GWTLSR method as compared
with the other modeling techniques. A reduction in the AICc coefficient accompanied
the improved performance as compared with the other models. This reduction indicated
the high computational efficiency of the proposed model. The accuracy was improved
without any substantial increase in computational complexity. The absence of a significant
difference between the validation results for the two seasons demonstrated the proposed
model’s stability.

Table 2. Results of the three models in spring and autumn for test and training datasets.

Season Model RMSETest RMSETrain MAETest MAETrain AICc

Spring OLS 5.19 4.96 4.43 4.15 777.8
GWR 5.02 4.66 4.11 3.85 607.9
GWTLSR 4.26 3.83 3.55 3.14 574.5

Autumn OLS 8.66 8.36 6.81 6.55 909.2
GWR 8.40 8.04 6.62 6.42 715.2
GWTLSR 7.12 4.34 5.26 3.51 596.5

Note: MAE, mean absolute error; RMSE, root mean square error; AICc, Akaike information criterion); OLS,
ordinary least squares; GWR, geographically weighted regression; GWTLSR, geographically weighted total least
squares.

Figure 5 shows that the integrated GWTLSR model explains 0.82 and 0.92 of the
total variances of PM2.5 in the spring and autumn, respectively. While the corresponding
values were, respectively, 0.74 and 0.69 for the OLS model and 0.7 and 0.76 for the GWR
model. The higher R2. coefficient of the proposed model showed that it was superior
in accuracy and covered the dependent variable distribution more broadly. The results
presented in Table 1 and Figure 5 show that considering inaccuracy, varying characteristics,
and nonstationary effects of independent variables simultaneously led to performance
improvement of the GWTLSR model as compared with conventional models used in
previous research.

In order to evaluate the significance of the accuracy difference in the studied models,
one-way analysis of variance (ANOVA) with a confidence interval of 0.95% was used.
The results of the analysis show the significant difference in accuracy among the studied
models.

Figure 6 shows the average POD (%) values of GWTLSR for estimating PM2.5 concen-
tration which was higher than the other models, in addition, the average GWTLSR POF
(%) values were lower than the two other models for estimating PM2.5 concentration.

Figure 7 presents the PM2.5 concentrations obtained from the GWTLSR model for
the spring and autumn. Moreover, it shows the differences between the estimated and
observed PM2.5 concentrations in the spring and autumn at monitoring stations for the
three modeling methods. The maximum differences obtained by the integrated model in
the spring and autumn are 2.23 and 1.74, respectively. The corresponding differences are,
respectively, 3.54 and 4.20 for the OLS model and 2.63 and 3.74 for the GWR model. In the
OLS and GWR models, the differences between the estimated and observed concentrations
increase as the pollutant concentration increased. However, the corresponding difference
in the proposed model is not significant. Thus, it can be concluded that the performance of
the proposed model is less affected by the mean and variance of the dependent parameters.
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As shown in Figure 7, the Moran’s I Index was applied to examine the spatial autocor-
relation of the models’ errors. Table 3 presents the Moran’s I Index values of the proposed
model as −0.10 and −0.12, with p-values equal to 0.89 and 0.98 for the spring and autumn,
respectively. Thus, the distribution of errors in the GWTLSR model is random. It can
be concluded that the errors in the GWTLSR are not dependent on the monitoring sta-
tion’s location due to the consideration of variable characteristics and nonstationary effects
of parameters.

Table 3. Spatial autocorrelation (Moran’s I) of the model’s error.

Season Model Moran’s I z-Score p-Value Pattern

Spring OLS 0.19 2.03 0.04 Clustered

GWR −0.17 −0.35 0.72 Almost
random

GWTLSR −0.10 0.13 0.89 Random

Autumn OLS 0.17 2.05 0.03 Clustered

GWR −0.18 −0.41 0.68 Almost
random

GWTLSR −0.12 −0.02 0.98 Random

4. Conclusions

This study proposed a geographically weighted total least squares regression (GWTLSR)
model for high-resolution mapping of air pollution. The proposed model simultaneously
considered the independent and dependent variables to be observational parameters. It
could also consider the nonstationary effects of the parameters affecting pollutant concen-
tration. These model features enabled effective air pollution modeling through available
parameters with spatial heterogeneity and different measurement accuracy levels.

In the development of the proposed model, the WTLS was applied to calculate the
GWR coefficients. Random errors were introduced to both the design matrix and the
observation vector by using the WTLS method. As a result, the GWTLSR model es-
timates the results by considering measurement inaccuracies of the independent vari-
ables. Furthermore, spatial heterogeneity is taken into account in the proposed model by
using GWR.

To assess the GWTLSR model’s performance, a nonlinear weighted LUR model was
developed to model the nonlinear relationships among traffic, meteorological parameters,
and land use as the independent variables, and PM2.5 as the dependent variable for spring
and autumn in Isfahan, Iran. The proposed integrated model’s benefits were investigated
by comparing it with two conventional LUR models, namely OLS and GWR. These con-
ventional models consider the independent variables to be invariable and accurate. As a
result, the covariance matrix of observations only includes the covariance of the dependent
variable. In contrast, the covariance matrix in the GWTLSR model contains both depen-
dent and independent variables’ values. The results show that despite the insignificant
differences between the performances of the OLS and GWR models, the GWTLSR model’s
accuracy increased significantly. In addition, comparing the results for the spring and
autumn demonstrated that the variables’ values and variance had less influence on the
proposed model’s performance than that of the other two. In conclusion, although all these
methods are developed based on the OLS theory, the GWTLSR model is more compatible
with the variables’ nature. Therefore, the proposed model can significantly contribute to
enhance air pollution modeling.
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