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Abstract: Based on the results of an extensive literature research, we summarize the research progress
of remote sensing monitoring in terms of identifying mining area boundaries and monitoring land
use or land cover changes of mining areas. We also analyze the application of remote sensing in
monitoring the biodiversity, landscape structure, vegetation change, soil environment, surface runoff

conditions, and the atmospheric environment in mining areas and predict the prospects of remote
sensing in monitoring the ecological environment in mining areas. Based on the results, the accurate
classification of land use or land cover and the accurate extraction of environmental factors are the
basis for remote sensing monitoring of the ecological environment in mining areas. In terms of
the extraction of ecological factors, vegetation extraction is relatively advanced in contrast to the
extraction of animal and microbial data. For the monitoring of environmental conditions of mining
areas, sophisticated methods are available to identify pollution levels of vegetation and to accurately
monitor soil quality. However, the methods for water and air pollution monitoring in mining areas
still need to be improved. These limitations considerably impede the application of remote sensing
monitoring in mining areas. The solving of these problems depends on the progress of multi-source
remote sensing data and stereoscopic monitoring techniques.

Keywords: mining areas; remote sensing monitoring; ecological environment; review

1. Introduction

Mining areas are hotspots for the exploration and use of mineral resources and, subsequently, for
the deterioration of the natural environment, characterized by conflicts between economic development
and environmental protection [1,2]. Since 1973, when NASA started to use earth resource satellites to
monitor land use, vegetation coverage, and water accumulation in Appalachian mining areas [3], remote
sensing has gradually been developed into an important tool to monitor the ecological environment of
mining areas. The development of remote sensing provides convenient conditions for comprehensively,
rapidly, and continuously identifying environmental factors and monitoring environmental changes in
mining areas. It also provides technical support for decision making by governmental departments.

Mining activities considerably damage the ecological environment, including landscape damage,
vegetation damage, agriculture impairment, metal particle deposition, soil erosion, soil pollution,
surface runoff, groundwater pollution, air pollution, and waste accumulation [4,5], with serious
impacts on the health of local residents and the sustainability of the economic and social development.
Generally, when the economy is developing at a medium-high speed, the demand for mineral resources
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increases rapidly, aggravating the damage to the ecological environment [6]. Using remote sensing
instead of time-consuming and laborious traditional methods (e.g., field investigation) to monitor the
ecological environment of mining areas can not only improve the management efficiency of mining
activities, but also facilitates the evaluation of mining area exploration and ecological restoration [7,8],
thus providing technical support for the management of production activities in mining areas.

In mining fields, early remote sensing is mainly applied in mineral exploration [9–11], generally
by applying surface reflection spectra and images as the identification basis and drawing thematic
maps related to mining areas by combining the data with geographic information system (GIS)
data. Relevant reviews in this field have also concentrated on this aspect [12,13]. For example,
Goetz et al. [14] have summarized the resource exploration situation based on ground survey, aircraft
survey, and satellite survey technologies, introduced the remote sensing measurement techniques for
rocks, soil, and vegetation, and emphasized the application of hyperspectroscopy in these aspects.
In recent years, with the further development and wide application of remote sensing technologies,
remote sensing monitoring has been applied more frequently in the monitoring and evaluation of the
ecological environment in mining areas. For example, some researchers have dynamically assessed
the ecological restoration of mining areas in central Catalonia, Spain, by using multispectral images
with a submeter spatial resolution [15]. In another study, which analyzed current land use status in
coal mines in southern West Virginia, USA, LiDAR (light detection and ranging) was applied to assess
land subsidence [16]. In the MINEO (monitoring the environmental impact of mining activities in
Europe using advanced earth observation techniques) project, a European research and technological
development project, the environmental impacts of mining activities were investigated, and one of the
core tasks was to measure surface radiation in such areas via hyperspectral images, thereby providing
conditions for environmental research in mining areas [17].

Although some studies have monitored the ecological environment of mining areas via remote
sensing, only a few publications have focused on combining these studies systematically. In this
context, based on an extensive literature research, we summarize the research progress in terms of the
identification of mining boundaries and land use or land cover changes as well as the monitoring of
the ecological environment in mining areas based on remote sensing technology. Our overall aim is to
identify the main issues of the current remote sensing technology and to predict the future development
direction of this technology.

2. Remote Sensing Technology for Ground Feature Types in Mining Areas

The ecological environment of mining areas is complex, with numerous ground feature types,
such as vegetation, dumps, water bodies, and tailing ponds, among others. Therefore, the accurate
identification of the mining area scope and the precise extraction of various ground features and
their changes are the foundation for remote sensing monitoring of the ecological environment in
such areas [18]. The use of high spatial resolution remote sensing data, hyperspectral remote sensing
data, and topographic data makes the remote sensing monitoring of ground feature types and their
changes in mining areas feasible. The basic idea of remote sensing monitoring is the comprehensive
use of spatial information, spectral information, elevation information, and angle information. Remote
sensing identification of ground feature types mainly focuses on the identification of mining boundaries
and land use/cover changes in mining areas.

2.1. Identification of Mining Boundaries

Traditionally, the boundaries of mining areas are determined based on the mining area scope
specified by the mining license. According to the given coordinates of inflection points, the mining area
scope can be formed by connecting these points. However, along with the prospection, exploration,
and exhaustion of mineral resources, the specified scope of the mining areas may exceed or be
less than the permitted scope. In this sense, the identifying the changes in mining boundaries is
particularly important for studying the environmental impacts of mining activities. Identifying the
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boundaries of mining areas via remote sensing can provide a referenced study area boundary for
environmental change assessment in mining areas [19,20]. In this way, the effects of mining activities
on the ecological environment inside and outside mining areas can be distinguished. In addition,
the accurate identification of mine boundaries could also facilitate the dynamic monitoring of illegal
mining activities [21].

Currently, the identification of mining boundaries often adopts relatively mature extraction
methods of remote sensing information and combines them with the ground feature environment
and ground surface settlement characteristics of mining areas to extract the mining area boundaries
(Table 1). According to the unique spectral and textural characteristics of the different ground feature
types in mining areas, the fuzzy clustering method is generally adopted to integrate ground feature
pixels at a certain distance within the space scope into point clusters, thus extracting boundary
change information [20,22]. Notably, this method requires that the extension scope of mining areas
is relatively concentrated in terms of spatial distribution. For example, Li et al. [23] have used the
fuzzy iterative self-organizing data analysis technique algorithm (ISODATA) clustering method to
dynamically identify the boundary of the mining-intensive development zone and extracted the
variation range of mining areas from the Landsat (Land Satellite) land use data of Qian’an City in 1987,
1992, and 2001, which were acquired from the interpretation of remote sensing images; their results
were consistent with the existing boundary. The mining area reflectivity data set can also be used
as the basis for mining boundary identification [24]. By extracting five types of raster data, namely
the normalized difference vegetation index (NDVI), the normalized burning ratio index (NBRI), the
normalized difference moisture index (NDMI), shortwave infrared data, and red reflectance data, as
the training samples, multivariate normal distribution fitting can be performed to find the approximate
scope of potential mining areas, however, the boundary has a certain randomness. Here, NDVI
data play an important role in boundary identification and in the location of mining areas [25]. In
densely vegetated areas, the NDVI data difference based on time series can effectively reflect the land
expansion of mining areas based on the original data. The mining area boundary identification method,
dominated by the human visual system, is highly precise [26] and uses the snake model to carry out
curve evolution for the mining area boundary information extracted from the high-resolution images;
its accuracy in mining area boundary identification can exceed 80%. In addition to the above-mentioned
identification methods, the combination of high-precision digital elevation model (DEM) data and
differential Interferometric synthetic aperture radar (D-InSAR) technology can also effectively extract
the mining area scope with severe surface deformation [27,28], and the accuracy of the boundary scope
is closely related to the data accuracy and the variation degree of ground types. However, it is difficult
to identify the boundaries of mining areas by using only DEM [27,29].

At present, most remote sensing data for mining area boundary identification are derived from
the Landsat series of the United States, and the spatial resolution of 30 m facilitates the acquisition
of information of large mining areas or mining-intensive areas [22–24]. These satellite data can be
easily obtained online free of charge, providing convenience for continuous monitoring. However, the
extraction of the boundaries of smaller mining areas, or the study of the details of the dynamic changes
of the boundaries, requires commercial satellites with higher resolution [26]. Regarding the study of
the boundary geodetic patterns of mining areas, the combination of microwave remote sensing with
the digital elevation model should be preferred [27,29].

Identifying the changes in mining area boundary based on time series data is generally closely
related to the land use changes in such areas. The change of either party can produce linkage reactions,
especially when the scope of mining rights is not updated in time. This is also helpful to understand
the relationship between boundary identification and ground feature type transformation, facilitating
the accurate division of mining areas and the correct evaluation of the ecological environment.
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Table 1. Remote sensing identification of mining area boundaries.

Identification Method Data Types Advantages Disadvantages

Fuzzy clustering method:
generating clusters

similar to ground feature
pixels [22,23]

Landsat land use data,
Google Earth data

Can accurately and
conveniently determine
the extension scope of

mining areas

Scope of mining areas
should be relatively

continuous and
concentrated

Multivariate normal
distribution: mining area
data reflectivity, data set

fitting [24]

Landsat-5 TM, Landsat-7
ETM, Landsat-8 OLI

Low time cost and
economic cost

Authenticity of the
results needs further

verification

Vegetation index
differential method:

NDVI data difference
based on time series [25]

Landsat-2 MSS,
Landsat-5 TM, World

View data

Can effectively identify
changes in mining land

Precision of mining land
boundary is uncertain,

and the method has
certain requirements

regarding the
surrounding
environment

Snake model: identifying
the mining area scope by
curve evolution of image

information [26]

Land observing satellite
data: panchromatic data

of 2.5 m and
multispectral data of 10

m

High accuracy, high
degree of automation,
desirable processing
ability for vast data

volume

Model is difficult to be
implemented and

requires a higher data
quality

Microwave interference
method: adopting the

binary-channel D-InSAR
scheme of time series [27]

ALOS PALSAR data,
high-resolution DEM

data

Can continuously
observe the fluctuation
of boundary geodetic

patterns

Observation accuracy
depends on data

accuracy and surface
deformation

Notes: ALOS is Advanced Land Observation Satellite; PALSAR is Phase Array Type L-band Synthetic Aperture Radar.

2.2. Land Use/Cover Changes in Mining Areas

With changes in mining activities, the land use/cover of mining areas often changes dramatically.
Therefore, investigating the land use/cover changes in mining areas is also one important research
aspect related to the remote sensing identification of mining area factors. The important land use/cover
types in mining areas generally include stopes, subsidence areas, tailing ponds, water areas, and bare
land. Remote sensing identification and classification of water areas, bare soil, and slurry tailings
discharged after ore washing in mining areas are complex and difficult to perform without prior
knowledge. In addition, the continuous mining of underground and open pit mines may affect
the vegetation within the mining scope and even reshape the local geological topography. Hence,
“multidate” land use data of mining areas are important for evaluating the land resource changes and
the ecological status of mining areas.

The periods with the most significant land use/cover changes in mining areas include the initial
period of mining activities and the period of resource exhaustion [30,31]. Land use/cover changes
are mainly characterized by the conversion from industrial and mining land to construction land,
forest land, or grassland. In other stages of mining area exploration, the changes in land use/cover
are relatively slight. Time series-based remote sensing data monitoring is a conventional means to
analyze land use changes [32,33], whereas the reserves of mineral resources and the development
demand of the local economy also profoundly impact land use changes. In this sense, the combination
of these two factors can better explore the driving force of land use changes in mining areas from a
deeper perspective. For example, coal mining activities in the Raniganj region, India, have started in
the 18th century, resulting in a series of problems such as significant changes in land use patterns and
excessive groundwater mining [34]. The land use data over 26 years, obtained via satellite data, can be
used to effectively monitor the changes in land use types, thereby providing basic data for solving
environmental issues. In the mountains of northwest Spain, to quickly restore the environment of
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mining areas and to protect the surrounding farmland and protection areas, ecological planning based
on the current land use status in the mining areas was performed, along with artificially accelerating
the reconstruction of original land types [35]. Different driving factors for changes in land use types
make it more complex to implement remote sensing monitoring of land type changes in mining areas.
In this case, other types of data may be adopted, making it difficult to maintain data identity and
thereby complicating data analysis. These are also difficult points in the analysis of land use changes
in mining areas.

Extracting the ground features of mining areas via the remote sensing index is also a common
method to analyze land use changes. The relevant indices of construction land (normalized construction
index), bare land (bare soil vegetation index), water area (normalized differential moisture index), and
green vegetation (normalized vegetation index) are all relatively advanced [36–38], and the extraction
results can also be mutually verified with the land use classification results. Overall, research on remote
sensing classification of mining land use/cover is relatively sophisticated, but the accuracy of land use
classification results in mining areas in the monitoring process is greatly influenced by the knowledge
structure of researchers. In addition, the classification of tailing ponds is also one of the important
problems in remote sensing monitoring.

3. Remote Sensing Monitoring of Landscape Ecology in Mining Areas

The balance and stability of the ecological state is an important prerequisite for the sustainable
development of mining areas, and an intact ecosystem is crucial for improving the environment of
mining areas. Remote sensing allows the dynamic monitoring of vegetation, animals, and landscapes
in mining areas and can therefore facilitate the acquisition of change information, thus providing basic
data support for ecological assessment.

3.1. Biodiversity Monitoring

Due to the differences in physiographic conditions in mining areas, the biological species in
different zones within the mine areas are also different. At present, research on the biodiversity of
mining areas mainly focuses on vegetation, animals, and microorganisms. Mining areas contain a large
variety of plant species [39] of numerous families and genera. The animal species in the mining areas
are mostly soil-inhabiting animals with a small body size [40]. Although microorganisms are often
partitioned into fungi, bacteria, and viruses, related studies mostly selected microbial communities as
research objects [41]. A full understanding of the species and growth habits of plants, animals, and
microorganisms in mining areas facilitates studies on biodiversity [42] and can also provide references
for biodiversity monitoring via remote sensing in mining areas (Figure 1) [43–46]. Additionally, the
environment of mining areas significantly influences plant and animal growth as well as the microbial
community structure. Therefore, along with the remote sensing monitoring of the biodiversity and
ecological status of mining areas, the monitoring results can be used to infer the changes of the
surrounding environmental factors, which have great significance.

Vegetation type and quantity, as well as planting area and density, can be monitored with the use
of remote sensing data. The vegetation index, as a common monitoring tool, has received considerable
attention. At present, there are more than 200 vegetation indices published in the scientific literature,
based on comprehensive remote sensing data [47,48]. Additionally, at least 27 models have been
strictly subjected to biological verification for commercial promotion [49]. Numerous studies on the
vegetation in mining areas have shown that the leaf area index (LAI) can identify vegetation types
with different canopy structures [50], facilitating the rapid acquisition of vegetation types in mining
areas. The degree of vegetation coverage in mining areas can be calculated via the NDVI, which can be
used to judge the reconstruction status of the ecosystem [51]. At the same time, via object-oriented
scale segmentation based on high-resolution images, we can easily obtain information of vegetation
types in mining areas [52] and effectively estimate the regional vegetation coverage.
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Figure 1. Biodiversity monitoring methods.

Compared with the studies on remote sensing monitoring of vegetation in mining areas, there are
few studies on remote sensing monitoring of animals. On the bare land of mining areas, satellite remote
sensing and unmanned aerial vehicle technology can be used to monitor animals [53,54]; however, in
areas with dense vegetation, monitoring using remote sensing technology could be difficult due to
leaf occlusion. Therefore, methods of animal behavior tracking and spatial density distribution could
be used to deduce the animal distribution [44,45,55]. Under these circumstances, it is important to
promote the use of free high-resolution satellite images for animal monitoring. Especially for those
data with a spatial resolution up to 30 m or higher, animal activities and other related traces can be
effectively identified on these images [56].

Unlike direct monitoring of animals and plants, commercial sensors cannot directly identify the
physiological status of microorganisms. At present, research on the remote sensing monitoring of
microorganisms involves two aspects: one is to infer the physiological status of microorganisms from
other organisms, soil quality, and water quality, and the other is to establish the microbial distribution
model [57–59]. It should be noted that the remote sensing monitoring of microorganisms and ecological
communities is expensive and still in the experimental stage [57].

Although remote sensing monitoring of the species composition and the dynamic evolution
of ecological communities is achievable in large mining areas or in areas with intensive mining
exploration, a vast volume of data and documents is required in addition to the remote sensing data.
In general, environmental monitoring in mining areas mainly focuses on vegetation monitoring, while
the monitoring of animal and microbial communities in such areas needs to be strengthened.

3.2. Landscape Ecological Diversity

The landscape pattern of mining areas includes the types, quantities, spatial distribution, and
configuration of ground features. For remote sensing data, the landscape patterns manifest as plaques
of different land use types, and the randomness, uniformity, or aggregation of these plaques in space
form the basis of the landscape pattern analysis of mining areas [60]. Currently, researchers commonly
adopt landscape indicators such as plaque density (PD), Simpson diversity (SIDI), and contagion
(CONT) to analyze and evaluate the landscape pattern based on the existing land use data of mining
areas or land use results extracted by remote sensing classification [61]. For example, some scholars [62]
have developed ecological restoration plans in the mining process by using the landscape index that is
dominated by the plaque index and the landscape level index; considering the nearby reclamation
project, other authors [63] have predicted the future landscape ecology of the mining areas according to
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the changes in the landscape pattern of the mining areas over 100 years and found that the landscape
pattern of such areas resembled a natural landscape with high ecological stability.

Studying the landscape pattern of mining areas cannot fully meet the requirements of ecological
restoration of such areas, and the specific features of the study area and the study objects need to
be considered. To plan and design mining cities [64], a new landscape audit index is introduced
and combined with the landscape pattern index for correlation analysis, thus making up for the
defects of the analysis by the landscape pattern index alone. For the mining areas with landscape
memory loss [65], the related animals are introduced to assist in the rebuilding of the new landscape,
improve the ecological environment, and increase the species diversity. Some scholars [66,67] have
integrated various land use types to establish a comprehensive landscape pattern and have simulated
the landscape evolution to predict the soil erosion degree, the topography, and the landform, thus
promoting the sustainable development of the mining industry and of other industries. Both the study
of landscape patterns based on land use data and the prediction of the development of the study area
based on landscape patterns have important reference significance for studying the landscape ecology
of mining areas and restoring the damaged landscape pattern. Some results of previous studies lend
themselves for the monitoring and restoration of the ecological environment of mining areas.

4. Remote Sensing Monitoring of the Environment in Mining Areas

Remote sensing allows the rapid acquisition of ground information, facilitating the timely
monitoring of changes in vegetation, soil, atmosphere, and other environmental indicators when the
climatic conditions and the topographical status of the mining areas change. Hence, remote sensing
has become an important guarantee for improving the efficiency of mining area monitoring.

4.1. Extraction of Contaminated Vegetation

Affected by mining activities, the growth status of contaminated vegetation can provide
characteristic information based on differences in spectrum and texture. The methods of acquiring
information such as the vegetation health status and the restoration effect from remote sensing
images have been studied deeply, and impeccable monitoring systems have been widely applied [68].
Since the vegetation is generally subjected to different stress factors, its spectral characteristics are
obviously different from those of naturally growing vegetation [47]. For example, via methods based on
vegetation spectral features, such as differential spectrum estimation, vegetation index estimation, and
“Three-Edge” model estimation (Figure 2), the biomass spectrum curve of the contaminated vegetation
is generally lower than the normal value, while the influences of human factors on the restoration
process may make the spectrum curves of some indices higher or even considerably higher than the
normal values [69–71]. These spectral differences can monitor and analyze the vegetation growth
dynamics and restoration effects, thus providing a theoretical basis for vegetation restoration. Most
studies on the extraction of contaminated vegetation have focused on the extraction of chlorophyll
biomass information, thereby directly reflecting vegetation health [71].
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Currently, the differences between different vegetation types in mining areas, reflecting vegetation
anomaly, can be distinguished through the vegetation index and biomass information, such as
chlorophyll data [74–76]. However, the vegetation anomaly information obtained by remote sensing
technology is not complete compared with that obtained by traditional chemical methods [69]. Hereinto,
there is a certain relationship between the extraction effect of vegetation biomass information and the
inversion model [77,78]. Currently, the commonly used inversion models include regression equation
models, statistical and physical models, support vector machines, neural networks, and other empirical
models [79–81]. Among these inversion models, regression equation models are widely used in studies
on the correlation between measured vegetation biomass data and the vegetation index [82]. For
example, some researchers [83] have used the regression model, the improved back propagation (BP)
neural network model, and the support vector machine technique to invert the biomass of broadleaved
forest, coniferous forest, shrub, and grassland in mining areas and compared the inversion results
from different models. Based on their findings, the regression model was most suitable for inverting
the biomass of broadleaved forest and coniferous forest, while the support vector machine technique
was more accurate for the shrub and grassland areas with smaller plants. In addition, principal
components analysis and the random forest model are also widely used in the inversion of vegetation
biomass [84,85]. In general, most inversion models need to estimate and verify vegetation parameters
via the use of field or laboratory data [86].

Considering that mining areas have a complex environment, it is necessary to study the dynamic
changes of the impacted vegetation during growth. In recent years, some researchers have begun to
consider the relationship between “geophysical variables” and the variation of vegetation physiological
characteristics [87–89]. Among the related studies, the differences between the spectra of contaminated
vegetation and healthy vegetation and the anomaly of biomass, such as chlorophyll of the contaminated
vegetation, are important contents of current studies.
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4.2. Soil Quality Monitoring

Soil pollution in mining areas is mainly a result of heavy metals (such as mercury, cadmium,
copper, etc.), radioactive materials (such as uranium, thorium, radium, etc.), acidified substances,
and salinized substances [90,91], which can all be effectively monitored by remote sensing. Among
these pollutants, heavy metals are the most important ones [92,93], and their contents in soil can be
obtained by the reflection spectrum or its deformation or be inferred from the physical and chemical
soil properties (such as organic matter content, mechanical composition, nutrient content, pH, electrical
conductivity, etc.) and vegetation growth [94].

Heavy metals in soil are generally monitored via remote sensing by establishing an inversion model
of the heavy metal content based on the soil spectral reflectivity data measured in the laboratory [95].
When studying the contents and spatial distribution of heavy metals in soil, some authors [96–98],
according to the size of the study area and other factors, have selected dozens or even hundreds of
sample points for spectral correction to obtain benchmark data and predicted the large-scale heavy
metal content on the basis of these sample points. As opposed to the direct monitoring of heavy metals,
measuring the indirect inference of the heavy metal content on physical and chemical soil properties
requires that the substance closely related to the heavy metal content are identified. For example, when
studying the As content of a soil, the prediction results depend on the close relationship between the
content of As and the levels of soil organic matter and iron or aluminum oxides [98]. Regarding the
measurement of soil Zn levels, organic matter and clay minerals have a strong adsorption effect on
Zn [96]; on this basis, the content of Zn in soil could be determined. In terms of vegetation growth,
some studies [99] have shown that the contents of Pb, Cr, Cu, Ni, Zn, Cd, Hg, and As in soil are closely
related to the biomass content of rice. Therefore, rice leaves can be used in studies on heavy metals in
soil, allowing to directly determine the contents of related metals in soil. According to another study,
hyperspectroscopy allows one to identify pollutants in “special” soil-tailings in tailing ponds [100] and
to monitor the activity and flocculation of tailings [101,102]. In addition, more than 40 scholars [103]
have jointly studied the global soil spectra in the visible-to-near-infrared spectrum scope and coded
the spectral reflectivity or emissivity characteristics of the minerals, organic matters, water, and other
components in soil into the database. This global soil spectral database serves as a reference for
identifying soil pollutants in mining areas.

In addition to the above methods of obtaining the contents of heavy metals in soil, the geological
index can reduce the spectral changes caused by topography through the band ratio and can highlight
some metallic materials in soil [104]. Currently, the commonly used geological indices include the
clay mineral index [105], the nonferrous mineral index, and the iron oxide index [104]. These remote
sensing indices provide a basis for the rapid and qualitative monitoring of soil metal levels and other
pollutants in mining areas [106,107]. The rapid monitoring of the relative pollutant content via the
remote sensing index can supplement the quantitative inversion of the degree of soil pollution in
mining areas, increasing the feasibility of soil quality monitoring in mining areas.

4.3. Water Pollution and Air Quality Monitoring

Rainwater erosion and surface runoff in mining areas lead to pollutant diffusion and, consequently,
to groundwater pollution. The risks and paths of pollutant diffusion caused by surface runoff can be
monitored and simulated through image data [108–110], thus providing a basis for the prevention and
governing of water pollution. Conventional monitoring of water pollution in mining areas usually
includes band combination transformation calculation by convenient empirical models to extract
suspended substances in water or inversion of the water pollution status by combining the measured
data of water sample points (Table 2). By applying the short-wave infrared imagery (SWIR) empirical
model and the pollution concentration index, the spatial distribution of heavily polluted waters in
the mining areas can be quickly understood [111,112]; by fitting the image spectral values with the
measured data of water quality, information on water pollution can be accurately inverted [113–115].
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These two water pollution monitoring methods can complement each other to meet the requirements
of different research stages and purposes [111].

Table 2. Remote sensing monitoring of water pollution information in mining areas.

Model Category Monitoring
Methods

Monitoring
Content Advantages and Disadvantages Typical Cases

Empirical models
SWIR empirical

model
Water bodies

containing soil,
water bodies

polluted by coal
dust

The required information can be obtained
rapidly and conveniently; however, the

qualitative analysis results are inaccurate and
only suitable for heavily polluted areas.

Mining areas in the
Tapajós River basin

[111]

Pollution
concentration

index

Dexing Copper
Mine [112]

Analytic or
semi-analytic

model

Comprehensive
nutritional index

method
Water chlorophyll

concentration,
suspended matter

content (algae, etc.),
organic matter
content, heavy

metal content, etc.

More comprehensive water pollution
information can be acquired, and accurate

quantitative analysis can be carried out;
however, a vast volume of measured data is

required, and the operation calculation is
complex.

Huainan mining
area [113]

Genetic
programming

Albufera, Valencia
[114]

Multivariant
stepwise regression

model

Wansheng mining
area [115]

Similarly, particles in the atmosphere can cause floating pollutants to spread around. Especially
in non-metallic mine areas, the contents of toxic particles in the atmosphere are often high, which can
have even more serious impacts on the environment than water pollution. For example, when studying
the spatial and temporal distribution of mercury atoms in the atmosphere of the mining areas based on
LiDAR data, the space near the mining area should also be included in the research scope [116,117]. In
recent years, low-cost small unmanned aerial vehicles, equipped with air analyzers and aerosol optical
sensors, have been used to monitor open mining areas [118–120]. Such air analyzers can monitor CO,
SO2, O3, and other gases, while the remote sensing data results can accurately fit PM2.5, PM10, and
dust concentrations.

Water fluidity, water permeability, and gas diffusivity impede environmental monitoring in
mining areas. However, with the further development of respective technologies, these difficulties will
be solved, resulting in a higher accuracy of monitoring data.

5. Conclusions and Prospects

By combining the related research progress of remote sensing monitoring of the ecological
environment in mining areas, this paper reviewed the status quo of the current technology from the
three aspects of ground feature type monitoring, ecological status monitoring, and environmental
status monitoring. The identification of ground feature types in mining areas is the basis of remote
sensing monitoring, and the accurate identification of mining area boundaries provides the basic data
for monitoring landscape ecology and the environment. Among the different monitoring methods
used for mining area boundaries, the fuzzy clustering processing of land use status data can rapidly,
easily, and accurately extract mining area boundary information. In remote sensing monitoring of
mining areas, research on the diversity of the ecological landscape is relatively sophisticated, while the
monitoring of animals and microorganisms is still in its infancy; in particular, the relatively high costs
largely limit the monitoring of microorganisms. Remote sensing monitoring in mining areas mainly
focuses on impacted vegetation and soil; although the research results are abundant, relatively few
studies have considered water and air pollution. When monitoring the biodiversity of mining areas,
vegetation monitoring mainly involves the identification and comparison of different plant species,
while research on impacted vegetation in mining areas mainly focuses on the internal comparison
of vegetation species. Land use/cover changes in mining areas are closely related to the ecological
landscape diversity. They are interrelated with each other, but relatively independent. Generally,
studies on the remote sensing monitoring of the ecological environment in mining areas are mostly
isolated studies on a certain aspect, and there are few relatively comprehensive studies.
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According to different global division criteria, there are numerous different types of mining areas,
and the environmental impacts of mining are broad. The effectiveness of remote sensing technologies
on monitoring in mining areas varies according to the differences in region, the mining method, and the
mined commodity. For example, the soils of most mining areas contain iron, and as a result, the remote
sensing monitoring technology on iron elements in mining areas is more mature than the technologies
used for other mineral elements [121]. Due to their unique features, radioactive mineral resources are
more recognizable in remote sensing images than non-radioactive mineral resources [122]. Compared
with regions densely covered by vegetation and with underground mining areas, environmental
monitoring via remote sensing is less complex in regions with bare vegetation [75,79]. In addition,
differences of vegetation density in mineral mining areas also result in differences of monitoring effects
when using remote sensing [79,87].

Our paper is, however, limited in several aspects. For example, we reviewed the remote sensing
technology for monitoring the ecological environment in mining areas according to the monitoring
objectives instead of the technology type. This was mainly done to emphasize the progress of this
technique in various fields rather than to focus on the remote sensing technology itself.

Due to the limitations of remote sensing data, biodiversity monitoring in mining areas via remote
sensing is not yet fully possible. Even for an advanced vegetation monitoring technique, there are
few studies on the remote sensing monitoring of internal energy flows. However, in the future, with
the further development of remote sensing satellites, remote sensing monitoring in mining areas will
become more convenient, affordable, and faster, with an improved resolution and accuracy. At the
same time, the stereoscopic monitoring by different remote sensing satellites and the comprehensive
monitoring of the mining area environment with multisource data will be possible.
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