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Abstract: West Nile virus (WNV) is one of the most prevalent mosquito-borne viruses. Although the
infection in humans is mostly asymptomatic, 15–20% of cases show flu-like symptoms with fever.
In 1% of infections, humans develop severe nervous symptoms and even die, a condition known
as West Nile neuroinvasive disease (WNND). The aim of our study was to analyze the influence of
abiotic and biotic factors with the human WNND cases during the period 2015–2019. A database
containing all the localities in Romania was developed. Abiotic and biotic predictors were included
for each locality: geographic variables, climatic data, and biotic factors. Spatial distribution of the
WNND infections was analyzed using directional distribution (DD). The Spearman’s rank correlation
coefficient was employed to assess the strength of association between the WNND infections and
predictors. A model was generated using the random forest ensemble learning method. A total
number of 535 human WNND cases were confirmed in 308 localities. The DD showed a south-eastern
geographical distribution. Weak correlation was observed between the number of human WNND
cases for each year and the predictors. The highest predicted probability was around urbanized
patches in the south and southeast. Increased surveillance and control measures of vectors in risk areas
should be implemented and educational campaigns should be made available for the general public
in order to raise awareness of the disease and inform the population about prophylactic measures.
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1. Introduction

West Nile virus (WNV) is one of the most prevalent mosquito-borne viruses, belonging to the
Flaviviridae family, in the Japanese encephalitis serocomplex. It is included in the genus Flavivirus,
together with other viruses with public health relevance such as dengue, Zika, Japanese encephalitis,
yellow fever, and Usutu [1]. Two genetic lineages are known, lineage 1 and lineage 2, the first with
three subclades [2].
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The natural life cycle involves birds as reservoir hosts and ornithophilic mosquitos, mainly from
the genus Culex as vectors [3]. Even though humans and horses can get infected, they are considered
dead-end hosts, due to the low and short-term viremia [4]. Although the infection in humans is mostly
asymptomatic, 15–20% of the cases show flu-like symptoms with fever, known as the West Nile fever.
In 1% of the infections, humans develop meningoencephalitis with severe neurological symptoms and
even die, a condition known as West Nile neuroinvasive disease [1,5].

After its description in Uganda [6] and subsequent reports in Africa [7,8], the first reports in
Europe were in France [9] and Russia [10], followed by many others. Currently, the virus is present in
most of the continent [11]. In Romania, the first report of WNV infection was in 1996, as a major human
epidemic, with 393 cases, of which 352 had acute meningoencephalitis [12]. The virus was detected
again in 1997 and 1998 [13], but with a limited number of infections. The next significant outbreak
was in 2010 with 50 confirmed cases and a fatality rate of 10% [14]. Viral circulation and human
infections were recorded also in the following years [15], with a third significant outbreak in 2016,
with 93 neuroinvasive cases [16]. One of the most significant outbreaks in Europe (2083 confirmed
cases), including Romania (277 cases and 43 deaths), was recorded in 2018 [17]. Finally, 66 infections
were reported in Romania in 2019 [18].

Several studies attempted to identify risk factors associated with WNV infection in humans [2,19,20].
A wide variety of biotic and abiotic factors play an important role in maintaining the vector-pathogen
-host cycle. Abiotic factors influence the vector abundance but also their vectorial competence [21].
Higher temperatures directly influence the viral circulation, by increasing the mosquito populations,
the frequency of feeding and the oviposition rate. Moreover, higher temperatures control the pathogen’s
development rate inside the mosquito, leading to a shorter extrinsic incubation period [2]. Several
studies have highlighted the role of the water bodies in the vector density, serving as breeding sites,
especially in early summer [5]. The unclear role of precipitation is given by the different environmental
conditions required, depending on the mosquito species. On the one hand, precipitations will favor
the presence of stagnant water, leading to an increase in the vector density, by providing favorable
conditions for the larval stages, but heavy rain conditions can remove the larvae [21]. In the case
of Culex pipiens, drought conditions may favor its development due to its preferences for eutrophic,
stagnant water, which is richer in nutrients. The role of drought is also discussed from the perspective
that it can lead to increased interactions between vectors and hosts, due to diminished water sources [21].

Among biotic factors, avian host-related factors, such as distribution and abundance, are crucial
for viral circulation, their ability to maintain a high and prolonged viremia being the reason why they
are named amplifying hosts [22]. It is assumed that migratory birds are responsible for introducing the
virus from Africa in Europe, and also for its dispersal, but local and resident bird populations are also
needed for viral amplification [19,23].

Most studies evaluating the influence of abiotic factors included only short-term seasonal data,
with only one study from the USA analyzing average multi-seasonal climatic factors [24]. Herein,
we propose such an approach using long term averages. Additionally, despite being a highly endemic
country, no attempts have been made so far to evaluate the risk factors associated with WNV outbreaks
in Romania. Romania is a country with diverse ecological conditions, comprising five ecoregions [25],
a high diversity of vector mosquitoes [26] and a significant number of bird species [27]. Romania
is also a major stopover for migratory birds [28]. Moreover, to the best of our knowledge, there
is no comprehensive analysis on the possible influence of non-human related biotic factors on the
epidemiology of human West Nile neuroinvasive disease (WNND) infections in Europe. In this context,
the aim of our study was to analyze the integrated influence of various multi-annual abiotic and biotic
factors with the human WNND cases over a period of five years (2015–2019).
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2. Materials and Methods

2.1. Data Source

A database containing all the lowest level administrative units in Romania (known as communes)
(n = 3186) was developed using data from the official website of the Romanian National Agency of
Cadaster and Real Estate Advertising [29]. For the purpose of this study, each of the six administrative
units (sectors) of the capital city, Bucharest, were considered a separate locality. The total surface of
each assessed locality was calculated according to the official limits using a Geographical Information
System GIS approach; the polygons’ area of administrative units was calculated in Stereo 70 national
projection. The following abiotic and biotic predictors were included for each locality: (1) geographic
variables: average altitude (m), surface of flowing water bodies (ha), surface of still water bodies (ha);
(2) climatic data: annual average humidity (%), average spring temperature (March–May) (◦C), average
summer temperature (June–August) (◦C), maximum average summer temperature (◦C), average
annual precipitations (mm/m2); biotic factors: human population, horse population, domestic fowl
population, and estimated abundance of four wild bird species: house sparrow (Passer domesticus),
Eurasian collared dove (Streptopelia decaocto), western jackdaw (Coloeus monedula), and hooded crow
(Corvus cornix).

Data regarding altitude was derived from the free digital elevation model datasets, made available
by WorldClim [30], based on the SRTM (Shuttle Radar Topography Mission’s digital elevation
models/3D) datasets. The surface of flowing water bodies and the surface of still water bodies were
calculated using the Corine Land Cover datasets, provided by the Copernicus Land Monitoring
Service [31]. The climatic data used for the statistical analysis was downloaded from the WorldClim
database, which hosts high spatial resolution global weather and climate data. The data used are
long term averages (1970–2000) and are standard climatic (e.g., maximum temperature) or derived
bioclimatic variables (e.g., average spring months temperature). In addition, we imported another
variable, relative humidity (annual mean moisture index), provided by Climond database [32], a derived
dataset based on the general bio-climatic data (climatic data combined for ecological purpose in species
distribution).

The number of human inhabitants per locality was extracted from a spatial database supplied by
the Romanian National Institute of Statistics ([33]—Computer System of the Register of Territorial Units).
The data on horse and domestic fowl population were provided by the regional Veterinary Authorities.

The bird species abundance data used in this study are the results of distribution modelling of the
targeted species. Bird data were provided by the Common Bird Monitoring programme, implemented
by the Romanian Ornithological Society and Milvus Group. These were combined with environmental
data provided by the WorldClim database and Copernicus Land Monitoring Service and cover both
habitat and climatic predictors. Based on monitoring data and ecological variables for each species,
several models were fitted in order to assess the best species distribution. Species distribution modelling
were performed in R programming language, using random forest niche modelling. Mathematical
averaging of the obtained values was performed to gain a unique individual value for each locality
(spatial unit). The resulting mean values were included in the statistical analysis (unpublished data).

The number of annual human cases of WNND per locality from 2015 to 2019 was provided by
The National Centre for Surveillance and Control of Communicable Diseases Bucharest.

To obtain the annual cumulative presence for 2015–2019 we analyzed the total number of human
WNND cases per locality and year, and the annual positivity rate per locality—positive (1)/negative
(0). If one or more human cases were recorded in a locality, it was considered positive in that year,
each locality receiving a multiannual score from 0 to 5, depending on the number of years in the period
2015–2019 in which it was positive.
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2.2. Statistical Analysis

2.2.1. Correlation

The Spearman’s rank correlation coefficient was employed to assess the strength of association
between the annual number of human WNND cases and the predictor variables following the
standardized criteria suggested by Evans [34]. This score is invariant to scaling of either variable or
shifts in the mean, thus the pre- or post-processing of the variables does not change the nature of their
association. Moreover, the score is dimensionless and scaling with regards to measuring units does not
affect the correlation value.

Both Pearson’s product-moment correlation coefficient and the Spearman’s rank correlation
coefficient were considered, and the Spearman’s score was chosen as the more suitable test statistic for
this analysis of not strictly linear association. This nonparametric score is more resilient to outliers and
considers both linear and non-linear monotonic relationships between the input variables [35].

2.2.2. Directional Distribution

The spatial distribution of the human WNND annual presence was analyzed using the directional
distribution (DD) tool in QGIS (Open Source Geospatial Foundation (OSGeo), Zürich, Switzerland) [36].
The DD ellipse is a graphical analysis tool that allows for the summary and measurement of directional
trends, dispersion, and central tendency of WNND presences for each year. One DD ellipse covers
approximately 68% of the presences in the annual datasets.

2.2.3. Random Forest

The WNND presence probability model was generated using the random forest (RF) ensemble
learning method [37]. RF is a versatile data mining technique that can model dynamic relationships
between various predictors with one of the most accurate classifiers [37,38]. RF can be used for
classification and regression as well as to assess variable importance. The RF model was built in
R-project software (Bell Laboratories, Murray Hill, Union County, NJ, USA) [39]. The input dataset
was balanced prior to training. Class imbalance can heavily influence both the model training and
the validation process with failure in classification often occurring with skewed training sets [40,41].
Artificial balance samples were generated using a smoothed bootstrap approach following the
methodology proposed by Menardi and Torelli [40]. This balancing method represents a trade-off

between underand oversampling balancing approaches. It retains the observed conditional densities
in the presence and absence classes, thus reducing the risk of overfitting and increasing model
generalizability, which is often compromised by oversampling methods. The Gini impurity criterion
was used to assess variable significance, whereby the lower the Gini impurity number, the higher
the node classification accuracy. The Gini number is a measure of the likelihood of an incorrect
classification of a randomly chosen element if it was randomly classified according to the observed
distribution of the class labels from the dataset. Random subsets of predictor variables were considered
during the training at each split, and the variable which had the lowest Gini impurity number was
chosen. To indicate the significance of each variable the mean decrease in the Gini impurity index was
calculated. All available data were fed to the RF during training, and the estimated WNND probability
therefore depicts the overall classification of each pixel as suitable or unsuitable for the occurrence of
WNND based on the cumulative agreement of the training predictors. Prediction was done over a
regular grid with 30-arc s resolution.

2.2.4. Model Validation

The Kappa statistic and the sensitivity and specificity metrics are the most common scores for the
validation and verification of machine learning models. Cohen’s kappa coefficient represents how well
the instances classified by the RF classification algorithm correspond to the observed data, controlling
for the baseline accuracy of a random classifier. A score >0.81 is considered excellent, 0.61–0.80 as
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substantial agreement, 0.41–0.60 as moderate agreement, 0.21–0.40 fair agreement, 0.00–0.20 slight,
and <0 as poor agreement [42].

The relationship between sensitivity, the fraction of true positives (number of true positives/
(number of true positives + number of false negatives)), specificity, and the fraction of false negatives
(number of true negatives/(number of true negatives + number of false positives)) indicates how well
the model is performing for the presence and absence classes.

The out-of-bag (OOB) error, or misclassification rate, is employed to calculate the internal
prediction error of the RF model. The verification of the RF model was performed on an independent
validation set. From the original data, 70% was used to train the model and 30% for testing and
validation, preserving the relative ratios of the presence and absence classes.

3. Results

During 2015–2019, a total number of 535 human WNND cases were confirmed in Romania.
We excluded from the database two cases from 2016, from Bucharest, due to the lack of the specific
location (sector). Overall, in the interval of our analysis, 308 localities were reported with at least one
positive case (Table 1). Out of these, during 2015–2019, in 267 localities WNND was reported only once,
in 26 twice, in 7 localities three times, four times in 5 and five times in 3. Both the number of human
WNND cases and the number of positive localities showed the same trend, with the lowest values in
2015 and the highest in 2018 (Figure 1). The number of new localities that were negative the previous
year and the number of localities that turned negative the following year are shown in Table 1.

Table 1. Number of human WNND cases, positive localities, and trend overview.

Variable 2015 2016 2017 2018 2019 Total

Total Human WNND Cases 32 93 66 277 67 535

Total Positive Localities
(% of total localities)

28
(0.87%)

65
(2.04%)

48
(1.50%)

185
(5.80%)

49
(1.53%) 308 *

New Positive Localities
(percent out of annual total)

not
calculated

59
(90.8%)

36
(75%)

170
(91.9%)

33
(67.3%) -

Localities that Turned
Negative in the Next Year

(percent out of annual total)

22
(78.6%)

53
(81.5%)

33
(68.75%)

169
(91.4%)

not
calculated -

* localities with cases in more than one year were calculated only once.
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The directional distribution was generated for each year individually between 2015 and 2019.
The standard deviational ellipse showed a south-eastern geographical distribution, most of the human
WNND cases being located in this region (Figure 2). The same trend was observed when compiling
the entire time period between 2015 and 2019 and analyzing the annual cumulative presence (n = 1, 2,
3, 4, or 5 years) for each locality (Figure 3).
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A weak correlation was observed between the number of human WNND cases for each year during
2015–2019 and the biotic and abiotic predictors (Spearman’s rank correlation coefficient) (Figure 4,
Tables S1 and S2 in Supplementary Materials). Higher correlations were obtained when comparing the
number of cases for the entire period (2015–2019) with the predictors (Figure 5). The average altitude
and the annual average humidity showed negative weak correlations. The average temperature in
spring, average temperature in summer, Eurasian collared dove, and western jackdaw abundance
showed weak positive correlations. We found the same weak correlations when comparing the annual
cumulative presence (0–5) with the predictors (Figure 6 and Tables S3 and S4, Supplementary Materials).
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A moderate positive correlation (0.3 < r < 0.8, p < 2.2 × 10−16) was recorded between the number
of years with human WNND cases (0–5) and the number of human cases for each year, with the lowest
correlation for 2015 and the highest correlation for 2018 (Table 2).

Table 2. Spearman’s rank correlation coefficient between the number of years with human WNND
cases (0–5) and the number of human cases for each year.

Year 2015 2016 2017 2018 2019

Spearman’s rank correlation coefficient 0.2972029 0.4517637 0.3884571 0.7636387 0.3927736

The correlation of cumulative presences (0–5) (Figure 6) and the predictors displays a similar
pattern to the correlation for the total number of human infections for 2015–2019 and the predictors
(Figure 5), as shown in Table S5 (Supplementary Materials).

In order to have a better understanding of the correlations that could affect the statistics, biotic
and abiotic predictors were correlated with each other (Figure 7). A relationship was observed between
temperature and relative humidity with altitude, reflecting their vertical profile (negative gradient for
temperature, positive gradient for humidity). In addition, an expected correlation was found between
the different temperature derivatives (average spring temperature, average summer temperature,
maximum average summer temperature). The Eurasian collared dove abundancy had a strong positive
association with western jackdaw abundancy; a moderate positive correlation was detected between
the rest of the wild bird abundancy models with each other.
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The predicted probabilities of human WNND occurrence in Romania are shown in Figure 8.
The higher probability area is located in the south and southeast part of the country. The lowest
probability for human WNND occurrence is located in the high-elevation region along the Western,
Eastern, and Southern Carpathians. The Transylvanian plateau has a slightly higher predicted
probability of human WNND presence. Several patches of higher predicted probability are present
along the western border. The highest predicted probability is around urbanized patches in the
southeast, especially in the highly populated area around Bucharest.
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The performance of the RF model was evaluated using an independent validation set; the main
verification metrics are given in Table 3. The balanced accuracy or percent correctly classified is 94%.
A Cohen’s index of 0.906 can be classified as almost perfect agreement with the validation set according
to the benchmark categories defined by Altman et al. [43]. The sensitivity and specificity indicate that
there is good discrimination between the presence and absence classes. The internal out-of-bag error
rate was 4.57% for 500 trees and a sub-set of 3 variables at each split.

Table 3. Random forest (RF) validation results.

Variable Balanced
Accuracy Sensitivity Specificity Cohen’s Kappa McNemar’s

Test p Value

Verification
metrics

0.94 0.911 0.967 0.906 0.0002671
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4. Discussion

In this study we aimed to identify the biotic and abiotic predictors able to influence the annual
and total number of human WNND cases in an endemic country [16], but also to understand the
determinants that influence the annual positivity in given areas.

The number of human WNND cases and the number of positive localities showed expected trend
similarities, due to the small number of infection cases per locality per year. This led to similarities
between the cumulative presences and the predictors, respectively, and the total number of human
cases and the predictors, showing small differences in correlations. The moderate positive correlation,
between the cumulative presence and the number of cases for each year could suggest the endemic
circulation of the virus in some localities.

Temperature has a positive effect on mosquito populations, by influencing the reproduction,
feeding, and the breeding season. Moreover, the risk of transmission of WNV is increased by higher
temperatures, due to the shortening of the incubation period [2]. Paz et al. [19] highlighted the
importance of the temperature positive anomalies in a West Nile disease outbreak, when positive
correlations were found in several European countries, including Romania. In the light of the weak
correlations we obtained between general (e.g., maximum average summer temperature) and combined
(e.g., average spring temperature) long-term temperature data, our assumption is that the human
WNND outbreaks could be influenced by the temperature anomalies in particular years.

Another factor that can influence outbreaks is the viral circulation in Africa [13,23], as well the
overwintering rate of the mosquitoes in the winter preceding the transmission season [44]. Our weak
correlation regarding the relative humidity and precipitation strengthen the inconsistent role of these
abiotic factors in the epidemiology of WNV [2,19].

WNV has an endemic circulation in the south and south-eastern part of Romania, where significant
outbreaks were registered in the past [12,15,16]. From one epidemic to another, there have been a large
number of cases with severe forms of illness and an increased death rate. According to our analysis,
most of the human cases were located in this part of the country, between 2015 and 2019.

The mean decrease Gini index identified the human population as the most important predictor
and the random forest regression model showed that the highest probability of an outbreak occurs near
highly urbanized areas. This is evident in the south-eastern part of the country, especially in Bucharest,
where certain sectors have recorded human cases for up to five consecutive years throughout the study
period. Previous studies have also identified high incidence rates in Bucharest [45]. This was also
proposed by Bradly et al. [46], who demonstrated a higher prevalence of anti-WNV antibodies among
songbirds when the degree of urbanization increased.

Culex spp. ornithophilic mosquitoes are considered to be some of the most important vectors for
WNV transmission [47]. According to Savage et al. [45], Culex pipiens was previously identified as the
main vector for WNV in Romania. A study conducted in the United States demonstrated that C. pipiens
feeds mainly on birds, followed by humans [48]. Highly urbanized areas are characterized by low
biodiversity but sometimes high densities [49]. Hence, the vertebrate hosts for mosquitoes are limited to
a few species, unlike in rural areas where the host spectrum is more diverse. This has been demonstrated
also for other vector-borne pathogens such as Borrelia spp., Anaplasma phagocytophilum, or Rickettsia
spp., which show a remarkably high prevalence in ticks collected from urban environments [50].

The role of birds in viral maintenance and amplification has been already established, and several
studies were previously conducted in Romania showing different levels of seropositivity among wild
and domestic birds [51,52]. Additionally, the important avian migration routes that pass-through
Romania were incriminated [45]. The birds were used as predictors due their important role as
amplifying hosts [53], their long and high viremia, as well as their proximity to humans.

To the best of our knowledge, this is the first study that compares the human WNND cases with
the wild bird species abundance. Our analysis included four bird species, all with a demonstrated role
in the epidemiology of WNV. Apart from the human population, the second most important biotic
factor was represented by the western jackdaw abundancy. Lim et al. [54] showed that jackdaws are
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susceptible to both WNV lineages (1 and 2) that are currently circulating in Europe. Other corvids are
also important reservoirs and amplifying hosts for the WNV [55], especially in the New World [56,57].
House sparrows are distributed worldwide and very common in urban areas, with their density being
positively influenced by the degree of urbanization [58]. Their role as important reservoir host was
previously established by Komar [59] in a study conducted in the US. Previous studies conducted
in Egypt showed that both house sparrows and hooded crows are able to develop high viremia [60].
Eurasian collared doves are globally distributed, and experimental infections conducted in the US
showed that they may develop viremia levels capable of infecting mosquitoes [61]. Despite the proven
role that birds play in WNV epidemiology, our results have not been conclusive.

In this study we highlighted the south-eastern distribution of the human WNND cases in Romania,
over a period of five years (2015–2019), and our statistical model using random forest regression showed
the same evolution trend especially around highly urbanized areas. We registered weak correlations
between human WNND cases and the biotic and abiotic predictors, but using the mean decrease Gini
index the human population, western jackdaw abundancy, total precipitations, and altitude ranked
first. Additionally, this is the first comprehensive study in Romania regarding the abiotic and biotic
factors that could influence the distribution of WNND infections among humans.

5. Conclusions

Increased surveillance and control measures of vectors should be implemented for better disease
management. Educational campaigns should be made available for the general public in order to
raise awareness of the disease and inform the population of prophylactic measures. Romania does not
benefit from an integrated surveillance system for WNV, so possible links between bird abundance and
human infections could provide valuable information. Awareness campaigns, targeted surveillance
and control of mosquitoes should be considered by the authorities mainly, at least in the identified
risk areas.
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for 2015–2019 [0–5]—host predictors. Spearman’s rank correlation rho. Table S5: Spearman’s rank correlation
coefficient (rho values) for the human WNND cumulative presence (2015–2019) and the predictors, for the total
number of human WNND cases for 2015–2019 and the predictors, and the differences between them.
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