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Abstract: Prior evaluations of the relationship between COVID-19 and weather indicate an inconsistent
role of meteorology (weather) in the transmission rate. While some effects due to weather may
exist, we found possible misconceptions and biases in the analysis that only consider the impact
of meteorological variables alone without considering the urban metabolism and environment.
This study highlights that COVID-19 assessments can notably benefit by incorporating factors
that account for urban dynamics and environmental exposure. We evaluated the role of weather
(considering equivalent temperature that combines the effect of humidity and air temperature) with
particular consideration of urban density, mobility, homestay, demographic information, and mask
use within communities. Our findings highlighted the importance of considering spatial and temporal
scales for interpreting the weather/climate impact on the COVID-19 spread and spatiotemporal
lags between the causal processes and effects. On global to regional scales, we found contradictory
relationships between weather and the transmission rate, confounded by decentralized policies,
weather variability, and the onset of screening for COVID-19, highlighting an unlikely impact of
weather alone. At a finer spatial scale, the mobility index (with the relative importance of 34.32%)
was found to be the highest contributing factor to the COVID-19 pandemic growth, followed by
homestay (26.14%), population (23.86%), and urban density (13.03%). The weather by itself was
identified as a noninfluential factor (relative importance < 3%). The findings highlight that the relation
between COVID-19 and meteorology needs to consider scale, urban density and mobility areas to
improve predictions.

Keywords: COVID-19; equivalent temperature; homestay; mask use; mobility; population;
urban density

1. Introduction

From late 2019, the new coronavirus (SARS-CoV-2 or COVID-19) has been swiftly spreading
around the world and affected over 21 million people (with ~776,000 fatalities) worldwide as of 15
August 2020 [1]. The virus initially emerged in Wuhan, China, and the World Health Organization
(WHO) was alerted on 31 December 2019 by the Chinese authorities about the pneumonia cases related
to COVID-19. By the end of March 2020, the virus was pandemically propagated through Europe (e.g.,
Italy, Spain, France) and Asia (e.g., Turkey, Iran, India) (Figure 1a), leading to national lockdowns,

Int. J. Environ. Res. Public Health 2020, 17, 7847; doi:10.3390/ijerph17217847 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
https://orcid.org/0000-0001-7211-3109
http://www.mdpi.com/1660-4601/17/21/7847?type=check_update&version=1
http://dx.doi.org/10.3390/ijerph17217847
http://www.mdpi.com/journal/ijerph


Int. J. Environ. Res. Public Health 2020, 17, 7847 2 of 17

quarantines, and global curbs. As of 15 August 2020, the COVID epicenter is the United States (USA),
with over 5.3 million confirmed cases, followed by Brazil, India, and Russia with 3.3, 2.6, and 0.9 million
cases, respectively (Figure 1b).

An increasing amount of scientific literature has focused on the environmental sensitivity of
COVID-19 to modulate the risk of transmission. However, the study caveats have likely obscured
plausible confounders and led to misconceptions about how weather drives COVID-19 exposure and
transmission [2]. With the evolution in the virus spread, more information and dataset have become
available, providing an opportunity to (re)assess the possible contributing factors to pandemic growth
in populous regions such as cities. The inconsistent conclusions related to the role of weather (‘climate’),
and the access to newer data, motivate the re-evaluation of the findings from the early-stage studies
that assessed the link between the COVID-19 transmission and weather.

Several attempts have been undertaken to evaluate the impact of meteorological parameters on
the spread of infectious diseases (e.g., influenza, SARS). For example, in northern Europe, the influenza
virus’ highest activity was found during periods with low ultraviolet radiation and colder periods [2].
A higher risk of SARS transmissibility was also reported in a colder environment (16 ◦C to 28 ◦C) [3,4].
Since the beginning of the COVID-19 pandemic, researchers have linked mean air temperature [5,6]
and absolute/relative humidity [7–9] with the pandemic growth. These studies have reported that
the novel coronavirus transmission can be suppressed in warm and humid conditions analogous to a
seasonal respiratory flu virus behavior [10].
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The findings of these studies, however, have been based on assessments over a relatively short
period (e.g., the study by Sajadi et al. [11]) or a specific geographical location (e.g., the analysis by
Rosario et al. [12]). As reported in Baker et al. [13], the studies during the early-stage of the COVID-19
pandemic could be inevitably inconclusive, given the limited available data and information about the
virus. Baker et al. [13] also simulated a pandemic event using a climate-dependent epidemic model and
showed that climate could drive only a modest change to the pandemic size. Similarly, recent studies
have reported that COVID-19 does not behave as other conventional coronaviruses based on weather
and seasonality patterns. For example, Iqbal et al. [14] used wavelet transform coherence to analyze
the impact of air temperature on COVID-19 spread and reported no link between temperature and
transmission rate in Wuhan, China. Similarly, in other studies in Spain [15] and Iran [16], researchers
reported no evidence of a relationship between COVID-19 cases and climatic parameters.

The temporal and spatial scale considered in a study can also impact the outcome and interpretation
of the findings. For example, in the study by Tosepu et al. [5] in Jakarta, Indonesia, the range of
vulnerable air temperature for the virus spread was reported to be between 26 ◦C and 28 ◦C. In contrast,
Sajadi, Habibzadeh, Vintzileos, Shokouhi, Miralles-Wilhelm and Amoroso [11] reported the range
between 5 ◦C and 11 ◦C over the USA (considering the data until March 2020), and Gupta et al. [17]
reported the vulnerable air temperature between 3 ◦C and 17 ◦C over the USA (considering the data until
mid-April 2020). In China, several studies [18,19] have reported the efficacy of COVID-19 transmission
in cold and dry environments. In contrast, Poirier et al. [20] reported that the weather-driven parameters
are not necessarily correlated with the COVID-19 outbreak when different spatial scales are considered.
These inconsistencies substantiate the role of “spatiotemporal scale” and “statistical method” to
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interpret the impact of meteorological parameters on the COVID-19 pandemic, as noted in a review
study by Briz-Redón and Serrano-Aroca [21].

Evaluating the impact of meteorological parameters on the epidemic spread of COVID-19 is
challenging because of the unknown implications of several intermediate parameters on the behavior
and pattern of the transmission [22]. The clinical studies have consistently reported that the most
frequent and plausible coronavirus transmission routes are “droplet transmission”, “direct contact
transmission” (not involving contaminated surfaces), and “indirect contact transmission” (involving
contaminated surfaces) [23–25]. Thus, tracking the transmission routes is possible for clinical trials and
not in a population-level scenario. In a real-world setting, the modes of the virus transmission are
indirectly mirrored or triggered by contact-based dynamics that are, we postulate, better exemplified
within an urban exposure environment. For example, a higher number of daily trips in a city with
higher population density translates into a greater chance of contact among people, which increases
the likelihood of the virus spread.

Specific environmental and socioeconomic components such as individual health and hygiene
factors (e.g., washing hands or sanitizing, living conditions, and working environments) are difficult to
track; yet, several datasets for critical factors affecting the virus transmissibility are available. Examples
of critical elements and available datasets include gridded demographic data [26], mobility and
foot-traffic data from Google community reports [27] or SafeGraph [28] as indicators of social and
physical distancing, and mask-wearing data [29]. By account for the interplay between these factors
and the virus transmission dynamics, we could reduce the uncertainty regarding the relation between
weather/climate and the COVID-19 pandemic.

In this study, we evaluated the impact of a weather-driven parameter (represented by the
equivalent air temperature) on COVID-19 transmissibility by considering the role of population and
density (number of people per area of land), mobility and homestay metrics, and mask usage at various
spatial scales from global to county levels. The findings will be of interest to policymakers, medical
centers, and future risk assessment studies as communities try to develop mitigation strategies against
COVID-19 and similar infectious diseases.

2. Materials and Methods

The study investigates the association between the equivalent air temperature (as a representative of
weather) and the COVID-19 spread at different spatial scales. We first evaluated the weather-COVID-19
correlation at global and regional scales. Regions included Europe, Southeast Asia, the Eastern
Mediterranean, the Americas, Africa, and the Western Pacific. Second, we considered the analysis at a
national level by analyzing data for countries worldwide. Examples of the countries discussed in the
study include Brazil, China, Australia, Italy, India, and the United States. Next, we performed the
analysis at a finer spatial scale, considering the USA. data at state and county levels. For the USA,
we further evaluated the role of weather in conjunction with urban density and population, mobility
and homestay metrics, and mask usage. These factors were considered the plausible pathways that
increased the likelihood of contact among people and exemplified transmission routes suggested by
clinical trials. The structure of the study is provided in Supplementary Figure S1.

2.1. COVID-19 Data

We retrieve the daily data of COVID-19 infected cases globally (for all countries worldwide) from
the World Health Organization (WHO, at https://www.who.int/) covering 1 January to 15 August
2020. At the county level over the United States, the COVID-19 data was retrieved from the Centers
for Disease Control and Prevention (CDC, at https://www.cdc.gov/) and aggregated to the state and
national levels corresponding to the targeted analysis. We resampled the data from daily to weekly
infected cases for analyzing the transmission rate and computed the changing ratio as the percentage
change between the two consecutive weeks.

https://www.who.int/
https://www.cdc.gov/
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2.2. Equivalent Temperature

Previous studies have focused on three prime weather-driven factors: air temperature, relative
humidity, and absolute humidity. In this study, we used a new parameter, namely the equivalent
temperature, that considers the combined effect of temperature and humidity. The equivalent
temperature can be calculated from several formulations. Here we used an approximation proposed
by Stull [30] and Fall et al. [31], that is particularly useful when considering gridded datasets globally.

Te = T +
Lv

Cpd
r (1)

where T is air temperature (K), Lv is the latent heat of evaporation (kJ/kg), Cpd is the specific heat of dry
air at constant pressure (1005.7 J/(kg·◦K), and r is the mixing ratio (kg/kg). To consider the impact of air
temperature at different locations, we followed the Priestley–Taylor method [32] to compute the latent
heat of evaporation:

Lv = 2.5− 0.0022× T (2)

The air temperature and mixing ratio data were retrieved from reanalysis gridded products
described in the next subsection.

2.3. Reanalysis Dataset

To calculate the equivalent temperature globally, we used air temperature, surface pressure, and
mixing ratio data from NASA’s Modern-Era Retrospective Analysis for Research and Applications,
version 2 (MERRA-2) publicly available from https://disc.gsfc.nasa.gov [33]. MERRA-2 employs forecast
models to combine disparate observations in a physically uniform manner and provides consistent
meteorological observations as gridded datasets. While there are different reanalysis products available
at a global scale, MERRA-2 delivers the relatively lowest latency (~1 month) with explicit assimilation
of surface datasets and features. Hence, we used it in our analysis. To compute the equivalent air
temperature over the United States, we used the North American Land Data Assimilation System
(NLDAS) reanalysis data [34]. We used NLDAS data primarily due to its higher resolution (~12 km)
compared to MERRA-2 (~50 km) since we needed to account for the heterogeneity and variability in
the USA counties. The reanalysis data for air temperature, surface pressure, and mixing ratio were
retrieved at daily (for MERRA-2) and hourly time steps (for NLDAS) and reaggregated to weekly
data. The data were initially pre-processed using netCDF Operator (NCO) and Climate Data Operator
(CDO) and transferred to the Python environment for further analysis.

2.4. Demographic Information and Urban Density

The information on the population and area for countries was retrieved from the WHO’s
“Demographic and Socioeconomic Statistics” section. Since a detailed analysis was required at finer
spatial scales (county-level over the USA), we used the geospatial distribution of the population over
the US available from https://www.worldpop.org/ [26,35]. This data product has been generated at
~100 m spatial resolution and available in a georeferenced format from 2000 to 2020. The dataset has
been evaluated and used in several studies (e.g., references [35–37]). The aggregated population data
at 1 km spatial resolution was retrieved over the USA, and the urban areas were defined following the
recommendation from the US Census Bureau. Accordingly, we described the regions with more than
2500 as the urbanized cluster and urbanized area. The urban demarcation was compared against other
urban maps for three subdomains, and a good match was noted. Statistical analysis was carried out in
a GIS environment to estimate the size of the urban areas. The urban density was computed as

Urban Density =
Population o f the urban area

Urban area (km2)
(3)

https://disc.gsfc.nasa.gov
https://www.worldpop.org/
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For each USA county, the population and density of urban areas were extracted and used to
analyze COVID-19 spreading.

2.5. Mobility, Homestay, Mask Usage Metrics, and Statistical Analysis

For the mobility metric, we used data provided by the SafeGraph team (available upon request
from https://www.safegraph.com/) and the USA Bureau of Transportation Statistics (BTS, available
from https://www.bts.gov). The mobility data from SafeGraph was generated using a panel of GPS
pings from anonymous cellphone devices at a spatial resolution of the census block group. For each
device, the “home” was determined using the common nighttime location over a six-week time window.
This information was used to determine the population that stayed at home (homestay). The number
of daily trips was also collected from GPS data to compute the mobility metric. The BTS data employed
a similar methodology estimating the daily travel from cellphone devices data and used a multi-level
weighting method to address the geographic and temporal variations.

In this study, we aggregated the data to the county level and considered the number of trips
(traveling 1–100 miles per day) as a mobility metric. We also computed the percentage change in the
number of trips in 2020 compared to the same date in 2019 and considered it the mobility index (%).
Considering SafeGraph and BTS criteria, the population that remained at home during the pandemic
was regarded as the homestay metric. The percentage change in the number of homestay population
in 2020 relative to the same date in 2019 was considered as the homestay index (%).

The mask usage data was retrieved from the New York Times GitHub repository (available at
https://github.com/nytimes/covid-19-data). The data estimates the prevalence of mask-usage in the
USA counties and has been generated based on many online interviews between 2nd Jul and 14th Jul
2020. The survey responses have been transferred into county-level estimates using a weighted average
by age, gender, and survey respondents’ locations. The 200 nearest responses to each census tract were
considered the mask-wearing estimates for that census tract and aggregated to the county level. The
data set provides the percentage of the population (in each county) that used masks and is represented
in five categories: NEVER, RARELY, SOMETIMES, FREQUENTLY, and ALWAYS. We considered
the weighted average of the five categories with the weighting coefficient of 0.25, 0.5, 0.75, and 1,
respectively, for RARELY, SOMETIMES, FREQUENTLY, and ALWAYS as the average mask-wearing
population in a county. These data were only available and processed over the United States.

In addition to the spatial analysis and correlation coefficients (i.e., r2 or the coefficient of
determination), to identify the relative importance of the contributing factors to the COVID-19, we
followed the guidelines by Tonidandel and LeBreton [38] and applied multiple regression analysis.
We calculated orthogonal weights (ZXk) corresponding to the number of variables (k) and regressed
the dependent (number of infected cases) and independent variables (e.g., Mobility or Xj) on ZXk
to derive standardized regression coefficients (βk and λ jk). The relative weight for each of the
independent variable was calculated as: β2

1λ
2
11 + β

2
2λ

2
12 + β

2
3λ

2
13 (Supplementary Figure S2). Using only

the standardized regression weights could not accurately represent the importance of a variable as it
does not appropriately partition the data variance when predictors are correlated. Using the relative
importance analysis, we could expect a more accurate representation of each factor and its relative
importance on the dependent variable (number of infected cases).

3. Results

To provide an overview of the COVID-19 infected cases, we first presented the data at a global
scale (Figure 2a) and the USA (Figure 2b). Figure 2a is categorized for different regions as per the
WHO’s criterion. The highest number of cases were in the Americas, followed by Southeast Asia and
Europe. During the first wave of the virus spread (until mid-May 2020), Europe and the Americas
had the most significant share of the COVID-19 cases. During the second wave (from mid-May to
August), the number of cases in Europe declined, while this figure increased in Southeast Asia and the
Americas. Given the highest number of infections in more populous areas (e.g., the USA and Brazil in

https://www.safegraph.com/
https://www.bts.gov
https://github.com/nytimes/covid-19-data
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the Americas region, and India in South Asia), highlight the importance of considering the population
as a factor affecting the COVID-19 transmission rate.Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 6 of 17 
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Figure 2. Top row: The number of daily COVID-19 cases from January 2020 for (a) at the global scale
with the World Health Organization (WHO) regional divisions, and (b) in the United States Lower row:
The correlation between the number of infected cases and population of the area at (c) the national
level, (d) the state level over the United States, and (e) county level over the United States.

The strong correlation between the COVID-19 infected cases and population (r2 = 0.41 to 0.85)
is shown at a global scale (Figure 2c), and over the USA at the state level (Figure 2d) and county
level (Figure 2e). The resulting correlation highlighted the need to normalize the data relative to the
population for evaluating the impacts of weather parameters. We divided the number of infected cases
in a region by the regional population and considered it as the COVID-19 infected proportion.

3.1. Analysis at the Global Scale (Regional and National Level)

The global distribution of COVID-19 cases (aggregated over April and July 2020) and the equivalent
temperature (averaged over April and July 2020) are shown in Figure 3. Comparing different regions
and countries in Figure 3, we noted diverse patterns between the spreading rate and spatiotemporal
distribution of equivalent temperature. In the northern hemisphere, considering the USA, the number of
infected cases has risen with the increase in the equivalent temperature from April to July. Concurrently,
the number of infections in Europe and Asia (e.g., in Spain, Turkey) has decreased despite higher
equivalent temperatures. Similarly, in the southern hemisphere taking the examples of Australia and
Brazil, we noted disparate patterns between the COVID-19 infected cases and equivalent temperature.

To better illustrate the spatiotemporal patterns mapped in Figure 3, we converted the weekly
cases of COVID-19 in each country to the infected proportion. We assessed its correlation with
the equivalent temperature (averaged spatially over each country). The scatter plots of Figure 3
show the resulting correlation for different geographical regions. Splitting the data into the regional
segments helped reduce the bias imposed by the contrasting weather across the regions (compared to
a global analysis). The resulting correlations were not statistically significant except for the Eastern
Mediterranean, for which a significant but low correlation (r2 = 0.26, p < 0.05) was found. Note that in
Eastern-Mediterranean countries, the onset of COVID-19 testing and collecting data coincided with
warmer months of the year. In Iran, as an example of a country in the Eastern-Mediterranean region,
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the COVID-19 screening started in early April [39]. From April, the air temperature typically increases
in the region; therefore, a biased correlation between the number of infected cases and warm weather
was expected.
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Figure 3. The spatial maps: global distribution of the COVID-19 cases and averaged equivalent
temperature (◦C) (TE) during April and July. Scatter plots: The correlation between COVID-19 infected
proportion (%) and equivalent temperature (◦C), considering different geographical regions from
January to July 2020.

At the country level, the equivalent temperature variations were not consistent with the
transmission rate. As shown in Figure 4, from January to July 2020, countries like the USA, Italy, and
India have experienced a positive trend, while in China, Brazil, and Australia, the trend was negative.
These assessments emphasized the importance of scale, both temporally and spatially, when the virus
transmissibility is evaluated against meteorological parameters. Thus, considering the relationship
between COVID-19 cases and weather-driven variables at a country level may not necessarily represent
the actual behavior of COVID-19 transmission. For example, Rosario et al. [12] reported that high solar
radiation and temperature could effectively suppress the spread of COVID-19 in Brazil, while Xie and
Zhu [19] noted an opposite trend in China.

Some studies have linked the impact of latitude on the number of coronavirus cases, postulating
that the mid-latitude countries experience more COVID-19 issues [11,40,41]. Contrary to these
findings, we highlight that the latitudinal effect is invalid when we consider the country’s population.
As demonstrated in Figure 4, while a larger portion of the COVID-19 cases was found in mid-latitude,
we noticed that these coincide with the higher number of populations living in these areas (Figure 4h).
Normalizing the data based on the population (Figure 4i), we obtained a nearly equal distribution
of the COVID-19 in high, low, and mid-latitude. Therefore, the latitude was not correlated with the
COVID-19 cases; instead, the population led to a higher number of infected cases in mid-latitudes.

The overall pattern achieved at the global scale is shown in Supplementary Figure S3. While the
infected proportion was marginally reduced in warmer weather, the changing rate did not exhibit any
consistent pattern. The absence of a trend in the changing rate of COVID-19 cases for the change in
equivalent temperature showed the insensitivity of COVID-19 transmission with the increasing or
decreasing temperature (Supplementary Figure S3b,c). The infected proportion was not statistically
different when the equivalent temperature was between 0–10, 10–20, and 30–40 ◦C. Although the
statistical analysis showed the highest infections in the range of −10–0 ◦C and the lowest in the 20–30 ◦C
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range, these findings were biased due to the significantly different frequencies of cases in the countries
in these ranges (Supplementary Figure S3d).
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and (i) the proportion of infected cases normalized based on the population.

The COVID-19 pandemic has forced the countries to adapt rapidly to new policies and procedures
to stop or slow down the virus spread. Given the impact of centralized or decentralized actions on
the novel coronavirus, on the one hand, and the impact of the geographical location of a region on its
weather, on the other hand, it will be unlikely or too convoluted to extract the true role of weather on
the pandemic growth over a large spatial scale. The analysis considering a large spatial scale can be
biased due to several caveats: (i) The weather type and regime can vary distinctly across a country or a
region. Assessing the averaged equivalent temperature over the whole area for correlation analysis
could be subject to bias, although it provides a broad understanding. (ii) Each country and region has
been subjected to different strategies and policies which were not considered in the initial assessments
reported in the literature thus far. (iii) The local policies and adaptation/mitigation strategies may
dynamically change during the COVID-19 pandemic depending on the magnitude of the virus spread
in the area. (iv) The timing of COVID-19 testing could directly bias the result as it was exemplified in
the Eastern Mediterranean region.

Overall, the inconsistent relation cross different spatial extent highlighted the limited role of
weather in the COVID-19 spread. Results indicated an increase, decrease, and no change in the number
of infected cases and infected proportion for a constant range of equivalent temperature. Thus, the
COVID-19 spread is likely controlled by other environmental factors rather than the regional climate.
Given the caveats at the global and regional analysis, we performed a more detailed analysis at a finer
spatial scale (county-level over the USA) to better understand the role of climate in the pandemic
growth for other possible contributing factors. Typically, the weather does not vary distinctly at the
county level (compared to a regional scale) and provides a more controlled environment to assess the
interplay between the contributing factors. The following sub-sections provide the analysis for the
equivalent temperature, urban density, mobility, homestay, and mask-wearing for the USA counties.

3.2. Impact of the Urban Area and Density on COVID-19

To evaluate the impact of urban area and density, we narrowed our focus over the US. The results
for the urban areas and density are illustrated in Figure 5a. The mean of urban density per county
was calculated, and the results are shown in Figure 5b. A visual comparison between the urban
density (Figure 5b) and the total number of cases at the county level (Figure 5c) illustrated a probable
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correlation. The correlation between urban density and COVID-19 cases was notable in the southwest
and northeast of the country. When the number of COVID-19 cases was normalized by the county-level
population (Figure 5d), a different pattern emerged. The overall infected proportion was higher in
southeastern and southern USA counties, with some instances in the eastern and northeastern sides.
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Figure 5. (a) Distribution of urban density, (b) averaged urban density by county, (c) cumulative
cases on COVID-19 at the county level, (d) COVID-19 infected proportion at county level over the
United States.

It should be noted that the role of urban population and density differ considering their functionality
and impact on COVID-19 cases. A larger population relates to a higher number of potential hosts for
the virus, directly linked with the spread of the COVID-19 cases (also shown in Figure 2). A higher
urban density, however, hypothetically relates to a higher chance of contact, exposure, and interactions
between people, and therefore, indirectly can cause an increase in COVID-19 cases. To illustrate this
difference, an example of two counties (the Suffolk and New York counties) with contrasting urban
density but similar weather, imposed policies, and a relatively similar population was considered
(shown in Supplementary Figure S4).

The Suffolk and New York counties are among the most populated in the USA, with 1.48 million
and 1.62 million people, respectively. However, the urban density in these two counties differs
significantly, with a mean value of 32,000/km2 for New York county and 5800/km2 for Suffolk county.
The substantially higher urban density in New York county compared to the Suffolk county (while the
population is similar) resulted in three times higher infected cases in New York county during the
early stages of the pandemic (March 2020). However, considering the data until July, a higher number
of infections were found in Suffolk county, highlighting the impact of the factors beyond population.
A similar pattern was also observed when all counties were analyzed. That is, other socioeconomic
factors affect infection rates. The comparison here highlights that it is not just the population but the
urban density that prominently contributed to the infection rates.

The number of coronavirus cases exponentially grew as urban density increased, suggesting a
higher chance of COVID-19 transmission when the urban density was higher than 1400 people/km2

(shown in Supplementary Figure S5). After controlling the effect of the population (i.e., normalizing
the number of infected cases by population), the resulting correlation was less pronounced (though
statistically significant). Thus, it was not consistent with the initial hypothesis (that urban density
leads to higher transmission). The temporal scale was likely the reason for the low correlation between
COVID-19 infected proportion and urban density. During the early pandemic in the USA, the first cities
and counties significantly affected by the virus had a dense population (e.g., the Bronx, King, Queens,
and New York counties, as shown in Supplementary Figure S5c). However, as the pandemic grew, new
rules and policies helped curtail the spread of the virus, making the role of urban density less apparent.
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The exponential increase of virus transmissibility during the early pandemic was transformed into a
linear growth and showed less difference between the ranges of urban densities when all data (until
July 2020) were considered (shown in Supplementary Figure S5d,e).

3.3. Impact of Mobility, Homestay, Mask Usage, and Weather on COVID-19

We evaluated the impact of mobility and homestay on the number and changing rate of COVID-19
at the USA county level. The percentage change of mobility and homestay at the county level was
determined (by comparing the data in 2020 paired with a similar date in 2019), and the results are
shown in Figure 6. There was no significant difference during March (early pandemic) compared to
the previous year (2019). Yet, the eastern part of the country experienced more mobility (the reduction
in mobility was marginally negative, i.e., red colors) compared to the west (the reduction in mobility
is shown in green colors). In April, the mobility has reduced dramatically, nationwide, after that in
May and July, with the imposed policies, mobility again increased. A similar pattern was observed
with the change in the number of people who stayed home during the pandemic (Figure 6, homestay
column). In April, the homestay was the highest, and it decreased after April. Comparing the change
in mobility and homestay with the number of COVID-19, we note a feedback between these variables.
From March to April, the increasing number of cases due to community spread [42] caused people to
reduce mobility and increase homestay, which, in turn, slowed the rate of community spread. In May,
a notable change was observed in mobility and homestay metrics, as depicted in Figure 6 (i.e., green
colors shift to red from April to May). With the reopening policies, homestay percentage reduced,
and mobility increased, which likely accelerated the community spread, and thus, the number of
COVID-19 cases significantly increased during May in the United States. This increase coincided
with the warmer season with higher temperatures and humidity (Figure 6, last column). Figure 6
provides an overview of the spatial correlation, and the changing rate of these variables was analyzed
to interpret the association.
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Figure 6. The spatial distribution of mobility and homestay change (the percent of increase or decrease
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and COVID-19 cases (third column) along with the mean equivalent temperature across the USA
(rightmost column).

Figures 7 and 8 show the time series of the data (for all counties) and display how the weekly
percentage change of COVID-19 cases was correlated with mobility and homestay changing rates. The
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probability density function (PDF) and cumulative density function (CDF) associated with this analysis
are shown in Supplementary Figure S6. The virus transmissibility was better correlated with mobility
change and homestay. Weak correlations were noted when the COVID-19 growth rate was compared
against the equivalent temperature. Considering the period from March to July, the transmissibility rate
change became increasingly correlated with mobility and homestay (from r2 of 0.004 to 0.26, as shown
in Figure 7). This trend was compatible with the general understanding of the COVID-19 spreading
rate, considering a higher transmission rate with more daily trips (mobility) and less homestay. As a
result, a low correlation was expected. In a population-level setting, not all the trips would lead to the
virus spread. Several other factors are involved in this process, but as shown in Figure 7, the more
mobility and less homestay favored the virus transmissibility. At the time of conducting this study,
the imposed policies (e.g., stay-at-home directives) over the USA were mostly decentralized, issued
by local authorities at the state level. Given these variable responses across different states and the
complex dynamics of human mobility, it continues to be a challenge to delineate a strong association
between meteorology, mobility, and homestay.
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Figure 7. The relation between the weekly changing rate of infected cases and mobility in the form of
weekly change in the number of trips (top row) and homestay in the form of weekly change in the
number of home-stayed population (bottom row) over the USA counties from March to July 2020. The
middle row shows the time series of daily COVID-19 infected cases aggregated for all the USA counties,
and timeseries of daily mobility and homestay (%) indices averaged over the USA counties.

Thus, the increasing or decreasing equivalent temperature did not yield a significant correlation
(r2 < 0.002) with the changing rate of COVID-19 cases (Figure 7). For example, during June 2020, when
a 2.5 ◦C increase in the equivalent temperature occurred, both positive (+120 weekly infected cases)
and negative (−125 weekly infected cases) changes were observed. The nearly equal distribution of
these changes resulted in a neutral trend (the horizontal fit lines in Figure 7). Therefore, we could
not establish any impacts of the weather (i.e., equivalent temperature) on changing the COVID-19
transmission rates.

Consistent with our results, we highlight the analysis by Kraemer et al. [43] that used near-real-time
mobility data and explained the COVID-19 spread across China. Although the impact of homestay,
urban density, and the weather was not included in their analysis, most of the virus spread could be
explained by the travel data alone. Over the USA, Badr et al. [44] analyzed the correlation between
mobility and COVID-19 cases and reported a strong correlation (r2 > 0.7). However, they only
considered 25 counties over the USA and did not remove the population impact. The population would
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affect both magnitudes of the cases (as we showed) and mobility. A higher population translates into
higher daily trips and mobility. From a societal impact perspective, the positive role of mobility and
homestay on curbing the COVID-19 transmission has also been highlighted in Sen-Crowe et al. [45].
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al. [47] have provided a conceptual model to quantify the impact of mask-wearing on the 
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Figure 8. Similar to Figure 7, but for mean equivalent temperature (◦C).

Figure 9 shows the percent of the population in each USA county that has used a mask in daily
interactions during July 2020. Comparing the mask-wearing percentage with the number of COVID-19
cases during the same period showed an “effect-and-cause” scenario. That is, in the areas with a
higher infected population (i.e., southwest, coastal east), the mask-wearing percentage was also higher,
suggesting that mask usage was likely dictated by the COVID-19 spread and the ensuing rules that
followed. The shift in the COVID-19 cases for the percentage of people in each mask usage category
highlighted the “effect-and-cause” postulation (Figure 9, lower row). For example, the counties where
70–80% of the population always used masks (considering category: ALWAYS) also corresponded to
higher COVID-19 cases, while the part of the community that never used a face cover (considering
category: NEVER) was in counties with low infected cases. Thus, mask use by itself was a tricky
confounder that should be used with considerable caution when developing future analysis.
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Figure 9. Upper row: spatial distribution of mask use across USA counties during July 2020 (according
to the survey data from the New York Times) and COVID-19 cases during July. Lower row: commutative
number of COVID-19 cases corresponding to the binned range of mask use (%). The mask usage
categories shown in the lower rows figures denote the percentage of the population that “never,”
“frequently,” and “always” used a mask in daily interactions.
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The limited mask-wearing data availability (only available during July) hinders our study from
reflecting on the importance and explicit role of mask-wearing in the containment of the COVID-19
infection rate. However, many clinical studies confirmed the positive impact of mask-wearing on
reducing the air dispersion and droplets during a human cough [30,46]. For example, Eikenberry et
al. [47] have provided a conceptual model to quantify the impact of mask-wearing on the transmission
rate. They reported wearing a mask by 80% of the population could reduce the projected mortality
rate by 17–45% in New York, and by 24–65% in Washington state in the United States.

3.4. Relative Importance of the Factors Affecting COVID-19

After analyzing the impact of weather, mobility, urban density, population, homestay, and
mask-wearing, separately on the COVID-19 outbreak, we conducted a multiple regression analysis [38]
to evaluate the relative importance of these variables with respect to each other. The changing rate of
COVID-19 cases was compared against other variables at a monthly scale, and the results are shown
in Figure 10. We did not include the mask usage as the data was only available during July, and the
correlation was, as discussed above, an “effect-and-cause” scenario. The multiple regression weighted
coefficient was rescaled and considered as the relative importance of the variables. The resulting r2

of the multiple regressions varied from 0.52 to 0.57, with mobility, homestay, and population as the
most important contributing factors to the COVID-19 transmissions. The importance of urban density
reduced from May to July during the pandemic, which was compatible with the results previously
discussed in the section related to urbanization (Section 3.2). The impact of weather (i.e., equivalent
temperature) remained the least contributing factor with less than 3% of relative importance. Therefore,
when evaluating the role of weather on COVID-19 transmission, it is necessary to consider factors
such as population, urban density, mobility, and homestay and ensure that these effects are explicitly
considered or removed from the data.Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 14 of 17 
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Nevertheless, our analysis showed that the impact of weather was not greater than 3%.
This highlights irrespective of the weather type, without safety considerations in daily mobility,
newer waves of COVID-19 can occur. We note that the analysis could be subjected to the input
data’s bias as the data originated from a dynamic source, namely human activity. Additional factors,
including personal health and hygiene factors, age, and re-openings, could confound the results.
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4. Conclusions

Evaluating the impact of individual factors on the outbreak of infectious diseases, such as
COVID-19, is challenging in an unsupervised environment. For most parts, this complexity stems from
the dynamics of individual behavior in a complex environment (e.g., urban setting) and limitations
in the data (e.g., spatial resolution, local influences). The analysis is compounded further by the
spatiotemporal lags between the causal processes and effects (in this case, the exposure and the
reporting). Since the start of the COVID-19 pandemic, studies have attempted to address the role of
weather in regulating the COVID-19 transmission.

Our assessment indicated possible misconceptions and biases in the analysis, primarily when the
study focused only on the effects of meteorological variables alone. No compelling evidence was found
to include weather as a significant contributor by itself to the spread of the COVID-19. The evidence from
controlled small-scale laboratory experiments on the factors affecting the transmissibility mechanism
of infectious respiratory diseases (e.g., transmission through contact) highlights how these factors are
manifested in real life. We found the characteristics exemplified in urban metabolism or footprint as
essential considerations when COVID-19 transmission is studied. Our findings highlighted the critical
role of spatial and temporal meteorological scales on interpreting the impact of environmental factors
on COVID-19 spread. The function of urban density, for example, was found to be determinative
considering the colossal outbreak in New York within a short time during the early pandemic (March
2020). As the COVID-19 pandemic evolved, counties with lower density showed more infections due
to other dynamical factors.

At the finer scale (i.e., the USA county level), the role of urban density, mobility, homestay,
and the population was evident in affecting the infection rate. These factors resulted in a low
(r2 < 0.3) correlation at the county level in the USA, highlighting the strongly nonlinear behavior of
the incorporated elements. Based on our analysis, the weather by itself was identified noninfluential
factor (relative importance < 3%); therefore, when the weather is considered in a study, finer-scale
data is recommended, which accounts for urban form, function, and density. Our findings can help
deploy decisions and policies on the COVID-19 outbreak and restructure the role of different factors
for modeling the transmission and spread of the virus that considers the urban processes, density,
mobility, and population in developing an improved understanding.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/17/21/7847/s1.
Figure S1: The overall structure and order of the analysis performed in the paper. Figure S2: Schematic figure
of the calculations used in the relative importance analysis adapted from Tonidandel and LeBreton [38]. In the
figure, we provide an example of three predictors, and the analysis (with a similar concept) was done for five
predictors, including Mobility, Homestay, Weather, Population, and Urban density. Figure S3: The correlation
between (a) COVID-19 infected proportion (%) and equivalent temperature (◦C), (b) the change rate of COVID-19
infected proportion (day-1) and equivalent temperature (◦C/day), (c) the averaged COVID-19 infected proportion
for 10 ◦C binned range of equivalent temperature, and (d) equivalent temperature histogram. ‘ns’ stands for not
significant and ‘**’ stands for statistically significant bins. Figure S4: Comparison between New York and Suffolk
counties in terms of urban density and its impact on COVID-19 cases (a) during early pandemic (February to
March 2020) and (b) based on all available data until August. Figure S5: The correlation between urban density
and (a) COVID-19 cases, (b) COVID-19 infected proportion based on cumulative data until August 2020, (c)
COVID-19 infected proportion based on data from the first two weeks of March 2020, (d) averaged COVID-19
proportion for different ranges of urban density based on data of March 2020, (e) averaged COVID-19 proportion
for various degrees of urban density based on data until August 2020, and (f) histogram of the density of urban
areas over the United States. Figure S6: The probability density function (PDF) and cumulative density function
(CDF) of weekly infected cases (first row); mobility index (%) (second row); homestay (%) (third row); and mean
equivalent temperature (◦C) (fourth row) over the USA counties from March to August 2020.
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