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Abstract: Scientifically characterizing the spatial-temporal distribution characteristics of agricultural
land use intensity and analyzing its driving factors are of great significance to the formulation of
relevant agricultural land use intensity management policies, the realization of food safety and
health, and the achievement of sustainable development goals. Taking Hubei Province as an example,
and taking counties as the basic evaluation unit, this paper establishes an agricultural land use
intensity evaluation system, explores the spatial autocorrelation of agricultural land use intensity in
each county and analyzes the driving factors of agricultural land use intensity. The results show that
the agricultural land use intensity in Hubei Province increased as a whole from 2000 to 2016, and
the spatial agglomeration about the agricultural land use intensity in Hubei Province experienced
a process of continuous growth and a fluctuating decline; the maximum of the Global Moran’s
I was 0.430174 (in 2007) and the minimum was 0.148651 (in 2001). In terms of Local Moran’s I,
H-H agglomeration units were mainly concentrated in two regions: One comprising the cities of
Huanggang, Huangshi and Ezhou, and the other the cities of Xiangyang and Suizhou; the phenomenon
is particularly obvious after 2005. On the other hand, factors such as the multiple cropping index
(MCI) that reflect farmers’ willingness to engage in agricultural production have a great impact
on agricultural land use intensity, the influence of the structure of the industry on agricultural
land use intensity varies with the degree of influence of different industries on farmers’ income,
and agricultural fiscal expenditure (AFE) has not effectively promoted the intensification of agricultural
land use. The present research has important significance for enhancing insights into the sustainable
improvement of agricultural land use intensity and for realizing risk control of agricultural land use
and development.

Keywords: spatial-temporal differentiation; agricultural land use intensity; county scale;
Hubei Province

1. Introduction

Agricultural land use intensity not only has a direct impact on food security, but also affects
the realization of rural sustainable development goals [1]. In order to meet the demand for food
through agricultural development, China has been increasing its food production capacity by increasing
agricultural input for decades, and agricultural land use intensity has changed dramatically. Therefore,
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it is necessary to characterize the spatial-temporal characteristics of agricultural land use intensity in
order to explore the internal law to provide a reference for future agricultural production practice.

Research on agricultural land use intensity has focused on the methods or indicators of
characterizing agricultural land use intensity [2], its impact on social-economics development, its impact
on the ecological environment [3] and so on. In terms of the methods of characterizing agricultural
land use intensity, research showed that: (i) a new system has been constructed using farm accounting
network data that include land use, socio-economic factors, local climate, and government subsidies
to calculate the unit land cost input [4]; (ii) Polynomial regression models have been applied to
detect the spatial distribution of agricultural intensity in France in order to provide an important
reference for the implementation of related agricultural policies [5]; and (iii) Some scholars still
use indicators of the inputs or outputs to measure agricultural intensification based on traditional
agricultural statistics. Indicators of inputs include fertilizers, intercropping levels [6,7], nitrogen input
(for arable land and permanent grassland), livestock unit density and pesticide amounts (herbicide,
insecticide, and flame-retardant herbicide and insecticide) [8,9], while indicators of the outputs
include cereal and animal husbandry products [10], which have only been applied to analyze the
characteristics of agricultural land use and their informative significance, rather than focusing on
the innovation of characterization methods [11–13]. Despite the development of remote sensing
science, few scholars have used remote sensing images to characterize agricultural land use
intensity dynamically and in real time [14–17]. On the other hand, the impact of agricultural
land use intensity on socio-economic development has been shown to be mainly concentrated
around the relationship with population [18], urbanization [19,20], rural transformation [21],
food production [22], and food security [23], which have effectively guided the coordinated and
sustainable development of intensive agricultural land use [24]. Research on the impact of agricultural
land use intensity on the ecological environment has also become widespread in recent decades,
mainly focusing on the impact on biodiversity [25–27], plant diversity [28,29], the microbial living
environment [30,31], landscape structure [32], river health [33], and so on. Some studies have also
comprehensively discussed whether the increase in agricultural land use intensity has significantly
increased ecological-environmental risks. Only a few scholars have discussed the driving factors
of agricultural land use intensity, and related studies considered that these factors included farm
characteristics, economic conditions, accessibility, soil conditions, climate conditions, and the increase
in nonagricultural job opportunities [34,35].

In general, research on agricultural land use intensity is rich, involving not only the methods or
indicators of characterizing agricultural land use intensity, but also the interactions with economic–social
development and the ecological environment. However, there are several aspects that need to be
further explored: Firstly, the scale of research needs to be expanded; existing research has mainly
focused on the national or regional scales, while there is no research on the county level, which is the
basic unit of agricultural production in China. Secondly, the influence mechanism and interaction
between different factors regarding the willingness of farmers to develop the agricultural production,
the structure of economic development and government technology support on the intensive use of
agricultural land have not been sufficiently studied, which is clearly not conducive to the formulation
of overall land use intensity management policies.

Therefore, this paper takes Hubei Province in China as an example to study the spatial–temporal
characteristics of agricultural land use intensity at the county scale, and explores the driving factors of
agricultural land use intensity in different units, in the hope of providing a decision-making reference
for the formulation of regional agricultural land intensive use policies based on the county areas.
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2. Study Area and Data

2.1. Study Area

Hubei Province is located in central–southern China (Figure 1). It is bordered by six provincial
administrative regions, Anhui, Jiangxi, Hunan, Chongqing, Shaanxi and Henan. The province has a
total jurisdiction of 103 county administrative districts. Furthermore, it is located in the transition zone
of China’s topography: The terrain is diverse, and the topography differs greatly. It is surrounded by
mountains on three sides, and the total mountainous area is large and generally shows a trend of high
mountains in the northwest and low mountains in the southeast. Industry in Hubei Province developed
early, so there is a good industrial and scientific-technological foundation, an overall well-developed
rural economy and abundant agricultural labor resources, which have laid a good foundation for
improving land use efficiency. The main land use types in Hubei Province are cultivated land, forest land,
grassland, water area, construction land and unused land. According to the relevant statistical data,
the total area of cultivated land in Hubei Province was 5,235,395 hectares at the end of 2018, of which
paddy fields, irrigated land and dry land comprised 2647780.29 hectares, 479410.81 hectares and
2108114.29 hectares, accounting for 50.58%, 9.16% and 40.27% of the total cultivated land area,
respectively. The spatial distribution of cultivated land resources in the province is extremely uneven.
The plains along the Jianghan and East Hubei plains and the hilly areas of central-northern Hubei
are relatively flat with fertile soil and good cultivated land quality, while the cultivated land of the
mountainous areas of western Hubei is concentrated in valleys and intermountain basins.
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2.2. Data Sources

The basic data required for this study included vector and statistical data. Statistical data
comprised the agricultural input–output and driving factor data of 103 counties (including municipal
districts and county-level cities) in Hubei Province from 2000 to 2016, including the total area of
cultivated land, the permanent population, agricultural fertilizer use and total power of agricultural
machinery, total agricultural output value, and total grain output, which were taken from the China
Regional Economic Statistics Yearbook, the China City Statistical Yearbook, the China Statistical
Yearbook and the China Rural Statistical Yearbook. The vector data were taken from the National Basic
Geographic Information Bureau and Hubei Provincial Department of Natural Resources. It should
be noted that because of changes in administrative divisions and data availability, some data were
deleted and merged.
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3. Methodology

3.1. Agricultural Land Use Intensity Indices (In and Out)

This paper posits that evaluating the level of agricultural land use intensity provides a
comprehensive measurement of the input and output of cultivated land; as such, it should not
only measure the input intensity, but also reflect the utilization efficiency of cultivated land. Therefore,
according to the connotation and objectives of agricultural land use intensity, combined with the
current characteristics of cultivated land use in Hubei Province, the indicators were constructed from
the inputs and outputs on the basis of previous research results, i.e., Chemical fertilizers per unit of
cultivated land, farming mechanical power per unit of cultivated land, agricultural film per unit of
cultivated land, etc., which directly reflect the input intensity of farmland and the average output.
The specific system of the indicators is as follows (Table 1):

Table 1. The Indicators of Agricultural Land Use Intensity.

Indices Indicators Definition Remarks

Input

A1 Consumption of chemical fertilizers per
unit of cultivated land

Represents the capital component of
production input

A2 Farming mechanical power per unit of
cultivated land

Represents the capital component of
production input

A3 Consumption of agricultural film per
unit of cultivated land

Represents the capital component of
production input

A4 Consumption of agricultural diesel per
unit of cultivated land

Represents the capital component of
production input

Output A5 Agricultural electricity consumption
per unit of cultivated land

Reflect the situation of
agricultural production

A6 Gross Agricultural Output Value per
unit of cultivated land

Reflect the situation of
agricultural production

3.2. Assessment of Agricultural Land Use Intensity

3.2.1. Data Standardization

Different units are applied to different indicators, and the differences in the values of the indicators
are extremely large, resulting in incomparability. In order to solve this problem, the data must be
standardized. The standard deviation standardization method, the extreme value standardization
method, the sum standardization method and the range standardization method are commonly
applied. This paper adopted the range standardization method to process the dataset of each indicator.
The specific process was as follows:

The positively correlated indicators were standardized using the following formula:

Ci j =
(
Xi j −X jmin

)
/
(
X jmax −X jmin

)
(1)

The negatively correlated indicators were standardized as follows:

Ci j =
(
X jmax −Xi j

)
/
(
X jmax −X jmin

)
(2)

where Ci j is the value after normalization, Xi j is the statistical value of each indicator of each evaluation
cell, j is a different evaluation indicator, I is a different evaluation unit corresponding to indicator j,
X jmin refers to the minimum value of indicator j and X jmax is the maximum value in the indicators of
indicator j.
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3.2.2. Comprehensive Evaluation Method

The determination of indicator weight is based on the premise of comprehensive indicator
calculation. This paper used a combination of the entropy weight and the analytic hierarchy process
methods to determine the indicator weight. The entropy weight method is for objective weighing,
while the analytic hierarchy process method is for subjective weighing. The calculation formula of the
final weight and the calculation process of the comprehensive score are as follows:

Firstly, the average of the weights of the two weighing methods was calculated; the calculation
formula was as follows:

α j =
β j + γ j

2
(1 ≤ j ≤ m) (3)

where β j is the weight value of the j th indicator obtained by the analytic hierarchy process method, γ j is
the weight value of the j th indicator obtained by the entropy weight method and α j is the combined
weight value of the j th indicator.

The variable α j was normalized to obtain the final combined weight value of each indicator:

δ j =
α j∑m

j=1 α j
(1 ≤ j ≤ m) (4)

Secondly, the weights of the indicators were determined by the weight determination method,
and the comprehensive score of each evaluation unit was determined using the following formula:

QIi =

 n∑
j=1

qi jδi j

× 100 (5)

where QIi is the comprehensive score of the agricultural land use intensity of the I th evaluation unit,
δi j is the weight value of indicator j, and the statistical value corresponding to indicator j of the I th
evaluation unit after qi j was standardized and normalized.

3.3. Spatial-Temporal Differentiation Analysis

3.3.1. Descriptive Statistical Analysis

Descriptive statistics is a basic method that is used to summarize and express an overall condition
and the influence between different indicators. Through simple statistical values, we can clearly grasp
the overall characteristics of the evaluation results, and fully understand and identify the concentrated
or discrete nature of data. Therefore, this study constructed a descriptive statistical variable system
that included six statistical values, namely, the arithmetic mean (hereinafter referred to as “average”),
median, maximum, minimum, standard deviation and coefficient of variation, to grasp the basic
situation of agricultural land use intensity.

3.3.2. Spatial Autocorrelation

Spatial autocorrelation refers to the mutual restraint, interdependence, interaction and mutual
influence in the geographical space between the objects and phenomena of different units, which are
the inherent space economy of objects and phenomena, and are also essential attributes of geospatial
phenomena and spatial processes. When a high value of the characteristic variable of the adjacent unit
shows a spatial tendency to agglomerate, it displays a positive spatial autocorrelation. In contrast,
when the value of the characteristic variable of the adjacent unit is opposite to the value of the variable
of the local unit, it displays a negative spatial autocorrelation.

Current research on spatial autocorrelation measurements includes Global spatial autocorrelation
and Local spatial autocorrelation. Global spatial autocorrelation is the examination of the average
influence on and the attributes of a particular spatial degree, while local spatial autocorrelation is
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mainly used to test whether there are similar or different observations in the local area. The indicators
applied in the current study were the Global Moran’s I and Local Moran’s I (Anselin Local Moran’s I).
The specific calculation process is as follows:

(i) Global Moran’s I
Global Moran’s I is used to evaluate whether the expressed mode is a clustering mode, a discrete

mode or a random mode. The value of Moran’s I can be regarded as the correlation coefficient between
the observed value and its spatial lag. The specific formula is as follows:

I =
n
S0

∑n
i=1

∑n
j=1 wi, jziz j∑n
i=1 z2

i

(6)

In the results, the value of Moran’s I is generally between −1 and 1. If the value of Moran’s I is
positive, the positive spatial correlation of this element is strong (in particular, a high value is adjacent
to a high value, and a low value is adjacent to a low value), but if the value of Moran’s I is negative,
the element has a strong discrete trend and the correlation is not very pronounced (in particular, a high
value is adjacent to a low value, and a low value is adjacent to a high value). If Moran’s I is close to 0,
it means that the attributes are randomly distributed (or there is no spatial autocorrelation).

(ii) Anselin Local Moran’s I
Anselin Local Moran’s I is an indicator that was proposed by Anselin in 1995 to test the spatial

autocorrelation between a local unit and its neighboring units, which can effectively solve the problem
of the inability of Global spatial autocorrelation to accurately represent the aggregation or the specific
geospatial location of the spatial autocorrelation between a local unit and its neighboring units.
The specific calculation formula is as follows:

Ii =
xi −X

S2
i

∑n

j=1, j,i
wi, j

(
x j −X

)
(7)

A positive Ii indicates that the value is high and surrounded by high values, or it is low and
surrounded by low values; a negative Ii indicates that the value is low but surrounded by high values,
or that the value is high and surrounded by low values. In this paper, Local indicators of spatial
association (LISA) figures of Local Moran’s I on agricultural land use intensity were drawn.

3.3.3. Spatial-Temporal Transition

The spatial-temporal transition of spatial autocorrelation was proposed by Rey according to the
transfer of the quadrant to which each evaluation unit belongs in the Moran scatter diagram in different
periods [36], which can reflect the stability of the spatial autocorrelation of the research unit. The types
of spatial–temporal transitions include the following: Type A, which is the transition of the region’s
agricultural land use intensity, and no transition occurs in the adjacent units (low-low (L-L)↔high-low
(H-L), high–high (H-H)↔low-high (L-H)); Type B, which is the same level as its agricultural land use
intensity, and transition occurs in the adjacent units (H-H↔H-L, L-L↔L-H); Type C, which means
that the level of agricultural land use intensity has changed, and the level of the adjacent units has
also changed (H-H↔L-L, L-H↔H-L); Type D, which is the unit itself, and there is no transition in the
adjacent units. Its spatial stability can be defined as:

St =
Nd,t

n
(8)

where St represents the spatial stability in the time range of t, Nd,t represents the number of regions
where type D transitions occur in the time range of t and n is the total number of all types of transitions
that occur; the larger the value, the stronger the spatial stability.
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3.4. Driving Factor Analysis Model

3.4.1. Indicators of Driving Factors

This paper used the multiple cropping index (MCI) and the irrigation index (II) to represent the
willingness of farmers to develop agricultural production, as well as the per capita output value of
primary industry (PCOVPI), per capita output value of secondary industry (PCOVSI), and per capita
output value of tertiary industry (PCOVTI) to represent the differences in the structure of economic
development and agricultural fiscal expenditure (AFE) as indicators of government technology support,
and to explore the core factor leading to changes in agricultural land use intensity (Table 2).

Table 2. The Driving Factors of Agricultural Land Use Intensity.

Variables Definition Sources of Data

Multiple cropping index (MCI) Ratio of total sown area of crops to
cultivated area

The China Statistical Yearbook
(county-level) and the Statistical

Yearbook of Hubei Province

Irrigation index (II) Ratio of irrigated area to
cultivated area

The China Statistical Yearbook
(county-level) and the Statistical

Yearbook of Hubei Province

Per capita output value of the primary
industry (PCOVPI)

Ratio of the output value of primary
industry to the permanent population

The China Statistical Yearbook
(county-level) and the Statistical

Yearbook of Hubei Province

Per capita output value of the
secondary industry (PCOVSI)

Ratio of the output value of secondary
industry to the permanent population

The China Statistical Yearbook
(county-level) and the Statistical

Yearbook of Hubei Province

Per capita output value of the tertiary
industry (PCOVTI)

Ratio of the tertiary industry output
value to the permanent population

The China Statistical Yearbook
(county-level) and the Statistical

Yearbook of Hubei Province

Agricultural fiscal expenditure (AFE) Agricultural fiscal expenditure
The China Statistical Yearbook

(county-level) and the Statistical
Yearbook of Hubei Province

3.4.2. Geographical Detectors

Factor detection: The mechanism of the influence of agricultural land use intensity was analyzed
in counties using a geographical detector. The geographical detector model is as follows [37]:

PD,U = 1−
1

nu2
U

m∑
i=1

nD,iσ
2
UD,i

(9)

where PD,U is the detection factor of the driving factors on agricultural land use intensity, nD,i is the
number of samples of the secondary region, n is the number of samples in the whole area, m is the
number in secondary regions, u2

U represents the variance of the degree of dynamicity of agricultural
land use intensity changes and σ2

UD,i
represents the variance of secondary regions. Formally, σ2

UD,i
, 0,

and the range of PD,U is [0, 1]. When PD,U = 0, it indicates that the agricultural land use intensity at the
county level is randomly distributed; the higher the value of PD,U, the stronger the influence of the
driving factor on the degree of agricultural land use intensity.

Interaction detection: This was used to identify the interaction between different risk factors (Xs)
and to assess whether the factors X1 and X2 work together to increase or decrease the explanatory
power on the dependent variable Y, or whether the impacts of these factors on Y are independent of
each other. The first step of the evaluation method is to calculate the q values of the two factors, X1 and
X2, to Y, q(X1) and q(X2). Then the q value is calculated of their interaction (the new layer formed
by the tangency of the two layers of the superimposed variables X1 and X2): q(X1∩X2), and q(X1),
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q(X2), and q(X1∩X2) are compared. The relationship between the two factors can be divided into the
categories outlined in Table 3.

Table 3. Types of Interactions between Driving Factors.

Judgment Basis Interaction

q(X1∩X2) < Min(q(X1),q(X2)) Nonlinear attenuation
Min(q(X1),q(X2)) < q(X1∩X2)<Max(q(X1),q(X2)) Single-factor nonlinear attenuation

q(X1∩X2) > Max(q(X1),q(X2)) Two-factor enhancement
q(X1∩X2) = q(X1) + q(X2) Independent
q(X1∩X2) > q(X1) + q(X2) Nonlinear enhancement

4. Results

4.1. Descriptive Statistical Analysis of Agricultural Land Use Intensity

The results showed that the average value (mean) of agricultural land use intensity in Hubei
Province from 2000 to 2016 fluctuated and increased. But after 2008, although the overall level was
still high, there was a downward trend. Similarly, the median of the agricultural land use intensity in
Hubei Province basically showed the same change law as the mean, which can be further verified by
the observed decrease in the maximum and minimum of the values. At the same time, the standard
deviation and variation coefficient of the agricultural land use intensity also increased over that decade,
and there was a decline after 2008, albeit a smaller one. The results are shown in Table 4.

Table 4. Descriptive Statistical Analysis of Agricultural Land Use Intensity in Hubei Province from 2000 to 2016.

Variables
Years

2000 2001 2002 2003 2004 2005 2006 2007

Mean 1.913 1.725 1.479 1.446 2.148 2.342 2.305 2.062

Median 1.876 1.629 1.394 1.432 2.148 2.370 2.293 2.002
Maximum 4.729 4.730 4.698 4.623 4.433 4.241 4.193 4.462
Minimum 0.591 0.592 0.516 0.571 0.815 1.010 0.825 0.354

Standard Deviation 0.529 0.534 0.641 0.626 0.720 0.747 0.797 0.901
Variation Coefficient 0.277 0.310 0.433 0.433 0.335 0.319 0.346 0.437

Variables
Years

2008 2009 2010 2011 2012 2013 2014 2015 2016

Mean 2.293 2.233 2.026 2.063 2.334 2.097 2.038 1.953 2.004
Median 2.265 2.264 2.026 2.081 2.396 2.122 2.107 1.981 1.982

Maximum 4.427 4.419 4.539 4.072 4.162 3.911 3.628 3.472 3.695
Minimum 0.697 0.731 0.658 0.695 0.000 0.716 0.703 0.646 0.812

Standard Deviation 0.817 0.768 0.680 0.704 0.737 0.710 0.650 0.636 0.647
Variation Coefficient 0.356 0.344 0.335 0.341 0.316 0.339 0.319 0.326 0.323

4.2. Analysis of the Spatial Autocorrelation

From the p -Value, Var and Z-Value, it can be seen that agricultural land use intensity by county in
Hubei Province passed the 1% significance test from 2008 to 2017, and presented a pattern of spatial
aggregation distribution between agricultural land use intensity in various counties. On the other hand,
the values of Global Moran’s I were positive in each year, indicating that the county-level agricultural
land use intensity had positive spatial autocorrelation. However, the value of Global Moran’s I showed
a trend of increasing volatility from 2000 to 2007, and a trend of decreasing volatility after 2008,
which indicated that the agglomeration of the corresponding counties with similar agricultural land
use intensity had a tendency to decrease. Within this period, the year with the lowest Global Moran’s
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I was 2001, indicating that the spatial autocorrelation of agricultural land use intensity was weak.
In contrast, the highest Global Moran’s I was in 2007, indicating that Hubei Province experienced the
highest spatial autocorrelation of agricultural land use intensity in this year (Table 5).

Table 5. Global Moran’s I of Agricultural Land Use Intensity in Hubei Province from 2000 to 2016.

Year Moran’s I Var Z-Value p-Value

2000 0.230089 0.004130 3.774936 0.000160
2001 0.148651 0.003954 2.562859 0.010381
2002 0.374362 0.004303 5.897530 0.000000
2003 0.328729 0.004271 5.221184 0.000000
2004 0.384508 0.004667 5.811456 0.000000
2005 0.391518 0.004696 5.895653 0.000000
2006 0.396168 0.004697 5.962794 0.000000
2007 0.430174 0.004681 6.469888 0.000000
2008 0.332978 0.004661 5.060546 0.000000
2009 0.292806 0.004652 4.476065 0.000008
2010 0.313902 0.004585 4.820359 0.000001
2011 0.332591 0.004670 5.049709 0.000000
2012 0.300246 0.004674 4.574698 0.000005
2013 0.293114 0.004688 4.463429 0.000008
2014 0.286077 0.004695 4.357521 0.000013
2015 0.241891 0.004696 3.712302 0.000205
2016 0.241900 0.004685 3.716784 0.000202

Since Global Moran’s I is a regional overall measurement index, it cannot describe the spatial
position of the strength of the spatial autocorrelation of agricultural land use intensity. Therefore,
on the basis of its calculation, LISA figures of Local Moran’s I on agricultural land use intensity
were drawn for each county in Hubei Province from 2000 to 2016. The results are shown in Figure 2.
On the whole, the H-H agglomeration units were concentrated in two regions: One comprising the
cities of Huanggang, Huangshi and Ezhou, and the other comprising the cities of Xiangyang and
Suizhou; and this phenomenon was particularly noticeable after 2005. Also, the regions of the H-H
agglomeration units maintained a stable aggregation state after 2005. On the other hand, the L-L
agglomeration units presented an L-shaped distribution from the cities of Yichang, Shiyan and the
forest area of Shennongjia to the city of Jingzhou, as well as a decreasing trend over time. The other
types of agglomeration units showed sporadic distribution.

4.3. Spatial-Temporal Transition Analysis

On the basis of the principle of spatial-temporal transition and considering a time interval of
17 years, the spatial–temporal transition law of agricultural land use intensity in each county of Hubei
Province was analyzed. The blue shaded numbers in Table 6 indicate how many times the transfer
happened in the year. The results show that there were many D-type unit transitions during the
17 years, which generally occupied about 80% of all evaluation units; fewer evaluation units showed
types A, B, and C transitions. In contrast to the principle of spatial–temporal transition analysis,
the actual analysis involves the transition from nonsignificant units to salient units and from salient
units to nonsignificant units. If they were not considered, the spatial stability of agricultural land use
intensity was stronger, and there was almost no change (Table 6).
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4.4. Driving Factor Analysis

The decisive results of the driving factors of agricultural land use intensity according to the
geographical detectors are shown in Table 7; the q statistics represent the size of the driving power(PD,U)
and p-Value represents the result of the significance test. From the detection results, the MCI, II,
PCOVPI, PCOVSI, PCOVTI, and AFE were shown to have a significant positive impact on the intensity
of agricultural land use development, and the effect of the MCI on agricultural land use intensity was
more pronounced, but its influence showed a downward fluctuation trend which was more noticeable
after 2008. The impact of II was relatively small, but it grew rapidly from 2000 to 2007, after which it
showed a downward trend. From the perspective of PCOVPI, PCOVSI and PCOVTI, a fluctuating
growth trend can be observed, in which the PCOVSI had the fastest-growing impact on agricultural
land use intensity. In contrast to the other influencing factors, the impact of AFE on agricultural land
use intensity always showed a downward trend in terms of volatility, and its impact on the intensity of
agricultural land use was minimal.

After interactively detecting the six driving factors from 2000 to 2016, 15 effective impact factor
pairs were obtained, the specific results of which are shown in Table 8. On the whole, the results
of the interaction detection showed that the influence of various driving factors on the intensity of
agricultural land use was interactive. The interaction of MCI and II, MCI and PCOVTI, MCI and AFE,
II and PCOVPI, II and PCOVTI, II and AFE, PCOVPI and PCOVSI, PCOVPI and PCOVTI, PCOVPI and
AFE, PCOVSI and PCOVTI, PCOVSI and AFE, PCOVTI and AFE showed the basic characteristics
of nonlinear enhancement. The interaction of MCI and PCOVPI showed the basic characteristics of
two-factor enhancement, but the interaction of II and PCOVSI showed nonlinearity enhanced basic
features. From the perspective of time series, the degree of interaction showed a trend of increasing
volatility before 2012, but a trend of declining volatility after 2012 which was more pronounced.
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Table 6. Transfer path of spatial agglomeration on agricultural land use intensity in Hubei Province from 2000 to 2016.

Types 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 2006-2007 2007-2008 2008-2009 2009-2010 2010-2011 2011-2012 2012-2013 2013-2014 2014-2015 2015-2016

HH→HL —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— ——
HH→LL —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— ——
HH→LH —— —— —— —— —— —— —— —— —— —— 1 —— —— —— —— ——
HH→NS —— —— 3 —— 2 2 2 4 —— 4 —— 1 —— 1 3 ——
HL→HH —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— ——
HL→LL —— 1 —— —— —— —— —— —— —— —— 1 —— —— —— —— ——
HL→LH —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— ——
HL→NS —— —— 1 —— —— —— —— —— —— —— —— —— —— —— —— ——
LL→HH —— 1 —— —— —— —— —— —— —— —— —— —— —— —— —— ——
LL→HL —— —— —— —— —— —— —— —— —— —— —— —— 1 —— 1 ——
LL→LH —— —— —— —— —— —— —— —— —— 1 —— —— —— —— —— ——
LL→NS 3 3 5 —— 1 —— 4 7 3 —— 4 —— 1 3 2 2
LH→HH —— —— —— —— —— —— —— —— —— —— —— 1 —— —— —— ——
LH→HL —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— ——
LH→LL —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— ——
LH→NS —— —— 2 —— 1 —— —— 1 —— —— —— 1 —— —— 1 ——
NS→HH —— 6 3 3 4 —— 1 —— —— 2 5 —— —— 1 —— 2
NS→HL —— 1 —— —— —— —— —— —— —— —— —— —— —— —— —— ——
NS→LL 1 7 2 1 1 2 4 4 2 3 —— 3 —— 1 1 1
NS→LH —— 2 —— 2 —— —— —— —— —— —— 1 —— 1 —— —— ——

* NS: Not Significant.
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Table 7. Results of the Effects of Driving Factors on Agricultural Land Use Intensity.

Year
q Statistic p-Value Effect Direction

MCI II PCOVPI PCOVSI PCOVTI AFE MCI II PCOVPI PCOVSI PCOVTI AFE MCI II PCOVPI PCOVSI PCOVTI AFE

2000 0.4518 0.1454 0.0875 0.1499 0.0637 0.0518 0.7268 0.1909 0.8799 0.9936 0.9987 0.9976 + + + + + +
2001 0.4942 0.0995 0.2449 0.2258 0.0537 0.0683 0.5547 0.4658 0.4532 0.9596 0.9997 0.9999 + + + + + +
2002 0.7536 0.4527 0.1553 0.1413 0.0710 0.0579 0.9985 0.4532 0.2733 0.8471 0.9986 0.9795 + + + + + +
2003 0.7582 0.4354 0.1205 0.1510 0.1245 0.0508 0.9876 0.4406 0.4089 0.7326 0.9578 0.9900 + + + + + +
2004 0.6540 0.3871 0.1026 0.0911 0.1010 0.0467 0.9767 0.4279 0.9300 0.9984 0.9939 0.9871 + + + + + +
2005 0.5944 0.3832 0.0672 0.1124 0.1068 0.0324 0.9658 0.4153 0.9726 0.9999 0.9987 0.9978 + + + + + +
2006 0.5264 0.3449 0.1141 0.1353 0.1656 0.1199 0.9549 0.4026 0.8539 1.0000 0.9889 0.8143 + + + + + +
2007 0.5638 0.3887 0.0849 0.1334 0.1406 0.0984 0.9440 0.3900 0.8904 0.9993 0.9269 0.8612 + + + + + +
2008 0.5463 0.2661 0.0558 0.1818 0.1615 0.0693 0.9331 0.0030 0.9212 0.9744 0.9143 0.9512 + + + + + +
2009 0.5159 0.2513 0.0539 0.1952 0.1230 0.0656 0.9222 0.0181 0.9182 0.9231 0.9792 0.9770 + + + + + +
2010 0.5321 0.2791 0.0783 0.1257 0.1527 0.0261 0.9113 0.0120 0.9737 0.9913 0.9977 0.9985 + + + + + +
2011 0.4280 0.2971 0.1160 0.2089 0.1214 0.0380 0.9004 0.0361 0.9753 0.8630 0.9184 0.9995 + + + + + +
2012 0.9819 0.9737 0.0159 0.0594 0.0305 0.0840 0.8895 0.0000 0.9502 0.5336 0.8271 0.3646 + + + + + +
2013 0.4855 0.2045 0.0666 0.1903 0.2094 0.0533 0.8786 0.2197 0.9874 0.6419 0.4747 0.9978 + + + + + +
2014 0.5027 0.1249 0.1318 0.1908 0.2127 0.0745 0.8677 0.8631 0.8865 0.6856 0.6217 0.9511 + + + + + +
2015 0.4059 0.1918 0.2893 0.2427 0.0944 0.0996 0.8568 0.0846 0.1259 0.4804 0.9995 0.9553 + + + + + +
2016 0.4331 0.1404 0.1390 0.2319 0.0833 0.0211 0.8459 0.3448 0.9606 0.5183 0.9994 0.9995 + + + + + +

“+” represents positive drive.
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Table 8. Interaction results of different factors on the agriculture land-use intensity in Hubei Province from 2000 to 2016.

* FZ2000 GG2000 EC2000 SC2000 YC2000 ZC2000 * FZ2001 GG2001 EC2001 SC2001 YC2001 ZC2001 * FZ2002 GG2002 EC2002 SC2002 YC2002 ZC2002

FZ2000 0.452 FZ2001 0.494 FZ2002 0.754

GG2000 0.707 0.145 GG2001 0.678 0.099 GG2002 0.826 0.453

EC2000 0.602 0.344 0.150 EC2001 0.738 0.399 0.226 EC2002 0.868 0.613 0.141

SC2000 0.628 0.439 0.286 0.064 SC2001 0.737 0.367 0.276 0.054 SC2002 0.856 0.594 0.202 0.071

YC2000 0.573 0.406 0.316 0.248 0.087 YC2001 0.782 0.513 0.606 0.742 0.245 YC2002 0.810 0.609 0.503 0.394 0.155

ZC2000 0.646 0.328 0.289 0.329 0.260 0.052 ZC2001 0.741 0.364 0.324 0.250 0.449 0.068 ZC2002 0.820 0.556 0.231 0.240 0.398 0.058

* FZ2003 GG2003 EC2003 SC2003 YC2003 ZC2003 * FZ2004 GG2004 EC2004 SC2004 YC2004 ZC2004 * FZ2005 GG2005 EC2005 SC2005 YC2005 ZC2005

FZ2003 0.758 FZ2004 0.654 FZ2005 0.594

GG2003 0.848 0.435 GG2004 0.798 0.387 GG2005 0.746 0.383

EC2003 0.836 0.575 0.151 EC2004 0.790 0.533 0.091 EC2005 0.667 0.514 0.112

SC2003 0.861 0.609 0.254 0.125 SC2004 0.812 0.567 0.197 0.101 SC2005 0.660 0.534 0.160 0.107

YC2003 0.833 0.604 0.405 0.515 0.120 YC2004 0.719 0.583 0.259 0.285 0.103 YC2005 0.696 0.624 0.205 0.190 0.067

ZC2003 0.802 0.566 0.206 0.229 0.318 0.051 ZC2004 0.759 0.586 0.215 0.271 0.350 0.047 ZC2005 0.688 0.617 0.167 0.188 0.253 0.032

* FZ2006 GG2006 EC2006 SC2006 YC2006 ZC2006 * FZ2007 GG2007 EC2007 SC2007 YC2007 ZC2007 * FZ2008 GG2008 EC2008 SC2008 YC2008 ZC2008

FZ2006 0.526 FZ2007 0.564 FZ2008 0.546

GG2006 0.712 0.345 GG2007 0.774 0.389 GG2008 0.733 0.266

EC2006 0.661 0.530 0.135 EC2007 0.725 0.568 0.133 EC2008 0.704 0.475 0.182

SC2006 0.678 0.573 0.236 0.166 SC2007 0.733 0.582 0.184 0.141 SC2008 0.676 0.532 0.253 0.162

YC2006 0.621 0.579 0.280 0.303 0.114 YC2007 0.677 0.549 0.300 0.314 0.085 YC2008 0.599 0.583 0.411 0.431 0.056

ZC2006 0.666 0.571 0.179 0.212 0.334 0.120 ZC2007 0.730 0.638 0.232 0.246 0.346 0.098 ZC2008 0.716 0.385 0.372 0.253 0.306 0.069

* FZ2009 GG2009 EC2009 SC2009 YC2009 ZC2009 * FZ2010 GG2010 EC2010 SC2010 YC2010 ZC2010 * FZ2011 GG2011 EC2011 SC2011 YC2011 ZC2011

FZ2009 0.516 FZ2010 0.532 FZ2011 0.428

GG2009 0.694 0.251 GG2010 0.771 0.279 GG2011 0.743 0.297

EC2009 0.667 0.488 0.195 EC2010 0.725 0.464 0.126 EC2011 0.730 0.489 0.209

SC2009 0.645 0.517 0.276 0.123 SC2010 0.660 0.446 0.268 0.153 SC2011 0.707 0.486 0.263 0.121

YC2009 0.595 0.469 0.482 0.302 0.054 YC2010 0.759 0.569 0.406 0.412 0.078 YC2011 0.627 0.495 0.422 0.349 0.116

ZC2009 0.590 0.441 0.328 0.238 0.320 0.066 ZC2010 0.670 0.392 0.306 0.244 0.361 0.026 ZC2011 0.612 0.439 0.340 0.274 0.357 0.038



Int. J. Environ. Res. Public Health 2020, 17, 6910 14 of 18

Table 8. Cont.

* FZ2012 GG2012 EC2012 SC2012 YC2012 ZC2012 * FZ2013 GG2013 EC2013 SC2013 YC2013 ZC2013 * FZ2014 GG2014 EC2014 SC2014 YC2014 ZC2014

FZ2012 0.982 FZ2013 0.486 FZ2014 0.503

GG2012 0.988 0.974 GG2013 0.669 0.205 GG2014 0.660 0.125

EC2012 0.990 0.980 0.059 EC2013 0.805 0.431 0.190 EC2014 0.778 0.375 0.191

SC2012 0.989 0.982 0.127 0.031 SC2013 0.729 0.384 0.410 0.209 SC2014 0.739 0.320 0.372 0.213

YC2012 0.985 0.981 0.137 0.154 0.016 YC2013 0.676 0.354 0.369 0.379 0.067 YC2014 0.656 0.395 0.391 0.446 0.132

ZC2012 0.986 0.980 0.503 0.156 0.375 0.084 ZC2013 0.620 0.345 0.304 0.295 0.196 0.053 ZC2014 0.749 0.421 0.398 0.285 0.422 0.074

* FZ2015 GG2015 EC2015 SC2015 YC2015 ZC2015 * FZ2016 GG2016 EC2016 SC2016 YC2016 ZC2016

* FZ:MCI
GG:II

EC:PCOVSI
SC:PCOVTI
YC:PCOVPI

ZC:AFE

FZ2015 0.406 FZ2016 0.433

GG2015 0.590 0.192 GG2016 0.662 0.140

EC2015 0.727 0.428 0.289 EC2016 0.619 0.325 0.139

SC2015 0.689 0.382 0.367 0.243 SC2016 0.704 0.397 0.274 0.232

YC2015 0.572 0.354 0.388 0.389 0.094 YC2016 0.574 0.415 0.297 0.341 0.083

ZC2015 0.550 0.515 0.508 0.299 0.353 0.100 ZC2016 0.554 0.419 0.231 0.298 0.355 0.021
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5. Discussion

Compared to the research of other scholars on the impact of agricultural land use intensity
on surface water quality, biodiversity, etc. [38], on the basis of the county as the basic agricultural
production unit, this paper only discussed the geographical spatial correlation of agricultural land
use intensity and its driving factors. This part discusses important insights and the significance of
this spatial correlation for agricultural land use development intensity management based on the
aforementioned geospatial correlation research.

5.1. Agglomeration Effect of Agricultural Land Use Intensity

Judging from the change in the Global Moran’s I, the values of Global Moran’s I had experienced
a trend of increasing and decreasing volatility, which showed that the spatial agglomeration of
agricultural land use intensity in Hubei Province gradually decreased over the time, and the reason
may be that the spatial agglomeration of agricultural land use intensity was decreasingly affected by the
natural endowment conditions of agricultural land at this stage, and that the development of modern
agriculture may have been more concerned with the needs of residents, but previous research focused
on the impact of the natural endowment of agricultural land on agricultural land use intensity [39].
Considering the results of the local spatial autocorrelation analysis, the units with greater agricultural
land use intensity were agglomerated in the cities of Xiangyang or Wuhan where are flat. In the
early stage of rapid economic social development, the agglomerations were increasingly noticeable,
but with the passage of time, local spatial agglomerations gradually became smaller, the trend is not
pronounced, and they showed a stable state.

Research had shown that the regionally of agricultural land use intensity was greatly affected by
natural endowment conditions [40], which determined the initial agglomeration pattern of agricultural
land use intensity, but the rapid development of the economy and society changed the regional of
agricultural land use intensity. Therefore, the intensity of agricultural land use was affected by multiple
factors and different factors, and the time nodes were not the same.

At the same time, an important finding in this paper was that in regions with better ecology, such as
the city of Shiyan and the forest area of Shennongjia in Hubei Province, the intensity of agricultural land
use was not very high. Therefore, in the process of continuing the research on the relationship between
agricultural land use intensity, ecological environment protection, and biodiversity, it is necessary to
continuously improve relevant knowledge.

5.2. Driving Factors of the Agglomeration Effect

The spatial-temporal differentiation of agricultural land use intensity in the counties of Hubei
Province from 2000 to 2016 was significantly affected by the willingness of agricultural farmers to
develop their lands, differences in economic structure and governmental support of science and
technology. Among them, the MCI had the strongest ability to determine farmers’ willingness to
develop, showing that the intensity of agricultural land use is still closely related to this parameter.
On the other hand, primary, secondary and tertiary industries became the main determinants in
different years. An underlying reason for this may be that part of farmers’ income comes from
agricultural production, but what is more important is the wage income generated by their work,
and the industry that they are engaged in is constantly changing with changes in their income level.
The impact of governmental agricultural finance or scientific-technological support on the intensity of
agricultural land use was not as great as we imagined; this may rather have an important relationship
with the country’s basic household contract responsibility system. Therefore, if the government
wants to increase the level of agricultural development through financial or scientific-technological
investment, it is an important prerequisite to actively realize the scale management and land circulation
of agricultural land.
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It should be pointed out that the results of this research do not conflict with those of other
scholars regarding the driving factors of agricultural land use intensity. Agricultural land use intensity
is comprehensively affected by factors such as natural endowment conditions and economic-social
comprehensive levels [41,42]; this paper showed that the former determines the initial regional intensity
of agricultural land use, while subsequent regional fluctuations in agricultural land use intensity are
more affected by factors such as differences in internal economic structure, farmers’ wishes with regard
to social factors and governmental policy support.

5.3. Agricultural Land Use Intensity Management Policy Formulation

Through the analysis of spatial–temporal differentiation characteristics, it was found that
agricultural land use intensity is characterized by high regional on the basis of the basic agricultural
production unit of each county. In terms of its driving factors, the increase in intensity was closely
related to the willingness of farmers to carry out agricultural activities and the nonagricultural income
provided to farmers by other types of industrial development. Therefore, in future agricultural land
use policy formulation processes, we should start from the following aspects: First, increasing the
added value of the agricultural industry will increase the level of enthusiasm of farmers; Second,
continuing to encourage large-scale operations will also promote the improvement of agricultural
land use intensity to a certain extent; Third, the agglomeration characteristics of agricultural land
use intensity indicate that the formulation of a rational agricultural land use intensity management
strategy should fully consider regional variations; And fourth, the units with greatest intensity of
agricultural land use were near the Wuhan City Circle. These units should be vigilantly monitored to
control the impact on people’s health of such intense activity.

6. Conclusions

This research shows that agricultural land use development has obvious regional characteristics,
and although its degree of agglomeration also showed a certain fluctuation in correlation with economic
and social fluctuations, it showed strong stability over time. Therefore, measurements that need to be
taken on improving land use intensity should not start with a single unit, which should consider the
entirety of the region, and that is more conducive to agricultural sustainability and stability. For units
that need to reduce the intensity of agricultural land use, it is also necessary to consider the intensity
of agricultural land use in adjacent units so as to achieve a regional health, production health and
ecological balance.

The identification of the driving factors of agricultural land use intensity under the influence of
geographical factors showed that the MCI of the representative index of human cultivation intention
has a significant impact on agricultural land use intensity. In the process of enhancing agricultural
land use intensity, continuing to promote the reform measures of land management in the new
economic-social development stage such as family farms and rural planting cooperatives effectively
promotes land circulation and achieves large-scale operations which can reduce the dependence of
agricultural production efficiency on farmers’ wishes and ultimately promote the development of
modern agriculture.

Counties are the basic agricultural production unit in China, the characteristics presented in the
different stages of their development are quite different, and the level of agricultural land intensive
use is affected by the interaction of many factors. Therefore, in formulating policies for agricultural
land use management, the comprehensiveness and current status of policy formulation should be
strengthened. This will be of great significance to increasing or decreasing the intensity of agricultural
land use in China.
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