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Abstract: As the COVID-19 pandemic has had a profound impact on public health and global
economies in 2020; it is crucial to understand how it developed and spread in time and space. This
paper contributes to the growing literature by considering the dynamics of country-wise growth
rates of infection numbers. Low-order serial correlation of growth rates is predominantly negative
with cycles of two to four days for most countries. The results of fitted spatial autoregressive models
suggest that there is high degree of spillover between countries. Forecast variances of many countries,
in particular those with a high absolute number of infections, can to a large extent be explained by
structural innovations of other countries. A better understanding of the serial and spatial dynamics
of the spread of the pandemic may contribute to an improved containment and risk management.
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1. Introduction

On December 31, 2019, the first case of a pneumonia caused by a new type of coronavirus was
reported to the World Health Organization (WHO) office in Wuhan, China. Since then, the new disease,
named COVID-19 on February 11, 2020, by the WHO, has developed and spread quickly throughout
the world, touching essentially all countries by the end of April 2020, despite numerous containment
strategies, social distancing, and the closing of borders.

The lockdown in many countries led to economic recessions associated with a slump of economic
activity, rise of unemployment, and high uncertainty on financial markets. As shown, e.g., by Li et al.
(2020), Wang et al. (2020), and Zhang and Ma (2020) [1–3], the pandemic had enormous psychological
consequences for the population. Risk management has become essential during times of crises, and
McAleer (2020) emphasizes the importance of prevention relative to the cure [4]. The outbreak and
evolution of the COVID-19 pandemic has been analyzed from different perspectives. For example, Li
and Linton (2020) fit country-wise quadratic regressions to estimate the peak periods [5]. Yue et al.
(2020) analyze the impact of the pandemic on China’s economy [6], and Wang et al. (2020) consider
the risk management of COVID-19 by universities in China [7]. Yue et al. (2020) propose solutions and
recommendations related to early warning, identification, and monitoring of risks [8]. Liu et al. (2020)
analyze the Chinese experience and its implications for other countries [9]. Chang et al. (2020) present
a charter for a sustainable travel, tourism, and hospitality industry for the time after COVID-19 [10].
Chang and McAleer (2020) critically evaluate the Global Health Security Index (2019) [11], which
provides data before the discovery of COVID-19 and makes it possible to evaluate how countries might
have been prepared for a pandemic and acted accordingly. Further research analyzing the containment
strategies of individual countries and global analysis of the COVID-19 situation includes Wang and
Wang (2020), Zhao and Chen (2020), Han et al. (2020), and Di Gennaro et al. (2020) [12–15].
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Despite the growing literature, there seems to be a gap in the understanding how the pandemic
evolved over time, and how it spread to other countries. Rather than merely providing descriptive
statistics, we would like to fit a joint model for the temporal and spatial dynamics that allows to
measure the degrees of contagion between countries and yield predictions for the numbers of infected
people. In this paper, we use spatial autoregressions to model daily growth rates of the number of
incidences per country. Day-to-day relative changes in the number of incidences are informative
about short-term effects of containment strategies and spillovers between countries. We refrain from
modeling long-term trends in the data, which are notoriously difficult to capture, but rather focus on
short-term dynamics, assuming stationarity for the investigated sample horizon.

It turns out that, perhaps surprisingly, there is a strong informational content in incidence growth
rates, in the sense that they reveal negative autocorrelations and cyclical behavior. In a preliminary
univariate analysis, we find strong negative low-order (i.e., mostly first order, but many even higher)
autocorrelations of growth rates, as well as stochastic cycles of 2 to 4 days, meaning that fitted
autoregressive models of order two have complex roots for the vast majority of countries. We embed
these findings into a multivariate context, allowing for spillover (i.e., Granger causality in econometric
terminology) between countries, as well as for spatial autocorrelation. The modeling framework is
that of a spatial vector autoregression.

Spatial vector autoregressions have been used, e.g., by Wei (2015) to forecast influenza incidence
rates of US states [16]. In a panel data context, similar models have been proposed by Elhorst (2003),
Beenstock and Felsenstein (2007) and Lee and Yu (2012) [17–19]. Spatial vector autoregressions impose
a structure on the covariance matrix of the error term that is motivated, e.g., by geographical factors
such as distances. This structure enables a structural analysis of the vector autoregressive model
(VAR) model that is not depending on a particular decomposition of the covariance matrix, a common
problem in classical VAR models. In our case, we find that the best specification of the spatial weights
matrix is based on inverse distances, modulated by population sizes.

We follow the approach of Diebold and Yilmaz (2014) to consider forecast error variance
decompositions [20], interpreted as directed weighted networks. In our case, these decompositions
depend on both the serial and spatial autocorrelation matrices. We find strong spillovers between
countries in the sense that forecast error variances of many countries can, to a large extent, be explained
by structural innovations of other countries. This seems to be particularly strong for countries with
high absolute number of infections such as the USA, Italy, China, Germany, and Great Britain.

Our results indicate that geographical contagion of the COVID-19 pandemic has been and
continues to be an important factor. The estimated spatial correlation is positive and highly significant,
meaning that contagion is particularly strong between close and highly populated countries. These
findings may have consequences for local and global containment and mitigation strategies.

2. Methodology and Results

We consider the daily number of newly infected people per country across time, as published
by the European Centre for Disease Prevention and Control (ECSD), an agency of the European
Union. Data are available for download at https://opendata.ecdc.europa.eu/covid19/casedistribution.
In the early period of the epidemic, i.e., January and February of 2020, only few countries had significant
numbers of infections, so we discard this period from the sample and consider the period of March
and April, i.e., a sample size of 61 days. Population data are provided by the World Bank and are also
available in the data sets provided by ECSD.

There are many alternatives to model the time trends and dynamic properties of the data, including
quadratic trends as in Li and Linton (2020) [5]. We follow Yue et al. (2020) in considering autoregressions
for the growth rates [6]. Let Yit be the number of newly infected people in country i, i = 1, . . . , N, at time
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t, t = 1, . . . , T. We model growth rates yit := log(Yit + 1) − log(Yi,t−1 + 1) via spatial autoregressive
processes of order p, i.e.,

yit = µi +

p∑
j=1

αi j
(
yi,t− j − µi

)
+ εit (1)

εit = ρ
N∑

j=1

wi jε jt + uit, uit ∼ N
(
0, σ2

)
(2)

where wi j are spatial weights with wii = 0, i = 1 . . . , N, and µi,αi j are coefficients. The weights could,
for example, be inversely related to the distance di j between countries i and j. Beenstock and Felsenstein
(2007) suggest to modulate inverse distances with the relative population size of both countries [18],
that is

wi j =
1

di j

Z j

Zi + Z j
(3)

where Zi is the population of country i. Hence, bigger countries receive more weight than smaller
countries. The growth rates of the nine countries with highest number of cases until end of April, 2020,
are depicted in Figure 1.

Figure 1. Growth rates of the nine countries with highest number of cases until end of April 2020: USA,
Spain, Italy, Great Britain, Russia, Germany, Brazil, France, Turkey.

The error term can be written in vector form, stacking it into an (N × 1) vector εt, as

εt = ρWεt + ut (4)

where W is the spatial weight matrix W with wii = 0, i = 1 . . . , N. An advantage of the spatial error
model is that, once ρ is estimated, the structural shocks ut can readily be obtained by the transformation
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(IN − ρW)εt. This does not require decomposing a variance–covariance matrix as in classical VAR
models, for which different methods are often a matter of debate in the empirical literature, see e.g.,
the discussion in Lütkepohl (2005) [21].

The dynamics of yt can be generalized to a vector autoregressive model (VAR) of the form

yt = µ+

p∑
j=1

A j
(
yt− j − µ

)
+ εt (5)

where εt is a spatial error term as in Equation (4), and A j are N × N parameter matrices. For large
N, restrictions are necessary for A j as otherwise there would be too many parameters to estimate for
reasonable sample sizes. Indeed, in our case, the number of countries is larger than the number of
days in the sample, so that methods are required that penalize model complexity.

To gain insight into the dynamics of infection growth rates, we will first look at univariate
autoregressive models because it reveals some interesting dynamic features of the data. We will
then consider spatial vector autoregressions to model the spatial and temporal relationships between
countries. Of the more than 200 countries that have reported Covid-19 infections, we have selected
the 100 countries with the highest number of infections as of end of April 2020. Thus, our cross-section
dimension is given by N = 100. The reason to exclude countries with smaller number of cases is
the highly erratic behavior of corresponding growth rates that could potentially bias the estimation of
spatial correlation patterns.

2.1. Univariate Analysis

We fit autoregressive models of order p to the growth rate of infections for each country, where
the lag order p is selected by the Akaike information criterion (AIC). The maximum lag chosen is 10,
but for no country the selected p is larger than 2. Results are reported in Table A1 in the Appendix A.

The empirical results suggest that:

1. First order serial correlations of growth rates are negative.
2. For the countries with AR(2) dynamics, there are stochastic cycles in growth rates with an average

length of about three days.
3. The spatial autocorrelation coefficient ρ is strongly significant.

It is quite remarkable that except for one country (Andorra), all first order autocorrelation
coefficients are negative with an average of −0.46. The second order autocorrelation coefficients are
closer to zero, but still quite significant for many.

It turns out that among the 100 countries with the highest number of reported cases, 72 have
growth rates with AR(2) dynamics, and of these all but one (Denmark) have roots of the characteristic
equations that are complex, indicating the presence of stochastic cycles. The average length of these
cycles is calculated as

ki =
2π

arccos(αi1/(2
√
−αi2))

(6)

All average cycle durations happen to be between 2 and 4 days, with an average of 2.8 days
across countries. We do not have an explanation for the presence of such cycles, and whether they
are genuine to the flux of new infections within a country, or artificially generated by the reporting
practice. However, given that almost all autocorrelations of order larger than two tend to be small and
often negligible, we can exclude seasonal or weekend effects as potential explanation. We next move
on to the multivariate analysis in order to understand potential spillovers between countries.
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2.2. Multivariate Analysis

For the specification of the VAR model in Equation (5), we first choose the lag order of p = 2,
which corresponds to the maximum of the selected lag orders found for the univariate models. We
then estimate the model by minimizing equation by equation the following criterion

T∑
t=1

ε2
it + λi

N∑
j=1

2∑
k=1

∣∣∣Ai jk
∣∣∣ (7)

with respect to the coefficients Ai jk, where λi is chosen by ten-fold cross-validation. This criterion is
known in statistics as the least absolute shrinkage and selection operator (LASSO), see e.g., Tibshirani
(1996) [22]. Figures 2 and 3 show the parameter estimates for the 50 × 50 subset of countries with most
infections. The number of non-zero coefficients in A1 by country ranges from 1 to 32 (out of 100), while
the total number is 1741 (out of 10,000). Similarly, the number of non-zero coefficients in A2 ranges
from 6 to 35, with a total number of 1614 non-zero coefficients.

Figure 2. Estimated parameter matrix A1.
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Figure 3. Estimated parameter matrix A2.

In a second step, the coefficient ρ of the spatial error component model in Equation (4) is estimated
by Gaussian maximum likelihood, see e.g., Bivand et al. (2013) [23]. The model obviously depends on
the specification of the spatial weights matrix W, for which we used inverse distances modulated by
the relative population sizes, as in Equation (3). Distances are measured as the geographic distance
in kilometers on the WGS ellipsoid between the centroids of two countries. This specification led to
the highest likelihood among a set of alternative specifications including unweighted inverse distances,
k-nearest neighbor and contiguity matrices. We obtain an estimate of 0.2805 with associated standard
error of 0.0518, which suggests that spatial correlation is highly significant and important to be included
in the subsequent analysis. After estimation, the residuals ut have been tested for remaining spatial
autocorrelation using the Baltagi et al. (2007) spatial autocorrelation test for panel models [24], which
is an extension of the classical Moran test. The p-value of the test is 0.157, which suggests that spatial
autocorrelation has been sufficiently captured by the model.

In the following, we study the implications of the estimated parameters for the decompositions of
the variances of forecast errors, in the spirit of Diebold and Yilmaz (2014) [20]. This allows quantifying
the network relationships between countries. Starting from the reduced form VAR (2) model in
Equation (5) with spatial error terms εt in Equation (4), we may obtain the infinite order vector moving
average (VMA) representation,

yt =
∞∑

j=0

Φ jεt− j (8)

with coefficient matrices Φ j that, for our VAR (2) model, can be obtained recursively as Φ0 = IN,
Φ1 = A1, Φ2 = Φ1A1 + A2, . . . , Φ j = Φ j−1A1 + Φ j−2A2, . . ., see e.g., Lütkepohl (2005) [21].
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From the spatial error model in Equation (4) we then obtain orthogonalized shocks as ut =

(IN − ρW)εt and rewrite the model as

yt =
∞∑

j=0

Θ jut− j (9)

where Θ j := Φ j(IN − ρW)−1. Thus, having orthogonalized the error terms, we can perform structural
analysis, and this is independent of a particular decomposition of a variance-covariance matrix, which
is a common problem in classical VAR models. The proportion of the h-step forecast error variance of
country i accounted for by innovations in country j is then given by

ωi j,h =
h−1∑
k=0

θ2
i j,k/

N∑
j=1

h−1∑
k=0

θ2
i j,k (10)

where θi j,k is the ij-th element of the parameter matrix Θk. It is important to emphasize that ωi j,h
depends on both the dynamics of the VAR system via the parameter matrices Φ j, and the spatial lag
matrix, (IN − ρW). Hence, forecast variance decompositions are determined by spatial and temporal
dynamics jointly, which corroborates the importance of a joint spatio-temporal modeling approach.

The proportions ωi j,h are reported graphically in Figure 4 for the 50 countries having the highest
number of infections. We chose a forecast horizon of h = 10, which for our parameter estimates is
almost identical to long-run forecasts (h = ∞) as ωi j,h converges quickly to a constant as h increases.
Not surprisingly, most countries’ forecast errors are explained to a good extent by their own history,
i.e., the diagonal elements of ω tend to be larger than the off-diagonal elements. The average of
the diagonal elements is 0.47 with a maximum of 0.96 and a minimum of 0.1. This also implies that
there are many countries for which the sum of the contributions of other countries is larger than that of
their own history.

Figure 4. Decompositions of forecast variances.
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This analysis can be refined following Diebold and Yilmaz (2014) by viewing variance
decompositions as weighted directed networks [20]. They define two directional connectedness
measures, “to” and “from”, for each country. The “to” measure is defined as

ω· j :=
N∑

i=1,i, j

ωi j (11)

where we suppress the h-index for simplicity. The ω· j measures the sum of the contributions of country
j to all other countries’ forecast errors, and it can be viewed as a “to”-degree of a node (i.e., a country) of
the network. The support of the univariate distribution of ω· j is [0, N]. The countries’ “to”-degrees are
visualized in Figure 5, and the corresponding distribution in Figure 6. The distribution of “to”-degrees
has a bi-modal structure, where the majority of “to”-degrees is close to zero, and a small group of
countries having “to”-degrees of 2 or larger. The countries with highest “to”-degrees are Ghana, United
Arab Emirates, Philippines, Ecuador, Oman, Belarus, Singapore, Iraq, Spain, and Egypt. Note that
each continent has at least one country with a high “to”-degree, i.e., a country whose innovations in
infection rates help to predict infection rates of other countries.

Figure 5. Directional “TO” connectedness measure, or “TO”-degrees.
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Figure 6. Kernel estimate of the density of “TO”-degrees.

Likewise, the “from” directional connectedness is defined as

ωi· :=
N∑

j=1, j,i

ωi j (12)

And measures the sum of the contributions of all other countries j to explain the forecast error
variance of country i. The support of the univariate distribution of ωi· is [0, 1]. These measures are
visualized in Figure 7, and the corresponding distribution in Figure 8. Note that, by construction,
the means of the “to” and “from” distributions are the same, 0.5222, but that the “from” distribution is
more concentrated around values close to one, meaning that there are many countries whose forecast
variances can to a large proportion be explained by the innovations of other countries. The countries
with highest “from”-degrees are Canada, Italy, USA, China, Belgium, Bulgaria, Mexico, Germany,
Great Britain, and Denmark. Note that these countries tend to have high absolute number of infection
cases. Note also that the proportion of developing and emerging countries among those with high
“to”-degrees is larger than among those with high “from”-degrees.
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Figure 7. Directional “FROM” connectedness measure, or “FROM”-degrees.

Figure 8. Kernel estimate of the density of “FROM”-degrees.

Finally, the total connectedness measure for the network of countries is given by ω :=
∑N

i=1 ωi· =∑N
j=1 ω· j, which corresponds to the mean degree of the network. We obtain a mean degree of 52.22.

3. Conclusions

Our findings suggest that daily growth rates of new infections per country are negatively
autocorrelated and show stochastic cycles of about two to four days. In a spatial vector autoregression,
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we find high spillovers between countries, motivated by highly significant serial and spatial
autocorrelations. Forecast error variances are to a large extent explained by other countries’ innovations.
This holds especially for countries with high absolute numbers of infections.

High contagion degrees between countries requires risk and crisis management that takes
the evolution of the pandemic in other countries into account. We have seen the pandemic starting to
develop in China, then spreading to Europe and the USA, and finally, developing strongly in countries
such as Russia and Brazil. This paper contributes to a better understanding of how the crisis has
evolved both over time and across countries, which may be fruitful for an improved risk management
of future crises.

Funding: This research received no external funding.

Conflicts of Interest: The author declares has no conflict of interest.

Appendix A Appendix

Table A1. Estimation results for the univariate AR(p) models.

Country Mu Alpha1 Alpha2 K Acf1 Acf2

1 USA 0.1190 NA NA NA −0.5812 0.1025
2 ESP 0.0551 −0.6357 −0.3070 2.879772 −0.4078 −0.0964
3 ITA 0.0197 −0.2187 NA NA −0.3080 −0.1204
4 GBR 0.0994 −0.2747 −0.3170 3.457548 −0.4656 −0.1669
5 DEU −0.0483 NA NA NA −0.7526 0.4425
6 FRA 0.0591 −0.5001 NA NA −0.5180 0.0404
7 TUR 0.1290 0.2093 NA NA −0.4603 0.1770
8 RUS 0.1454 −0.6229 −0.3060 2.897091 −0.2381 −0.1603
9 IRN 0.0153 −0.7193 −0.3499 2.824746 −0.3826 −0.2127

10 BRA 0.1456 −0.5581 NA NA −0.7432 0.4734
11 CAN 0.0951 −0.3906 NA NA −0.4648 −0.0175
12 BEL 0.0951 NA NA NA −0.3717 −0.1870
13 NLD 0.0705 NA NA NA −0.1379 0.0532
14 PER 0.1315 −0.7798 −0.3740 2.777552 −0.4865 −0.0313
15 IND 0.1246 −0.7751 −0.1902 2.357376 −0.4758 −0.1840
16 CHE 0.0532 −0.6605 −0.1818 2.557440 −0.5581 0.1938
17 PRT 0.1035 −0.4378 NA NA −0.2475 −0.1414
18 ECU 0.0618 −0.3215 −0.3590 3.410295 −0.6846 0.3053
19 SAU 0.1182 −0.7888 −0.5028 2.908032 −0.5923 0.0215
20 SWE 0.0980 −0.2257 NA NA −0.3906 0.0849
21 IRL 0.0965 −0.3648 NA NA −0.4258 0.0670
22 MEX 0.1077 −0.3284 −0.1960 3.220894 −0.4257 −0.0989
23 PAK 0.1142 −0.6143 −0.3125 2.919015 −0.5396 0.1344
24 SGP 0.0764 −0.6688 −0.3331 2.870741 −0.4410 0.0195
25 CHL 0.1154 −0.4258 NA NA −0.5679 0.1749
26 ISR 0.0548 −0.8392 −0.2685 2.498557 −0.4177 0.1557
27 AUT 0.0481 −0.2929 −0.2300 3.340180 −0.5234 0.3204
28 JPN 0.0409 −0.3556 −0.3084 3.312745 −0.6871 0.3177
29 BLR 0.1105 −0.5120 −0.3774 3.140573 −0.2509 −0.0071
30 QAT 0.0925 −0.8442 −0.3308 2.623628 −0.2274 0.2722
31 POL 0.0897 −0.4912 NA NA −0.7159 0.4200
32 ARE 0.1035 −0.9655 −0.4536 2.651255 −0.4971 0.0442
33 ROU 0.0913 −0.4175 NA NA −0.2366 −0.2829
34 IDN 0.0779 −0.7072 −0.3386 2.825275 −0.4945 −0.1337
35 UKR 0.0000 −0.5586 −0.3737 3.071974 −0.3739 0.0234
36 DNK 0.0709 −0.1745 0.2325 NaN −0.5398 −0.0478
37 SRB 0.0927 −0.5346 −0.3479 3.078214 −0.5001 0.1388
38 PHL 0.0922 −0.8493 −0.3343 2.622693 −0.0336 −0.0254
39 NOR 0.0357 −0.7009 −0.4292 2.942658 −0.6548 0.2291



Int. J. Environ. Res. Public Health 2020, 17, 3827 12 of 13

Table A1. Cont.

Country Mu Alpha1 Alpha2 K Acf1 Acf2

40 CZE 0.0534 −0.2509 NA NA −0.5757 0.3656
41 BGD 0.1039 −0.6032 −0.2978 2.913854 −0.6575 0.1833
42 KOR −0.0693 −0.7663 −0.3236 2.720150 −0.5332 0.0641
43 DOM 0.0833 −0.6311 −0.2695 2.825041 −0.5545 0.0766
44 AUS 0.0237 −0.4603 NA NA −0.4901 −0.0438
45 PAN 0.0827 −0.3611 NA NA −0.6513 0.3146
46 COL 0.0933 −0.6590 −0.2212 2.677165 −0.5283 0.0350
47 MYS 0.0402 −0.8145 −0.4581 2.834799 −0.5329 0.0334
48 ZAF 0.0934 −0.7034 −0.2244 2.609739 −0.6558 0.2550
49 EGY 0.0804 −0.7420 −0.5007 2.959918 −0.3648 0.2310
50 FIN 0.0510 −0.7983 −0.4787 2.874698 −0.6616 0.2868

Notes: Countries are indexed by their ISO3 code. The number mu is the average growth rate. AR orders were
selected by the AIC criterion. If p = 0, then both α1 and α2 are marked as NA, if p = 1, then α2 is marked as NA.
The number k gives the average length of the stochastic cycles, in days, for those AR(2) models that have complex
roots. For all other models, k is marked as NA; acf1 and acf2 are autocorrelation coefficients of order 1 and 2 for
the growth rates.
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