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Abstract: Shiga toxin-producing Escherichia Coli (STEC) infections routinely run as a common
gastroenteritis, but in many cases they may evolve towards hemolytic uremic syndrome (HUS). HUS
is a rare disease characterized by microangiopathic hemolytic anemia, thrombocytopenia, and acute
renal failure. Gut microorganisms have a fundamental impact on human physiology, because they
modulate normal intestinal functions and play a pivotal role in influencing the local and systemic
immune responses. Despite surveillance established in many countries and major progresses in the
understanding of STEC-HUS mechanisms, no specific treatment is currently available. Targeting
the gut microbiota could represent a new potential therapeutic strategy in STEC infection. In this
paper, we reviewed the current knowledge about microbiota characteristics of patients with STEC
infections, as well as in vitro and in vivo evidence of probiotic supplementation in managing STEC
gastroenteritis and in HUS onset prevention.

Keywords: “Shiga-Toxigenic Escherichia coli” [Mesh]; “Probiotics” [Mesh]; “Microbiota” [Mesh];
“Hemolytic-Uremic Syndrome” [Mesh]

1. Introduction

1.1. Shiga Toxin-Producing Escherichia Coli (STEC) Gastroenteritis and Hemolytic Uremic Syndrome

Hemolytic uremic syndrome (HUS) is a rare disease characterized by microangiopathic hemolytic
anemia, thrombocytopenia, and acute renal failure. While “atypical HUS” (a-HUS) is due to defective
complement system activation and regulation, “typical HUS” is associated with Shiga toxin-producing
Escherichia coli (STEC) [1,2].

STEC contamination occurs after ingestion of contaminated food or water, person-to-person
transmission, or contact with ruminants or a contaminated environment.

After bowel colonization by STEC, diarrhea may occur quickly, which may be hemorrhagic in
85% of cases. Other symptoms may be abdominal pain, fever, and vomiting.
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In 15% of cases, STEC infection evolves into HUS, which features a pathognomonic symptomatic
triad: anemia, thrombocytopenia and acute kidney injury [3]. HUS is due to various strains of STEC [4],
which may generate two major types of Shiga toxin (Stx): Stx1, a family consisting of Stx1, 1c, and 1d,
and the more heterogeneous Stx2 family, comprising the variants Stx2c, 2c2, 2d, 2d-activatable, 2e,
and 2f [5].

The type of Stx produced by Escherichia coli (E. coli) greatly influences the clinical outcome of
the infection. While some Stx types are responsible for asymptomatic infections and uncomplicated
diarrhea, Stx2, 2c, and 2d-activatable can cause hemorrhagic colitis and HUS by endothelial damage [6].

Endothelial cells are the primary target of the toxic effects of Stx, which trigger a cascade of
signaling events resulting in loss of endothelial antiadhesive, anti-inflammatory, and thrombo-resistant
properties [7].

Thrombotic microangiopathy is the final histological feature of HUS. It consists of thickening of
arterioles and capillaries, swelling and detachment of endothelial cells from the basement membrane,
and formation of fibrin- and platelet-rich thrombi that obstruct the microcirculation of different
organs—including and predominantly the kidneys [8].

There is no effective prophylaxis and treatment available for STEC infections. Symptomatic and
supportive therapy may prevent HUS onset [9,10], requiring the correction of anemia and the careful
control of renal function, body fluids, and electrolyte disorders [11].

HUS occurs sporadically, in clusters and epidemics [12,13]. The incidence of STEC-HUS is about
2/100,000, with a peak of 6.1/100,000 in children <5 years of age [14,15]. Mortality rates are 1–4% in
children during the acute phase of the disease [16].

Long-term sequelae (proteinuria, hypertension, chronic kidney disease, and neurological
impairment) are estimated to occur in 25% of STEC-HUS patients four years later; 3% develop
end-stage renal disease [17].

In Italy, between 2009 and 2014, the overall incidence was 0.59/100,000 in the pediatric age
group (0–15 years), but in younger children (<5 years) incidence was three-fold higher (1.7/100,000).
The mortality rate was 2.8%, while neurological involvement was described in 20.3%. Dialysis was
required in 48% of affected children during the acute phase [18]. These data are substantially in line
with those found in developed countries. Unfortunately, strong information about the same data in
less developed countries, where childhood diarrheal diseases are endemic, is missing [19].

1.2. The Human Gut Microbiota

The gut microbiota is a complex ecosystem, consisting of approximately 5000 species of
microorganisms [20]. It confers beneficial health effects to the host by adjusting the development of the
gut [21], hindering the growth of pathogens [22], enhancing the immune system [23], impinging on
energy homeostatic systems [24], and influencing the gut–brain axis [25].

Dysbiosis is characterized by the presence of an unbalanced gut microbial community with
alterations in the composition and metabolic activities of the gut microbiota [26], and has been related
to the pathogenesis of many diseases [27].

E. coli is a Gram-negative, facultative anaerobic, rod-shaped, coliform bacterium that is often
found in the lower gut of warm-blooded organisms. It colonizes the gastrointestinal tract of animals
and humans soon after birth. Its concentration in human feces has been estimated to be approximately
109 per gram, thus constituting about 1% of the total biomass in the large intestine [28–30].

Some E. coli strains have acquired specific virulence factors by means of mobile genetic elements,
such plasmids, transposons, and bacteriophages. Thus, STEC contamination might be considered a
dysbiosis [31].

A recent study, investigating changes in the intestinal microbiota composition of patients with
STEC infection compared to healthy controls, found a lower abundance of bacteria of the Bifidobacteriales
and Clostridiales orders in infected infants. These results represent the first evidence of changes occurring
in the intestinal microbiota of children during STEC infection [32].
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Increasing evidence suggests that gut microbiota manipulation could treat or even prevent some
intestinal diseases [31–34].

The successes in treatment of Clostridium difficile diarrhea with microbiota manipulation recently
increased the interest for this treatment in other diseases with proven disruption of gut microbiota,
such as ulcerative colitis or metabolic syndrome [35].

In this paper, we reviewed the scientific evidence of gut microbiota manipulation with probiotic
in STEC gastroenteritis.

2. Methods

An exhaustive search for eligible studies was performed in PubMed, Embase, Medline, Cochrane
library and Web of Science databases.

The following Medical Subject Headings (MeSH) were used: “Probiotics”[Mesh], “Shiga-Toxigenic
Escherichia coli”[Mesh], “Microbiota”[Mesh], “Hemolytic-Uremic Syndrome”[Mesh].

Proper Boolean operators “AND” and “OR” were also included to be as comprehensive as possible.
Additional studies were sought using references in articles retrieved from searches.

Search limits were set for studies published between April 2009 and April 2019. As a result, a total
of 37 papers were evaluated.

3. Probiotics

Probiotics are live microorganisms that, when administered in adequate amounts, confer health
benefits to the host, and are mainly represented by lactic acid bacterial groups, such as Bifidobacteria
and Lactobacilli, and yeasts, such as Saccharomyces [33].

In the last decades, probiotic supplementation for prevention and treatment of pediatric
gastrointestinal diseases has been employed [34,35].

Probiotics are known to be effective in the management of acute gastroenteritis in children as an
adjunct to rehydration therapy.

In 2014, a position paper by the European Society for Pediatric Gastroenterology, Hepatology,
and Nutrition (ESPGHAN) suggested Lactobacillus GG and Saccharomyces boulardii as effective strains
for the management of acute gastroenteritis in children [36].

On the contrary, a recent multicenter, randomized, double-blind study comparing Lactobacillus
GG with placebo [37] in children aged 3–48 months and diagnosed with acute intestinal infections,
showed no differences between groups in prevention of moderate to severe diseases.

Currently, although probiotics are not routinely used in the management of STEC infections in
humans, evidence from animal models infected with STEC suggests that they might represent an
innovative preventive option [38].

In 2007, a systematic review suggested that the probiotic combination L. acidophilus NP51 and
P. freudenreichii was effective in increasing animal resistance to STEC [39].

Furthermore, a 10-year review reported that probiotics could significantly reduce fecal STEC
dismissal in ruminant animals, reservoirs of the pathogenic bacteria [40].

Beneficial effects of probiotics involve different mechanisms, such as competition with pathogens
for adhesion to the epithelium and for nutrients, direct antagonism ascribed to production of specific
molecules—such as bacteriocins—and, finally, immuno-modulation of the host [41].

In the last decade, different in vitro studies have assessed the antimicrobial potential of different
probiotic strains against STEC.

In 2012, Mogna et al. demonstrated a significant in vitro inhibitory effect against the growth of
STEC by five probiotic strains (L. rhamnosus LR04, L. rhamnosus LR06, L. delbrueckii subsp. delbrueckii
LDD01, L. pentosus LPS01, and B. breve BR03) [42].

In 2013, Rund et al. tested the probiotic Escherichia coli strain Nissle 1917 (EcN) for antagonistic
effects on three different STEC strain. Results showed that the probiotic EcN had very efficient
antagonistic activity on the STEC strains tested [43]. In the same year, the probiotic strain Enterococcus
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faecium YF5, when cocultured with a STEC strain, demonstrated inhibition of the pathogen’s
replication [44]. Additionally, the symbiotic use of Lactobacillus fermentum and Bifidobacterium longum,
isolated from stools of healthy elderly individuals, demonstrated antimicrobial activity against
STEC [45].

In 2014, Arena et al. demonstrated that Lactobacillus plantarum and Lactobacillus fermentum strains
negatively influenced the adhesion of STEC [46].

In 2016, Dini et al. demonstrated the in vitro activity of a microbial mixture of five probiotic
strains isolated from kefir grains (L. plantarum, Lactococcus lactis, L. kefir, Kluiveromices marxianus
and Saccharomyces cerevisiae) in reducing the cytotoxic effect produced by in vitro STEC infection on
epithelial Hep-2 cells [47]. Moreover, a study by Bian et al. demonstrated the antimicrobial potential of
Lactobacillus helveticus KLDS against STEC [48].

However, it is important to note that the extent of probiotic protective capabilities seen in these
experimental models is likely dependent on the probiotic strain used [49].

Several studies have also investigated the use of probiotics in animal models with an experimental
STEC infection, and have shown the efficacy of various probiotic strains in preventing disease.

In 2010, Tsai et al. evaluated the immunomodulating activity of Lactobacillus paracasei subsp.
paracasei NTU 101 in STEC-infected mice. They found a lower morbidity rate in mice supplemented
with probiotic before and after STEC infection and speculated that this strain could be suitable for use
as a probiotic in the prevention of STEC infection in humans [50].

Hostetter et al. investigated the efficacy of a Stx receptor mimic probiotic in a porcine model
of HUS. In this study, piglets were inoculated with STEC and, after 24 hours, treated twice daily
with a probiotic expressing an oligosaccharide receptor mimic for Stx2e in order to determine if the
probiotic could reduce intestinal toxin levels. Results suggested that post-exposure treatment with a
Stx-binding probiotic is effective in reducing intestinal Stx within the gut of a porcine model with a
STEC infection [51].

The administration of probiotic agents to cattle has been proven to reduce their dismissal of
STEC [52], thereby effectively diminishing the risk of transmitting these agents [53]. This effect might be
due to the expression of molecules that mimic host cell receptors on the surface of harmless recombinant
bacteria that can overcome digestive enzymes and other gastrointestinal environmental conditions [54].

To the best of our knowledge, only three studies have been conducted in the human-simulated
digestive environment. In 2011, Etienne-Mesmin et al. demonstrated the antagonistic effects of the
yeast strain S. cerevisiae CNCM I-3856 against STEC in the distal part of the small intestine [55]. A few
years later, Thèvenot et al. demonstrated how the same yeast strain was responsible for a down
regulation of Stx expression [56] and how the resident microbiota modulated pathogen infectivity in
the human gastrointestinal tract [57].

Despite these promising findings, such studies have been conducted using oversimplified
approaches and therefore results cannot be directly extrapolated to human situations.

A key question that clinical trial protocols in humans should address is whether probiotic
supplementation might be advised either prophylactically to at-risk populations during STEC outbreaks
or therapeutically to infected people. Even if evidence in this regard is still lacking, we suppose
that early probiotic supplementation may interfere with the evolution of bloody diarrhea into HUS
and could prevent systemic complications. The specific surveillance systems and protocols recently
suggested by Freedman [58] may help clinicians in the early identification of children affected by STEC
gastroenteritis, who might benefit from such preventive treatment.

Finally, probiotic safety also needs to be investigated, as STEC infection leads to injury of epithelial
gut barrier, which has been identified as a risk factor for adverse effects of probiotics [59]. Therefore,
treating the acute phase of HUS with probiotics in critically ill patients may raise some concerns.
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4. Conclusions

The leading cause of typical hemolytic uremic syndrome (HUS) in children is STEC infection,
which can cause major outbreaks. Despite major progresses in the understanding of STEC-HUS
mechanisms, no specific treatment is currently available.

The results of the reviewed studies open new perspectives for probiotic modulation to specifically
antagonizing STEC. Currently, data obtained in vivo and in vitro cannot be extrapolated to humans
and only clinical trials in humans will allow the determination of effective probiotic strains and doses.

In conclusion, it is important to investigate the promising role that probiotics could have in
modifying the intestinal microbiota of patients with STEC strain infection and to confirm the real
efficacy of probiotics in avoiding the onset of or, at least, reducing the severity of HUS.
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