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Abstract: The aim of this study was to demonstrate the usefulness of artificial neural networks in
Alzheimer disease diagnosis (AD) using data of brain single photon emission computed tomography
(SPECT). The results were compared with discriminant analysis. The study population consisted of
132 clinically diagnosed patients. There were 72 subjects with AD and 60 belonging to the normal
control group. The artificial neural network used 36 numerical values being the count numbers
obtained for each area of brain SPECT. These numbers determined the set of input data for the artificial
neural network. The sensitivity of Alzheimer disease diagnosis detection by artificial neural network
and discriminant analysis were 93.8% and 86.1%, respectively, and the corresponding specificity
was 100% and 95%. We also used receiver operating characteristic curve (ROC) analysis and areas
under receiver operating characteristics curves were correspondingly 0.97 (p < 0.0001) for the artificial
neural networks (ANN) and 0.96 (p < 0.0001) for discriminant analysis. In conclusion, artificial neural
networks and conventional statistics methods (discriminant analysis) are a useful tool in Alzheimer
disease diagnosis.
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1. Introduction

Alzheimer’s disease is one of the most common causes of dementia in the growing population
of elderly people. Despite numerous studies, both primary and strictly clinical, the pathological
mechanisms of its etiology are not clear enough to permit rationally grounded prevention, early
detection and effective treatment of the disease at an early stage [1]. At present, it is merely possible to
delay the progression of the disease. Diagnosing Alzheimer’s disease (AD) at an early stage is hindered
by the low specificity and variability of the clinical symptoms and the current lack of a biological
marker with established and satisfactory diagnostic efficacy. There are attempts to use neuroimaging
techniques such as functional magnetic resonance imaging (fMRI), positron emission tomography
(PET) and single photon emission computed tomography (SPECT) to search for characteristic signs of
early AD. We also have made some attempts to use more sophisticated artificial intelligence and neural
network techniques for analysis of MRI or PET brain images [2–4]. Recently, researchers’ interest
has been focusing on imaging techniques of metabolism of chemical compounds participating in or
associated with the amyloid cascade [5]. They are usually based on the PET technique and unique
markers. Although the cognitive value of these studies cannot be overestimated, no method of initial
differentiation of dementia has been developed yet that would be available and cost-effective enough.
Cerebral blood flow imaging by means of SPECT is a test whose usefulness has also been thoroughly
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studied, which is very important, with reference to the ultimate histopathological diagnosis. Though
some papers have shown that the test is slightly less precise than the flow imaging by means of
[18F] Fluorodeoxyglucose positron emission tomography (FDG-PET), the advantages of SPECT as the
first-line test are its better availability and lower costs [6–9]. The purpose of this paper was an attempt
to modify the cerebral blood flood evaluation by means of SPECT using artificial neural networks to
raise the diagnostic usefulness of the test, making the imaging test assessment objective and, ultimately,
developing a tool facilitating the detection of discreet changes.

Artificial neural networks (ANN) inspired by the biological model are patterned on brain
functioning [10–13]. Diagnostic decision support, analysis and interpretation of images are the medical
issues solved by means of artificial intelligence methods, the ANN in particular [14–19]. Artificial
neural networks are used in contemporary nuclear medicine to support the diagnostics of ischemic heart
disease [20–22], pulmonary embolism [23,24], parathyroid adenoma [24], Alzheimer’s disease [25–30]
and breast cancer [31]. Apart from those, artificial neural networks are useful tools in dentistry for
predicting the number of follow-up visit [32].

Alzheimer’s disease is responsible for 50–70% of causes of dementia in Europe. Epidemiological
studies indicate that AD incidence rises with age—it is diagnosed in approximately 14% of patients
over 65 and in approximately 40% of patients over 80.

Our study describes the application of artificial neural networks to the diagnostics of Alzheimer’s
disease on the basis of information contained in digital images of SPECT cerebral blood flow assessments.

The indicators of an efficient study are sensitivity and specificity of the examination methods.
The sensitivity expresses a probability of the correct recognition of a disease with the use of a given
diagnostic test. The specificity expresses a probability of the correct exclusion of the opposite/not
affected/injured cases with the use of a given diagnostic test. The receiver operating characteristic
curve (ROC) shows a relationship between sensitivity and the “specificity supplement to 1”. An area
under the curve (interval of values: 0 to 1) reflects an ability of the test to properly segregate true and
false outcomes. In addition, on this basis the segregation ability of various tests can be compared.

2. Materials and Methods

2.1. Patients’ Population

The study brain SPECT was performed in the Department of Nuclear Medicine in the Medical
University of Gdańsk (Poland). The study population consisted of 132 clinically diagnosed patients.
72 (43 female, 29 male) had AD and 60 (44 female, 16 male) were the normal control group. Age range
in the Alzheimer group was from 55 to 87 years (mean (standard deviation (SD)) 69.7 (10.0), and in the
normal group was from 54 to 82 years with a mean (SD) of 64.9 (9.8). The brain SPECT study were
evaluated for each patient. AD was diagnosed based on the diagnostic criteria of dementia of the
American Psychiatric Association (DSM-IV) [33]. In all patients magnetic resonance imaging (MRI,
n = 47) or a computerized tomography study (CT, n = 3, due to contraindications to perform MRI) was
performed to exclude alternative causes of dementia, like a tumor, stroke or hydrocephalus.

2.2. Cerebral Perfusion SPECT

SPECT cerebral blood flow testing was performed at the Medical University of Gdańsk Institute
of Radiology and Nuclear Medicine Department of Nuclear Medicine in 2000–2005. The tomographic
study of cerebral blood flow was performed 20 min after intravenous administration of Tc-99m-HMPAO
(Amersham, United Kingdom) with an activity of 20 mCi (740 MBq), using a triple head gamma camera
Multispect-3 (Siemens, Erlangen, Germany), equipped with a special collimator for neurological tests
(Neurofocal). Data were collected in a 128 × 128 matrix during rotation along a 120 arch. Data
acquisition and reconstruction was conducted using an ICON computer (Siemens, Erlangen, Germany).
Data reconstruction was performed using a Butterworth filter, cut-off frequency 0.35, layer thickness 2
pixels (9.6 mm).



Int. J. Environ. Res. Public Health 2019, 16, 1303 3 of 9

2.3. Input Signals for Artificial Neural Network

Artificial neural network used information from image records SPECT study. We prepared for
each patient a set of 36 numerical values. These values each corresponded a particular brain area to
a brain profile (Figure 1). All brain profiles (Parietal, Ventricular, and Thalamus) contained 12 areas.
These variables were the input signals for the neural network.
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2.4. The Architecture of the Artificial Neural Network

We used a multilayer perceptron network in our study. The artificial neural network consisted
of three layers: The input, hidden and output layers of 36, 21 and 1 neurons, respectively. Using a
software simulator of artificial neural networks we created networks to solve regression tasks which
consisted of predicting the number of corrections. The answer of the artificial neural network to each
test case fell within a numerical range of 0 to 1. The activation and rejection levels for the output
neuron were selected automatically by the stimulator of artificial neural networks in order to minimize
the losses. During the learning process the weight links between the neurons were modified using the
error back-propagation algorithm. The sum of squared differences between the a priori given values
and the actual values at the output neuron was chosen as the error function for the artificial neural
network. A sigmoid (logistic function) was used as the activation function. The learning coefficient
was 0.01 and the inertia was 0.3. The number of 1000 epochs was established, where the order of
presented cases for the neural network was different in each epoch. The initialization of neural network
weights was done by random Gaussian method.



Int. J. Environ. Res. Public Health 2019, 16, 1303 4 of 9

To calculate the diagnostic quality of the artificial neural network, we divided at random of all
patients for two groups: Training and testing. The training group contained 100 (55 AD, 45 normal)
and testing group 32 (17 AD, 15 normal) cases.

2.5. The Software Simulation of ANN and the Statistical Analysis

All calculations were performed with the use of the software emulator of artificial neural networks
TIBCO Software Inc., Statistica (data analysis software system), version 13 (Palo alto, CA, USA, 2017,
http://statistica.io). Sensitivity and specificity as well as the ROC analysis of the Alzheimer disease
diagnosis and discriminant analysis were estimated using TIBCO Software Inc. (2017). Performance
of the neural networks and discriminant analysis were evaluated by ROC curve. The area under the
ROC curve was used as the performance of the artificial neural network and discriminant analysis.
We used a discriminant analysis classifier, like Kippenhan et al. [28,29] who used this type of classifier
in the evaluation of a neural network classifier applied to perfusion profiles extracted from PET scans.
For our simulations presented here, we used the L-method of cross-validation testing. Discriminant
analysis is very similar to the analysis of variance from a conceptual and computational point of view.
In this statistical procedure, variables (SPECT counts) were being searched for, whose average values
were different in the examined groups (AD group and control), and which importantly allow prediction
of the correct assignment of new cases to the groups. Discriminant analysis was carried out in two
stages. In the first one, discriminant functions were created, which are a linear combination of input
variables, in order to best represent the variance of the data set and reduce the dimensionality of the
data set. The procedure led to the maximization of the difference in mean values of discriminatory
functions in particular subgroups. In the second stage, classification functions were created, which are
also linear combinations of independent variables. These functions determined the probability of a
given case belonging to one of the studied categories: AD or control group. As in the case of neural
networks, in the discriminant analysis we utilized the following division of the entire study group:
Training group (55 AD, 45 normal) and testing group (17 AD, 15 normal). The discriminant analysis
classifier gave an ROC area. Six sections from each area of brain (parietal, ventricular, thalamus) were
analyzed, generating six count numbers in the AD group and the control. Statistical analysis, both
one-way and two-way ANOVA, was performed using Statistica software (Dell, Round Rock, TX, USA).
The accepted significance level was p < 0.05.

3. Results

A statistical analysis showed significant differences in mean scintillation signals (SPECT counts)
in particular areas of the brain between AD patients and the control group Tables 1–3.

The two-way ANOVA combined analysis of six zones of the parietal area (prefrontal high, medial
frontal high, central high, parietal sup. (superior) A, parietal sup. B and parietal sup. C) showed
a significant decrease in the count number of AD group as compared to the control (p < 0.0001).
No significant effect of the side of the brain on the count number (SPECT counts) of the parietal area
was found (p > 0.05).

The two-way ANOVA combined analysis of six zones of the parietal area (prefrontal mid, medial
frontal low, central low, parietal inf. (inferior), parieto-occipital and occipital sup.) showed a significant
decrease in the count number of AD group as compared to the control (p < 0.0001). No significant effect
of the side of the brain on the count number (SPECT counts) of the parietal area was found (p > 0.05).

The two-way ANOVA combined analysis of six zones of the parietal area (prefrontal low,
infero-frontal, basal ggl. (ganglia), thalamus, temporal sup. and occipital inf.) showed a significant
decrease in the count number of AD group as compared to the control (p < 0.0001). No significant effect
of a side of the brain on the count number (SPECT counts) of the parietal area was found (p > 0.05).

http://statistica.io
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Table 1. Comparison count number parietal area of the brain for Alzheimer’s disease (AD) patients
and control group (mean and SD).

Parietal Area
Right

p-Value
Left

p-Value
AD Control AD Control

Prefrontal high (1, 12) 0.0001 0.0002

Mean 125.22 176.48 124.63 174.03

(SD) (51.32) (91.46) (51.74) (88.88)

Medial frontal high (2,
11) 0.0001 0.0001

Mean 125.90 182.15 127.57 181.97

(SD) (55.10) (92.11) (53.11) (92.39)

Central high (3, 10) 0.0008 0.0003

Mean 129.64 181.67 128.60 180.83

(SD) (56.22) (98.15) (54.01) (94.42)

Parietal sup. A (4, 9) 0.0001 0.0001

Mean 126.14 181.17 124.60 178.95

(SD) (55.26) (95.57) (54.03) (92.78)

Parietal sup. B (5, 8) 0.0001 0.0001

Mean 124.14 183.60 123.72 182.32

(SD) (55.44) (93.36) (55.27) (92.37)

Parietal sup. C (6, 7) 0.0002 0.0002

Mean 130.51 186.12 131.49 185.23

(SD) (55.28) (97.46) (55.27) (95.80)

sup.: superior.

Table 2. Comparison count number ventricular area of the brain for AD patients and control group
(mean and SD).

Ventricular Area
Right

p-Value
Left

p-Value
AD Control AD Control

Prefrontal mid (13, 24) 0.0001 0.0003

Mean 125.43 176.27 125.88 174.80

(SD) (51.33) (87.71) (51.92) (88.43)

Medial frontal low (14,
23) 0.0001 0.0001

Mean 123.79 178.27 124.94 178.97

(SD) (52.49) (92.50) (51.65) (90.32)

Central low (15, 22) 0.0007 0.0003

Mean 124.76 171.87 122.81 172.03

(SD) (52.13) (91.69) (50.97) (90.58)

Parietal inf. (16, 21) 0.0001 0.0001

Mean 123.89 178.63 121.54 176.18

(SD) (53.41) (94.02) (51.19) (92.58)

Parieto-occipital (17, 20) 0.0001 0.0001

Mean 126.26 180.22 124.10 180.15

(SD) (55.05) (88.28) (54.13) (90.78)

Occipital sup. (18, 19) 0.0008 0.0011

Mean 137.49 189.67 137.04 188.97

(SD) (58.07) (97.51) (57.45) (97.65)

inf.: inferior; sup.: superior.
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Table 3. Comparison count number thalamus area of the brain for AD patients and control group
(mean and SD).

Thalamus Area
Right

p-Value
Left

p-Value
AD Control AD Control

Prefrontal low (25, 36) 0.0011 0.0011

Mean 61.43 84.52 60.89 84.42

(SD) (26.29) (44.54) (25.85) (44.45)

Infero-frontal (26, 35) 0.0002 0.0002

Mean 63.04 89.22 62.86 89.13

(SD) (26.51) (46.34) (26.03) (47.30)

Basal ggl. (27, 34) 0.0009 0.0008

Mean 64.63 88.87 64.69 89.20

(SD) (27.62) (47.71) (26.71) (47.65)

Thalamus (28, 33) 0.0011 0.0019

Mean 67.76 91.82 67.68 91.67

(SD) (28.76) (47.21) (29.01) (46.44)

Temporal sup. (29, 32) 0.0061 0.0053

Mean 75.08 100.48 74.56 100.72

(SD) (35.66) (54.36) (36.20) (55.52)

Occipital inf. (30, 31) 0.0024 0.0020

Mean 65.68 88.00 65.00 88.60

(SD) (27.84) (45.39) (27.90) (45.71)

inf.: inferior; sup.: superior; ggl.: ganglia.

SPECT cerebral brain flow tests demonstrated that AD patients had significantly lower values of
scintillation calculations in all the areas of the brain in comparison to the control group. The thalamus
section was characterized by the lowest mean value of scintillation calculations for both study groups
in both cerebral hemispheres (Figure 1).
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The AD diagnostic sensitivity of artificial neural networks was 93.8% (standard deviation 4.3%)
and the specificity was 100% (0.1%). The sensitivity obtained in the learning group was 98.1% (7.4%),
and the specificity was 100% (0.1%). In the discriminatory analysis they were 86.1% (6.9%) and 95%
(5.7%), respectively.

For a more precise analysis, ROC curves were crossed out and areas under the curves were
calculated for ANN (0.97, p < 0.0001) and discriminatory analysis (0.96, p < 0.0001). ROC curves
provided an estimation of AD diagnostic power of an artificial neural network and the traditional
statistical method (discriminatory analysis) (Figure 2).

4. Discussion

Several studies have reported that detecting occipital and parietotemporal hypoperfusion could be
useful in differentiation of AD from dementia with Lewy bodies (DLB) [33]. However, hypoperfusion in
the parietotemporal lobe has been observed in the brains of patients with both DLB and frontotemporal
dementia and brain perfusion SPECT in some demented disorders can be similar to that in AD [34].
Dougall et al. suggested that perfusion SPECT is unable to draw a clear line between AD and other
dementias [35]. Nevertheless, SPECT may still be helpful in the clinical differential diagnosis of AD if
used in conjunction with other neuroimaging techniques [35].

An artificial neural network is a tool that, unlike traditional statistical methods, uses the learning
process in the cases described. In our study, ANN used as its input the information from a SPECT
cerebral blood flow test from 132 patients. For each patient a set of 36 numbers was prepared,
representing the scintillation calculation in particular areas of the brain. A comparison of AD diagnosis
by means of ANN and discriminatory analysis has not shown any statistically significant differences
(chi-square 0.7, p = 0.4).

The created neural network was more effective at differentiating between patients with AD and
healthy subjects in comparison with other tests where the value of the area under the ROC curve was
0.91 and 0.93 [27,29]. Furthermore, Chan et al. constructed a neural network with 120 inputs, using
information from perfusion cerebral flow imaging in 81 patients [24].

The number of neural network inputs is highly diversified in the literature to date. The smallest
number of ANN inputs is four, while each of them constituted the mean value of scintillation
calculations [26]. The highest number of inputs was 120, used by Chan et al., each corresponding to a
standardized cortical region [24].

The effectiveness of AD diagnosing by means of discriminatory analysis was also greater in our
study than in similar papers: 0.85 and 0.94 [26,27].

Moreover, our effects have been presented as sensitivity and specificity of AD diagnosis by means
of ANN and discriminatory analysis. Sensitivity defines the probability of correct AD diagnosis and
specificity defines the probability of correct exclusion of the disease.

Limitation

Highly similar values of the ROC area obtained for ANN and discriminatory analysis (0.97 and
0.96) as well as no statistically significant difference in the sensitivity (93.8% and 86.1%) did not support
any significant difference between the proposed method and the discriminatory analysis. In addition to
that, there are obviously a number of classification methods which have not been considered by authors.

5. Conclusions

Artificial neural networks and conventional statistics methods (discriminant analysis) are a useful
tool in Alzheimer disease diagnosis. The results of our study indicate that artificial neural networks
have the capacity to discriminate AD patients from healthy controls. Our study simulations provide
evidence that artificial neural networks can be a useful tool for clinical practice.
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21. Świetlik, D.; Bandurski, T.; Lass, P.; Masiuk, M. The influence of different SPECT reconstruction algorithms
on cardiac ischemia detection with the use of artificial neural networks. Probl. Med. Nukl. 2005, 19, 105–118.

http://dx.doi.org/10.1111/j.0959-9673.2005.00435.x
http://dx.doi.org/10.1148/radiol.2018180958
http://www.ncbi.nlm.nih.gov/pubmed/30398430
http://dx.doi.org/10.1016/j.neuroscience.2015.08.013
http://www.ncbi.nlm.nih.gov/pubmed/26265552
http://dx.doi.org/10.3174/ajnr.A5543
http://dx.doi.org/10.1126/science.1566067
http://www.ncbi.nlm.nih.gov/pubmed/1566067
http://dx.doi.org/10.1097/01.rlu.0000222736.81365.63
http://dx.doi.org/10.1001/jama.286.17.2120
http://dx.doi.org/10.5603/FM.a2018.0043
http://dx.doi.org/10.5603/FM.a2018.0042
http://www.ncbi.nlm.nih.gov/pubmed/29802713
http://dx.doi.org/10.1155/2018/1297150
http://dx.doi.org/10.1016/S0140-6736(95)91804-3
http://dx.doi.org/10.1016/S0933-3657(03)00050-2
http://www.ncbi.nlm.nih.gov/pubmed/8441047
http://dx.doi.org/10.1016/j.amjcard.2004.09.003
http://www.ncbi.nlm.nih.gov/pubmed/15642548
http://dx.doi.org/10.1109/TNS.2003.823047


Int. J. Environ. Res. Public Health 2019, 16, 1303 9 of 9

22. Evander, E.; Holst, H.; Järund, A.; Ohlsson, M.; Wollmer, P.; Åström, K.; Edenbrandt, L. Role of acute
pulmonary embolism: An evaluation using artificial neural networks. Eur. J. Nucl. Med. Mol. Imaging 2003,
30, 961–965. [CrossRef]

23. Holst, H.; Måre, K.; Järund, A. An independent evaluation of a new method for automated interpretation of
lung scintigrams using artificial neural networks. Eur. J. Nucl. Med. 2001, 28, 33–38. [CrossRef]

24. Chan, K.; Johnson, K.; Becker, J.; Satlin, A.; Mendelson, J.; Garada, B.; Holman, B. A neural network classifier
for cerebral perfusion imaging. J. Nucl. Med. 1994, 35, 771–774.

25. Dawson, M.; Dobbs, A.; Hooper, H.; McEwan, A.; Triscott, J.; Cooney, J. Artificial neural networks that use
single-photon emission tomography to identify patients with probably Alzheimer’s disease. Eur. J. Nucl.
Med. 1994, 21, 1303–1311. [CrossRef]

26. DeFigueiredo, R.; Shankle, W.; Maccato, A.; Dick, M.; Mundkur, P.; Mena, I.; Cotman, C. Neural-network-based
classification of cognitively normal, demented, Alzheimer disease and vascular dementia from single photon
emission with computed tomography image data from brain. Proc. Natl. Acad. Sci. USA 1995, 92, 5530–5534.
[CrossRef]

27. Hamilton, D.; O’Mahony, D.; Coffey, J. Classification of mild Alzheimer’s disease by artificial neural network
analysis of SPET data. Nucl. Med. Commun. 1997, 18, 805–810. [CrossRef]

28. Kippenhan, J.; Barker, W.; Pascal, S.; Nagel, J.; Duara, R. Evaluation of neural-network classifier for PET
scans of norma and Alzheimer’s disease subjects. J. Nucl. Med. 1992, 33, 1459–1467.

29. Kippenhan, J.; Barker, W.; Nagel, J.; Grady, C.; Duara, R. Neural-network classification of normal and
Alzheimer’s disease subjects using high-resolution and low-resolution PET cameras. J. Nucl. Med. 1994, 35,
7–15.

30. Page, M.; Howard, R.; O’Brien, J.; Buxton-Thomas, M.; Pickering, A. Use of neural networks in brain SPECT
to diagnose Alzheimer’s disease. J. Nucl. Med. 1996, 37, 195–200.
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