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Abstract: The Little Bighorn River is the primary source of water for water treatment plants serving
the local Crow Agency population, and has special significance in the spiritual and ceremonial
life of the Crow tribe. Unfortunately, the watershed suffers from impaired water quality, with
high counts of fecal coliform bacteria routinely measured during run-off events. A metagenomic
analysis was carried out to identify potential pathogens in the river water. The Oxford Nanopore
MinION platform was used to sequence DNA in near real time to identify both uncultured and
a coliform-enriched culture of microbes collected from a popular summer swimming area of the
Little Bighorn River. Sequences were analyzed using CosmosID bioinformatics and, in agreement
with previous studies, enterohemorrhagic and enteropathogenic Escherichia coli and other E. coli
pathotypes were identified. Noteworthy was detection and identification of enteroaggregative E. coli
O104:H4 and Vibrio cholerae serotype O1 El Tor, however, cholera toxin genes were not identified.
Other pathogenic microbes, as well as virulence genes and antimicrobial resistance markers, were also
identified and characterized by metagenomic analyses. It is concluded that metagenomics provides a
useful and potentially routine tool for identifying in an in-depth manner microbial contamination of
waterways and, thereby, protecting public health.

Keywords: metagenomics; pathogen detection; waterborne disease

1. Introduction

Water is essential for human life and productivity, yet both water quality and security are
increasingly under threat globally [1–3]. Unfortunately, while wealthy countries are able to afford
effective water treatment, poorer nations are severely hampered by a lack of resources for safe water to
protect public health. In both cases, sources of contaminants entering waterways are not sufficiently
addressed [2].

Communities within the Crow Nation in south central Montana have been aware of deteriorating
water quality of the Little Bighorn River for many years [4]. Concerned members of the Crow Nation
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founded the Crow Environmental Health Steering Committee, the mission of which is to research
and mitigate issues concerning environmental public health, improve community health and raise
awareness among the tribal population. The Steering Committee and tribal elders have also voiced
concern about the effects of climate change on water quality and public health [5–7]. Concern about a
link between climate change and public health is warranted given that studies have indicated that
warmer temperatures may promote an expanded range of distribution of vector-borne infectious
diseases and extended seasons of transmission [8–10].

The Steering Committee has worked closely with faculty and students at the local Little Big Horn
College (LBHC) and Montana State University (MSU), who have conducted water quality studies in
accord with priorities established by the Crow tribe. A major focus has been to identify and characterize
bacterial, chemical, heavy metal, and radionuclide contaminants in domestic well, recreational, and
source waters [11–15]. Findings have informed the local public and environmental health efforts, and
supported funding procurement to improve sewage and water treatment facilities along a portion of
the Little Bighorn River that serves as source water for the community [12,16].

Among the various concerns addressed, Hamner et al. [17] conducted a source tracking study of
run-off from a large concentrated animal feed operation (CAFO) located in the headwaters area of the
Little Bighorn River. Results of the study demonstrated the presence of several Escherichia coli human
disease-associated serotypes immediately downstream of the CAFO drainage that matched serotypes
in cattle manure from the CAFO. As part of the study, enterohemorrhagic and enteropathogenic E. coli
(EHEC and EPEC) serotypes were also identified in a popular swim hole of the Little Bighorn River,
a summer-time recreational site for children in the town of Crow Agency, the administrative center
of the Crow tribe. Fecal contamination and run-off from the CAFO and dozens of smaller ranching
operations, as well as leakage from septic systems from homes bordering the river banks, contribute to
pollution of the Little Bighorn River and many smaller tributary streams within the watershed.

Recent developments in whole genome sequencing (WGS) technology make it feasible to use DNA
sequencing for disease diagnostics and public health surveillance of pathogens [18,19]. Development
of portable sequencing platforms, such as the Oxford Nanopore Technologies MinION device, allow for
rapid sequencing of whole genomes [20], which facilitates metagenomic sequencing to be accomplished
in remote locations [21]. Portability can be especially useful during disease outbreaks where laboratory
resources are limited, and when coupled with real-time analysis, can facilitate prompt epidemiological
study and public health response to epidemic outbreaks [19,22].

Metagenomic sequencing has been used to study the epidemiology of a variety of infectious
disease agents. In one study, a metagenomic approach proved more accurate than conventional
genotyping in analyzing an outbreak of tuberculosis, namely by improving identification of single
nucleotide polymorphisms and assignment of genome clusters (factors related to the evolution of the
outbreak strain) and tracing the spread of the outbreak [23].

Metagenomics currently is used to describe microbial populations in water and sediment to
understand community structure and the role of microorganisms in ecological processes [18,24–26].
Metagenomics has also been used to examine water quality to protect public health [27,28]. Traditional
methods for monitoring water quality focus on fecal coliform counts, but methods employing
metagenomics provide additional functional and genomic information for species and strains of
microbial pathogens. In addition, markers of the potential for antibiotic resistance, and the presence of
virulence genes can also be identified in recreational and source waters [27,28].

Rather than target identification of a pre-selected group of pathogenic microbes or virulence
genes by traditional culture, microscopy, immunoassay, or PCR-based methods [29], metagenomics
employing next generation sequencing allows accurate identification and characterization of all
microorganisms within samples for which genomic data are archived. Further, DNA sequence-based
identification and characterization can now be done for microorganisms not easily cultured in a
diagnostic setting, and can be used to identify multiple pathogens present in a poly-microbial infection
or in water bodies.
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2. Materials and Methods

Water samples were collected from the Crow Fair swim hole of the Little Bighorn River, Crow
Agency, Montana, on July 16, 2017. The swim hole is located at latitude/longitude of 45o36′1”N,
107o27′12”W, and is a popular summer recreational site used by children and adults of the population
of ca. 1,600 residents of Crow Agency. During sampling, several children were observed swimming
100 meters upstream of the sampling site. Four samples were collected at ten-minute intervals over
the course of 30 minutes, then pooled. Samples were transported on ice to Montana State University
for processing by two different methods. First, 100 mL aliquots from each of the four consecutive
samplings were pooled (400 mL total) and filtered using 47 mm, 0.45 µm filters to collect particulates.
Filters were processed using the PowerWater DNA isolation kit (Qiagen). (Technical notes: The
PowerWater kit was chosen in part due to its incorporation of reagents to remove inhibitors that may
interfere with downstream PCR and DNA sequencing reactions. Choice of 0.45 µm filters as opposed
to 0.22 µm filters was due to the turbidity of the water samples. We followed the manufacturer’s
recommendation to use 0.45 µm filters for turbid water samples to reduce clogging and allow a greater
volume of water to be filtered than would be possible with the more restrictive 0.22 µm filters. We
readily acknowledge that this choice may have reduced the variety of bacteria detected, since during
the initial stages of filtering, smaller bacteria would be lost in the larger 0.45 µm pores, but also are
aware that as the filters clogged, many smaller cells should have been captured.) Modifications to the
PowerWater kit protocol were made as follows: Filters were placed in a 5 mL PowerWater kit tube, and
1.5 mL of PowerWater kit buffer (instead of 1 mL per manufacturer’s instruction) and Metapolyzyme
(20 µL of a 10.0 mg mL−1 sterile PBS pH7.5, Sigma #MAC4L) were included in the lysis step to enhance
digestion of extracellular material and release of DNA. (Note: In our experience, use of 1.5 mL of the
first PowerWater kit buffer was found to increase the yield of DNA compared to using only 1 mL.)
The tube was vortexed for ca. 60 s (minimizing fragmentation) and incubated overnight at 37 ◦C, with
periodic rotation and agitation. After overnight incubation, DNA extraction was continued, following
PowerWater kit manufacturer’s instructions.

A separate DNA extraction procedure was carried out to harvest DNA for the detection of coliform
bacteria. To begin, three technical replicates of ca. 50 mL river water were filtered under vacuum and
the filters placed on m-Coliblue24 plates [30] and incubated overnight at 37 ◦C for coliform counts.
Following the manufacturer’s protocol, membrane filters of 0.45 µm pore diameter were used [30] for
the m-ColiBlue24 assay. It is noteworthy that consistency was maintained for both filtration procedures,
in that 0.45 µm pore filters were also used for filtering the larger 400 mL volume of river water for
the uncultured, non-selective procedure described above. After the resulting blue E. coli colonies on
the m-Coliblue24 plates were enumerated, one filter yielding colony growth was selected for DNA
extraction, using the PowerWater kit and the amended protocol described above. A second filter with
colony growth was lifted with forceps, replica plated on CHROMagarO157 agar (CHROMagar), and
incubated overnight at 37 ◦C. The appearance of mauve-colored colonies indicated putative EHEC.

DNA sequencing was accomplished using the MinION sequencing platform (Oxford Nanopore)
and the 1D Ligation Sequencing Kit (Nanopore kit SQK-LSK108), following the manufacturer’s
instructions. Resulting fast5 data files were basecalled using Albacore Version 1.2.6 after which
fastq sequence processing and analyses were performed using CosmosID (www.cosmosid.com) and
MG-RAST [31] software. The metagenomic data is available in MG-RAST (mg-rast.org, MG-RAST ID
numbers mgm4778816.3 and mgm4778817.3).

Because of the heightened degree of public health concern regarding E. coli serotypes O157:H7
and O104:H4, and V. cholerae O1 El tor, coverage plots and completion estimates were also generated
as an additional indication of confidence in identifying these potential pathogens. GraphMap [32] was
used for mapping and coverage calculations for these sequences.

DNA preparations from both river water (without selective growth) and m-ColiBlue24 selection
samples were examined by PCR for the presence of eae and Stx genes that are indicative of EHEC and
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EPEC as previously described [17,33]. Presence of eae is characteristic of both EHEC and EPEC; on the
other hand, EHEC contains Stx genes while EPEC lacks Stx genes.

3. Results

3.1. Metagenomic Sequences Generated from DNA Prepared Directly from River Water without Selective
Growth on m-ColiBLue243

Environmental DNA from microorganisms collected by filtration of water from the Little Big
Horn River was subjected to shotgun sequencing using the Oxford Nanopore MinION platform.
Sequencing generated 397,884 reads comprising ~1.1 Gbp with an average read length of 2760 bp.
CosmosID analysis of the DNA sequences indicated the presence of both Eukarya and Bacteria
in the river water community. These included: Eukaryotic protists (Table 1), fungi (Table 2), and
bacteria (Table 3 and Figure 1). Several eukaryotic genera that are of potential concern to human
health, including Acanthamoeba, Leishmania, Candida, and Rhizomucor, were identified in the analyses
(Tables 1 and 2). Bacteria of concern to human health, Acidovorax and Aeromonas salmonicida, were also
identified (Table 3). Limnohabitans was the dominant genera in the filtered river biomass, followed by
Actinobacterium, a genus that includes important members of a healthy gut microbiome.

Table 1. List of eukaryotic microbial genus and species, some of which are pathogenic, identified in
the Little Bighorn River metagenome (DNA prepared without selection). WBD (waterborne disease)
organisms have a known association with human disease.

Eukaryotic Genus Eukaryotic Species Number of Reads Disease Association/WBD
Organisms

Acanthamoeba
Acanthamoeba polyphaga; Acanthamoeba
palestinensis; Acanthamoeba quina;
Acanthamoeba castellanii; Acanthamoeba healyi

55 Infections of eye, skin, and
central nervous system [34]

Dictyostelium Dictyostelium fasciculatum 39
Guillardia Guillardia theta 6

Leishmania
Leishmania major; Leishmania donovani;
Leishmania arabica; Leishmania infantum;
Leishmania turanica; Leishmania aethiopica

78 Infections of skin and
internal organs [35]

Oxytricha Oxytricha trifallax 109
Physarum Physarum polycephalum 24
Salpingoeca Salpingoeca rosetta 23
Symbiodinium Symbiodinium minutum 11

Table 2. List of fungal genera and species, some of which are known pathogens, identified as present
in the Little Bighorn River metagenome (DNA prepared without selection).

Fungal Genera Fungal Species Number of Reads Disease Association/WBD
Organisms

Amauroascus Amauroascus niger 292

Candida Candida albicans; Candida dubliniensis 37
Infections of the digestive

system and vagina; invasive
candidiasis [36]

Chrysosporium Chrysosporium queenslandicum 198
Drechmeria Drechmeria coniospora 5
Magnaporthe Magnaporthe oryzae 5
Melampsora Melampsora pinitorqua 40
Orpinomyces Orpinomyces sp 61
Pleosporales Pleosporales sp 4
Rhizomucor Rhizomucor variabilis 10 Opportunistic infections [37]
Rhizophagus Rhizophagus irregularis 108
Saccharomyces Saccharomyces cerevisiae 1
Trichoderma Trichoderma longibrachiatum 3
Ustilaginoidea Ustilaginoidea virens 1
Verticillium Verticillium alfalfae 1
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Table 3. Bacterial community identified in the Little Bighorn River metagenome (DNA prepared
without selection).

Bacterial Strain Number of Reads Disease Association

Acidovorax_sp_JHL_3 113 Sepsis [38]; catheter-associated
bloodstream infection [39]

actinobacterium_SCGC_AAA023_J06 197
actinobacterium_SCGC_AAA024_D14 503
actinobacterium_SCGC_AAA027_M14 672
actinobacterium_SCGC_AAA028_I14 580
actinobacterium_SCGC_AAA044_N04 590
actinobacterium_SCGC_AAA278_O22 811

Aeromonas_salmonicida_subsp_salmonicida_A449 3
Fish pathogen [40]; isolated from

human blood [41];
endophthalmitis [42]

Bacteroidetes_bacterium_SCGC_AAA027_G08 306
beta_proteobacterium_CB 105
beta_proteobacterium_SCGC_AAA027_I06 295
beta_proteobacterium_SCGC_AAA027_K21 13
beta_proteobacterium_SCGC_AAA028_K02 52
Curvibacter_lanceolatus_ATCC_14669 173
Exiguobacterium_acetylicum_DSM_20416 2
Jonesia_denitrificans_DSM_20603 2
Limnohabitans_sp_Rim28 2616
Verrucomicrobia_bacterium_SCGC_AAA027_I19 141
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Figure 1. Krona plot of bacteria identified in the Little Bighorn River metagenome (DNA prepared
without selection).

3.2. Metagenomic Analysis of DNA Prepared from Filter after Selective Growth on m-ColiBlue24 Medium

The average concentration of E. coli was 66 colony forming units (CFU) per 100 mL water that was
detected on filters incubated overnight on m-ColiBlue24 medium. This concentration is well below the
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limit of 126 CFU per 100 mL established by the EPA [43] for recreational water to be considered safe
for swimming.

DNA was prepared and sequenced from colonies grown overnight on the filters with an
m-ColiBlue24 selection. A total of ~1.6 Gbp of data was generated, comprised of 1,261,165 sequence
reads with an average length of 1260 bp. Several bacterial species, some of which are important human
pathogens, were detected that had not been identified in the native river water metagenome (Table 4
and Figure 2). In addition to numerous opportunistic pathogens, strains of toxigenic E. coli, Shigella
spp., and Vibrio cholerae were also detected.

Table 4. Bacterial species identified by metagenomic analysis of DNA prepared after selective growth
on m-ColiBlue24 medium.

Bacterial Strain Number of Reads Disease Association/WBD
Organisms

Acinetobacter soli NIPH 2899 1431 Bacteremia [44]

Acinetobacter junii CIP 64 5 1430 Septicemia [45]

Aeromonas veronii AMC34 82,139

Diarrhea [46]

Aeromonas allosaccharophila strain CECT 4199 60,447
Aeromonas sp 4287D 46,956
Aeromonas australiensis strain CECT 8023 46,643
Aeromonas fluvialis strain LMG 24681 30,325
Aeromonas sobria strain CECT 4245 22,042
Aeromonas sp AE122 20,496
Aeromonas jandaei Riv2 19,893
Aeromonas hydrophila subsp hydrophila ATCC 7966 6444
Aeromonas caviae strain FDA MicroDB 78 5495

Citrobacter braakii strain GTA CB04 1010 Bacteremia [47]

Cronobacter dublinensis subsp dublinensis LMG
23823 1389 Opportunistic neonatal infection

[48]

Enterobacter ludwigii strain EN 119 28,696

Enterobacter mori LMG 25706 7371

Enterobacter asburiae L1 3698 Opportunistic wound infection
[49]

Escherichia coli O104:H4 str 2011C 3493 4390 Diarrhea, hemolytic uremic
syndrome [50]

Escherichia coli str K 12 substr MG1655 strain K 12 2895

Escherichia coli O157:H7 str Sakai 1250 Diarrhea, hemolytic uremic
syndrome [51]

Escherichia coli UMN026 963 Urinary tract infection [52]

Klebsiella sp BRL6 2 6060 Nosocomial infections,
hemorrhagic colitis, pneumonia,
urinary tract infections [53,54]

Klebsiella oxytoca HKOPL1 1982
Klebsiella pneumoniae strain FDA MicroDB 64 928

Leclercia adecarboxylata ATCC 23216 NBRC 102595 1166 Bacteremia, soft tissue infection
[55]

Pseudomonas alcaligenes NBRC 14159 3819 Opportunistic infections [56]

Shigella flexneri 2a str 301 1397

Shigellosis (diarrhea) [57]Shigella sonnei 1137
Shigella boydii Sb227 1124
Shigella boydii 5216 82 863

Vibrio cholerae O1 biovar El Tor str N16961 1388 Cholera [58]

Vibrio albensis VL426 1161

A number of bacteriophages (Table 5), antimicrobial resistance (AMR) gene markers (Table 6), and
virulence genes (Table 7) were identified from the metagenomic analysis after m-ColiBlue24 selection.
Several of these bacteriophages, AMR markers, and virulence genes are relevant to human health.
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Figure 2. Krona plot of bacteria identified by metagenomic analysis of DNA prepared after selective
growth on m-ColiBlue24 medium.

Table 5. Bacteriophages detected in the metagenomic analysis of DNA from filtered water sample after
growth on selective m-ColiBlue24 medium.

Bacteriophage Number of Reads Gene Function and Disease Association

Aeromonas_phage_phiO18P 54
Enterobacteria_phage_cdtI 39
Enterobacteria_phage_Fels_2 8
Enterobacteria_phage_fiAA91_ss 29
Enterobacteria_phage_HK629 49
Enterobacteria_phage_HK630 4
Enterobacteria_phage_HK633 2
Enterobacteria_phage_lambda 8
Enterobacteria_phage_mEp043_c_1 7
Enterobacteria_phage_mEp213 64
Enterobacteria_phage_mEp460 33
Enterobacteria_phage_P1 57
Enterobacteria_phage_P2 20
Enterobacteria_phage_P88 38
Enterobacteria_phage_phiV10 9
Enterobacteria_phage_YYZ_2008 18
Salmonella_phage_RE_2010 18
Salmonella_phage_SSU5 15

Shigella_phage_SfII 20 O-antigen modification, enhancing antigen
variation and resistance to host defense [59]

Shigella_phage_SfIV 37 O-antigen modification, enhancing antigen
variation and resistance to host defense [60]

Stx2_converting_phage_1717 21 Encodes Shiga toxin, a virulence factor inhibiting
protein synthesis in infected cells; cytotoxic [61]

Yersinia_phage_L_413C 22
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Table 6. Antibiotic resistance markers identified by CosmosID analysis of DNA prepared from filtered
water sample after selective growth on m-ColiBlue24 medium.

Resistance Gene Name Number of Reads

Ampicillin ampS 26

Antibiotic Efflux

mexB 43
acrD 37
acrB 30
mdtF 22
acrF 18
mdtC 13
mdtG 10

Beta-lactamase

blaCEPH-A3 25
cphA4 20
pbp2 15

cphA1 13
blaOXA-12 12

cphA7 10

Fluoroquinolone oqxB 19
emrR 10

Polymyxin Resistance pmrC 16
arnA 12

Table 7. Virulence genes identified by analysis of the metagenome derived from DNA prepared after
selective growth on m-ColiBlue24 medium.

Virulence Gene Number of Reads Gene Function and Disease Association

E. coli GENE f17G 108 Fimbrial adhesin; diarrhea [62]

E. coli GENE gad 627 Homeostasis and acid resistance [63]

E. coli GENE iss 78 Increased serum survival; extraintestinal infection [64]

Pasteurella multocida GENE tetH 80 Tetracycline resistance; bacteria cause a variety of diseases in
mammals and birds, and opportunistic infections in humans [65,66]Pasteurella multocida GENE tetR 29

Vibrio cholerae GENE vasH 83

Type VI secretion system; promotes competitive advantage by
killing other cell types, and fosters horizontal gene transfer to

enhance the evolution of virulence and antibiotic resistance [67]

Vibrio cholerae GENE vgrG-3 111
Vibrio cholerae Gene VCA0107 19
Vibrio cholerae Gene VCA0109 48
Vibrio cholerae Gene VCA111 51

Vibrio cholerae Gene VCA0121 121

Yersinia pestis GENE ybtE 59 Yersiniabactin iron acquisition system, to obtain iron from the host
during infection [68]Yersinia pestis GENE ybtQ 132

Yersinia pestis GENE ybtX 101

The eae and Stx genes were both undetected in DNA prepared from unenriched river water,
whereas these genes were both detected in DNA isolated from a filter cultured on selective
m-ColiBlue24 medium (data from PCR not shown). The presence of Stx2 converting phage sequences
was also indicated by the metagenomics analysis (Table 5). Colonies grown on m-ColiBlue24 media
and replica plated onto CHROMagarO157 media gave rise to scattered, small spots of mauve growth,
indicating the presence of EHEC bacteria.

Five markers of antimicrobial resistance (AMR) at 18 different gene loci were identified in the
metagenomic analysis of the m-ColiBlue24 selection sample (Table 6). These markers are related to
efflux of antibiotics, resistance to the beta-lactam class of antibiotics, as well as resistance to ampicillin,
fluoroquinolones, and polymyxins.

Several virulence genes that contribute to the ability of microbes to cause disease were identified
(Table 7). These genes code for virulence factors related to attachment, acid resistance, enhanced serum
survival, the competitive advantage against other microbes, and iron acquisition capability.
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Calculations of DNA sequencing coverage and depth of coverage were made by mapping reads
to the genomes of three pathogens of major public health significance. Reads were mapped to
E. coli O104:H4, E. coli O157:H7 Sakai, and V. cholerae O1 El Tor with 96%, 95% and 93% coverage
(completion) of genomes, respectively (Table 8 and Figures 3–5). The depth of coverage was 52×,
50×, and 36×, respectively, for the three genomes (Table 8). Based on genome reporting standards
proposed by Bowers et al. [69], these genomic coverages would meet the criterion for high quality
metagenome-assembled genomes for these three species. Given that the sequences were mapped to
reference genomes with high fidelity, there are unlikely to be multiple, heterogeneous populations for
each species. Consequently, these pathogenic populations were present in the river water, and were
detectable after selection and enrichment on m-ColiBlue24 media.

Table 8. Sequencing coverage calculations for E. coli O104:H4, E. coli O157:H7, and V. cholerae O1
biovar Eltor.

Bacterial
Species

Number of
Bases Covered

Reference
Genome
Length

% Coverage along
Reference
Genome

Depth of
Coverage

(mean)

Depth of
Coverage
(st dev)

E. coli O104:H4 5,226,510 5,437,407 96.3 52.2 61.8

E. coli O157:H7 5,332,768 5,594,477 95.3 50.2 60.7

V. cholerae O1
biovar ElTor 3,770,896 4,033,464 93.5 35.8 58.3
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4. Discussion

This study describes a metagenomic analysis of water samples collected from a popular swimming
site along the Little Big Horn River during the summer of 2017. This work was predicated on previous
detection and identification of EHEC and EPEC bacteria in water samples collected from the Little
Bighorn River [17] and ongoing concerns of the local community related to water quality and safety.
Initial metagenomic analysis of total DNA isolated from filtered river water indicated the presence of
species and strains of typical freshwater microorganisms, including both culturable and non-culturable
microorganisms. Distinguishing between culturable and non-culturable microbial strains is important,
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since a study of freshwater lake bacteria estimated approximately only 0.25% of the total bacterial
population was culturable [70]. Indeed, most bacterial populations in these environments are viable
but not culturable (VBNC) using standard bacteriological culture methods [71–73]. A variety of both
naturally occurring and potentially pathogenic bacterial species have been shown to enter the VBNC
state in response to environmental stress, reducing detection of a significant percentage of a population
with relevance to public health in environmental surveillance.

A second metagenomic analysis was also performed using DNA prepared from a filtered water
sample after incubation on m-ColiBlue24 medium overnight to allow for selection of coliforms and
related species. This two-pronged approach was taken to enhance detection and identification of
pathogens, the growth of which may be inhibited by other river bacteria, and therefore not previously
recognized in earlier studies targeting detection of coliforms in the river water [17].

Metagenomic analysis of DNA extracted from filters without growth on selective medium
revealed a rich diversity of microorganisms, the predominant species of which are presented in
Tables 1–3. The absence of E. coli in DNA prepared without enrichment on a selective medium
was not surprising given the relatively small number of reads and because enrichment on selective
media yielded only 66 CFU/100 mL of E. coli in overnight culture on m-ColiBlue24 medium. This
medium has been approved by the EPA [30,74] as a sensitive method for detecting and monitoring
fecal coliform (E. coli) bacteria in fresh water, where a count of 126 CFU/100 mL (calculated as
geometric mean for samples collected over a 30-day period) for E. coli is the maximum permissible
limit for recreational waters [43]. Lack of detection of E. coli by metagenomic analysis without selective
growth is attributed to the overwhelming abundance and diversity of non-E. coli microorganisms
that were present. The proportion of E. coli present in the water samples was representatively small
in comparison to the high microbial load on selective media, evidenced by results of the analysis
of the m-ColiBlue24-derived metagenome, revealing Gammaproteobacteria and coliform bacteria in
significant abundance. Our choice of 0.45 µm pore diameter membrane filters was based on following
the manufacture’s protocol [30] for the EPA-approved m-ColiBlue24 method, as well as water sample
turbidity. We acknowledge that use of this pore size instead of a smaller pore diameter filter could
have resulted in our missing smaller sized microorganisms of public health significance. However,
species and strains (Table 4) that were identified, including many serotypes of diarrheagenic bacteria,
such as EHEC O157:H7, were also identified in an earlier study [17].

DNA sequences indicative of E. coli serotype O104:H4 and V. cholerae O1 El Tor, both human
pathogens of significant interest, were identified (Table 4). Of particular concern, E. coli O104:H4 is an
emerging pathogen that first received widespread attention in 2011 as the causative agent of the largest
outbreak of Shiga toxin-related disease [75] recorded to date [50]. In Germany and surrounding areas,
an O104:H4 outbreak strain caused 3,842 cases of illness, including 18 deaths. Among those stricken,
855 people developed hemolytic uremic syndrome (HUS), leading to an additional 35 deaths [50]. The
disease-associated O104:H4 outbreak strain is a novel variant of enteroaggregative E. coli (EAEC) that
acquired the Shiga toxin gene that is characteristic of EHEC.

Detection of V. cholerae sequences in the Little Bighorn River is not surprising. V. cholerae, the
causative agent of cholera, is an aquatic bacterium with world-wide distribution [76], that may be
due to globalization and may indicate changing human demographics. Recently, V. cholerae caused an
outbreak of disease in Haiti that had not been seen in 100 years [77,78]. Several virulence genes have
been reported as essential for these bacteria to cause an outbreak of cholera, especially including the
ctxA and ctxB genes encoding cholera toxin and carried by the bacteriophage CTXϕ. This bacteriophage
was not detected in this study (Table 5). However, a cluster of genes (VCA0107, VCA0109, VCA0111,
VCA0121, vgrG-3, and vasH; see Table 7) associated with the type VI secretion system (T6SS), an
important virulence factor of many Gram-negative pathogenic bacteria, including V. cholerae [79], were
detected. In the related species V. proteolyticus, the T6SS includes cytotoxic effectors that target both
prokaryotic and eukaryotic cells [80]. In V. cholerae, the T6SS has been shown to kill other bacterial
species, releasing DNA that in turn can be taken up in the process of horizontal gene transfer (HGT) by
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naturally competent Vibrio bacteria [67]. Genes taken up by HGT may enhance the antibiotic resistance
and virulence potential of Vibrio cells, highlighting the evolutionary potential of pathogenic bacteria in
natural environments to become more virulent.

Of relevance to human health, bacteriophage-encoded genes that enhance the pathogenicity of
host bacteria were also detected. Two types of Shigella-specific phage, SfII and SfIV, allow for O antigen
modification and increased antigen variation [59,60]. The Stx2 converting phage of E. coli O157:H7
and other related Shiga toxigenic E. coli (STEC) encodes the Stx2 protein, an important virulence factor
causing lysis of host cells and contributing to hemolytic uremic syndrome [61].

Detection of several AMR markers in the m-ColiBlue24 metagenome (Table 6) is relevant as the
worldwide spread of antibiotic resistance is increasingly recognized as a major public health threat,
compromising treatment of a variety of infectious diseases [81]. Widespread use of antibiotics in
human and veterinary medicine has contributed to an increasing pool of bacteria harboring AMR
genes and these bacteria, in turn, are now widely distributed in agricultural products, animals, humans,
and the environment [82].

The metagenomic analyses presented in this study indicate that a variety of potential human
disease-related pathogens and AMR markers were present and detectable in water samples collected
from the Little Bighorn River during the summer of 2017. The presence of gene markers for E. coli
O157:H7 (Tables 4 and 5), a human pathogen of significant concern, is in agreement with earlier
findings of Hamner [17]. Presence of Shiga toxin gene markers indicated by both PCR (data not
shown) and metagenomic analysis, as well as mauve-colored colony growth on ChromagarO157
medium, a differential/selective medium and indicative test for O157:H7, provide both genetic and
phenotypic evidence for continued presence of E. coli O157:H7 bacteria in the Little Bighorn River. As it
is understood that the major reservoir of O157:H7 bacteria is cattle and other ruminants [83], livestock
ranching operations along the length of the Little Bighorn River, including a large concentrated animal
feed operation close to the headwaters of the river, provide likely sources of this contamination to
the watershed.

Penicillin derivatives are widely used in animal husbandry and hence ampicillin and
beta-lactamase resistance might be expected to coincide with the presence of animal-associated
pathogens [84]. However, tetracyclines tend to be more broadly used, and the absence of any
tetracycline resistance gene markers would suggest further work is needed to identify sources
of contamination. It is not currently known which antibiotics are primarily used in the Little
Bighorn watershed.

Animal experiments with the E. coli O157:H7 bacteria or other potential pathogens identified in
the present study were not conducted. Therefore, it is unclear whether isolates from the Little Bighorn
River are capable of causing disease. Nevertheless, the presence of E. coli O157:H7 bacteria detected
in the river consistently and over several years, along with identification of other known pathogens,
is of concern. Consequently, the potential for horizontal gene transfer based on detection of AMR
genes and evolution of pathogens with enhanced pathogenic potential and spread of AMR cannot be
ignored [85].

The metagenomics analyses carried out in this study yielded results that strongly suggest further
metagenomic analysis should be conducted, using both longitudinal and seasonal study designs to
provide statistically significant data to inform public health efforts.

The Crow Environmental Steering Committee has endorsed continued study, with a focus on
both the Crow Fair swim hole site of the present study and upstream sites to determine the extent and
potential sources of microbial contamination. The staff of the Crow Water Quality Project continue to
educate the community on water quality and environmental health issues. Since the local tribal college
is a two-year institution with limited facilities and resources, our use of the portable and relatively
affordable MinION sequencing platform may serve as a proof of concept for introducing students at
smaller tribal colleges to DNA sequencing technology as a means of monitoring water quality. Use
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of the MinION system may be applicable to the study of genomics in a teaching and research setting
where the cost of other more expensive sequencing technologies is prohibitive.

5. Conclusions

Waterborne disease continues to threaten human health worldwide. Many regulatory agencies
employ coliform testing of water as an indication of the extent of fecal contamination and disease
risk. Even when the concentration of coliform bacteria is within an acceptable level, this method does
not identify specific microbes that may be pathogenic at a very low dose-of-infectivity. In this study,
we test the feasibility of using a highly portable DNA sequencing device, that may in the future be
readily deployed for routine monitoring of water quality outside of research laboratory settings, for
detection and metagenomic analysis of waterborne disease pathogens present in a river affected by
fecal contamination from cattle ranching and leaking sewage systems. We demonstrate that even at an
“acceptable” level of fecal coliform bacteria deemed to be safe for human recreational use of a river,
seemingly rare and unexpected (for rural Montana) pathogens, such as E. coli O104:H4 and V. cholerae,
as well as pathogens with a low dose-of-infectivity on the order of 1-10 cells, e.g., E. coli O157:H7, can
be detected using metagenomic analysis.

As portable DNA sequencing devices continue to be refined and made more affordable, and as
metagenomics software and analysis are fully integrated with these sequencing platforms, it can be
envisioned that real time surveillance for water borne pathogens, virulence genes, and AMR gene
markers will be incorporated into environmental monitoring to protect human health. The present
study serves as a proof of concept of the utility of such an approach, by demonstrating the ability to
detect not only pathogenic microorganisms, but also virulence and AMR genes. Use of traditional
methods to screen for pathogens and phenotypic traits requires a targeted approach to test for specific
agents and genes, and may require weeks or months to complete. Integrated DNA sequencing and
metagenomic analysis, on the other hand, can be performed in real time, requiring only hours or days
to complete an assessment for waterborne pathogens.
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