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Abstract: Morbidity prediction can be useful in improving the effectiveness and efficiency of
medical services, but accurate morbidity prediction is often difficult because of the complex
relationships between diseases and their influencing factors. This study investigates the effects of food
contamination on gastrointestinal-disease morbidities using eight different machine-learning models,
including multiple linear regression, a shallow neural network, and three deep neural networks and
their improved versions trained by an evolutionary algorithm. Experiments on the datasets from ten
cities/counties in central China demonstrate that deep neural networks achieve significantly higher
accuracy than classical linear-regression and shallow neural-network models, and the deep denoising
autoencoder model with evolutionary learning exhibits the best prediction performance. The results
also indicate that the prediction accuracies on acute gastrointestinal diseases are generally higher
than those on other diseases, but the models are difficult to predict the morbidities of gastrointestinal
tumors. This study demonstrates that evolutionary deep-learning models can be utilized to accurately
predict the morbidities of most gastrointestinal diseases from food contamination, and this approach
can be extended for the morbidity prediction of many other diseases.

Keywords: food contamination; public health; gastrointestinal diseases; morbidity; deep neural
networks; evolutionary learning

1. Introduction

In recent decades, industrial emissions, domestic waste, and the overuse of pesticides and
fertilizers have caused serious environmental pollution, which has been confirmed as an important
factor causing alarming deterioration in public health [1–5]. In particular, food contamination arising
from soil and water pollution has been reported to be involved in almost all types of gastrointestinal
diseases [6–8]. However, modeling the effects of food contamination on gastrointestinal morbidity
is still a challenging task because the pathogenic mechanisms of gastrointestinal diseases are very
complex, the number of contaminants is large, and the pathogenic roles of contaminants in the diseases
are often unknown or uncertain.

There are numerous studies on the effects of environmental pollution on public health. A majority
of studies have been devoted to the relationships between air pollution and respiratory diseases.
Using logistic regression and weighted linear regression, Zhang et al. [9] examined the association
between children’s respiratory morbidity prevalence and district-specific ambient levels of main
air pollutants in four Chinese cities, and their results evidenced that morbidity prevalence was
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positively associated with the levels of NOx, SO2, and coarse particles. Jayaraman and Nidhi
[10] used a generalized additive Poisson regression model to evaluate the association between air
pollutants and daily variations in respiratory morbidity in Delhi in 2004–2005. Based on a log-linear
Poisson regression model, Sousa et al. [11] performed time-series analysis to assess the impact of air
pollution on emergency hospitalization for respiratory disease in Rio de Janeiro, Brazil, in 2000–2005.
Zhao et al. [12] used a time-series model with a quasi-Poisson link to examine the association between
PM pollution and respiratory morbidities in Dongguan City, China, in 2013–2015. Qiu et al. [13]
used a similar approach to estimate the short-term effects of ambient air pollutants (PM10, PM2.5,
NO2, and SO2) on hospital admissions of overall and cause-specific respiratory diseases in 17 cities of
Sichuan Province, China, during 2015–2016. Although such regression models can demonstrate the
associations between pollution and diseases, they are often incapable of providing sufficiently accurate
morbidity prediction for healthcare management.

To overcome the limitation of classical linear and logistic models with multiple variables to handle
the multifactorial effect, Bibi et al. [14] used an artificial neural network (ANN) to predict the effect
of atmospheric changes on emergency department visits for respiratory symptoms. The results
showed that the average prediction error of the ANN was much less than the classical models
on the test set. Wang et al. [15] applied the Granger causality method to identify the main air
pollutants correlated with the mortality of respiratory diseases, and then constructed an ANN model
for respiratory mortality prediction in Beijing during 2005–2008, which also achieved higher accuracy
than classical correlation-analysis methods. Junk et al. [16] used an ANN to predict the mortality
rates of respiratory diseases associated with air pollution under different weather conditions in
Western Europe. Moustris et al. [17] developed an ANN model to predict the weekly number of
childhood asthma admission at the greater Athens area in Greece from ambient air-pollution data
during 2001–2004. Zhu et al. [18] studied the effects of air pollutants on lower respiratory disease
in Lanzhou City, China, during 2001–2005, and constructed an ANN based on a group method of
data handling to forecast the number of patients in a hospital. Sundaram et al. [19] developed an
Elman neural network to predict respiratory mortality and cardiovascular mortality from a set of
air-pollution indicators, and the results showed that the dynamic ANN showed good performance on
time-series prediction. Recently, Liu et al. [20] employed long short-term memory recurrent neural
networks to forecast influenza trends from multiple data sources, including virologic surveillance,
influenza geographic spread, Google trends, climate and air pollution; their results also exhibited high
prediction accuracy.

Although it is known that many diseases are related to food contamination, studies on their
correlations are relatively few, mainly because the number of food contaminations is much larger
than the number of air pollutants, and thus classical regression methods and shallow ANNs
become inefficient in handling complex correlations in such a high-dimensional feature space.
Recently, deep neural networks (DNNs) are a powerful tool for modeling complex probabilistic
distributions over a large number of influence factors by automatically discovering intermediate
abstractions, layer by layer. Song et al. [21] developed a DNN based on a denoising autoencoder [22]
to predict gastrointestinal-infection morbidity from food-contamination data in four counties in China
during 2015–2016, and the results showed that the deep-learning model had significantly higher
prediction accuracy than shallow ANNs. However, their work only concerned the morbidity of
all acute gastrointestinal infections, i.e., it neither considered other gastrointestinal diseases such
as chronic gastritis and gastrointestinal tumors, nor did it differentiate the morbidities of different
gastrointestinal infections, such as acute gastritis and dysentery.

This study investigates the effects of food contamination on six main gastrointestinal diseases,
acute gastroenteritis, chronic gastroenteritis, gastrointestinal ulcers, gastrointestinal tumors, food
poisoning, and other acute gastrointestinal infections. We employed five methods, multiple linear
regression (MLR), a three-layer feed-forward ANN, a deep belief network (DBN) [23], a deep
autoencoder (DAE), and a deep denoising autoencoder (DDAE) [22], for correlation analysis and
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gastrointestinal-morbidity prediction. For each of the last three deep-learning methods, we respectively
constructed two models, one using the basic gradient-based training algorithm and the other using an
evolutionary training algorithm. Results showed that the deep-learning models achieved significantly
higher accuracies than the MLR and shallow ANN models, and the DDAE with evolutionary training
exhibited the highest prediction accuracy.

2. Materials and Methods

2.1. Materials

We collected data from ten cities/counties in central China, Yichun City (Yuanzhou Municipal
District), Gao’an City, Wanzai County, Tonggu County, Pingxiang City (Anyuan Municipal District),
Shangli County, Ji’an County, Xingan County, Liling City, and Chaling County, from May 2015 to
September 2018 (178 weeks). These cities/counties have similar dietary habits and levels of health
services. The dataset consists of two parts:

• Weekly food-contamination data from food-supervision departments. They include 119 types
of food (given in Table 1) and 227 types of contaminants (given in Table 2). Therefore, the total
number of contaminant indicators was at most 27,013. However, in practice, it is impossible to
inspect so many contaminants, and thus the data tuples contain a large portion of missing values,
and the average number of indicators per tuple is only approximately 4955.

• Weekly gastrointestinal-morbidity data from hospitals and healthcare-management departments.
As aforementioned, these involve six general types of gastrointestinal diseases.

We constructed a data tuple per week for each city/county; the total number of tuples is 1780. If
an indicator was measured more than once in a week, we took the mean value in the tuple.

Table 1. Types of food for morbidity prediction [21].

Class Food

Cereals Rice, wheat, barley, corn, millet, black rice, sticky rice

Beans Soybean, mung soybean, red bean, black bean, broad bean, pea, cow pea, hyacinth bean,
kidney bean, sword bead

Vegetables

Cabbage, pak choi cabbage, baby cabbage, celery cabbage, celery, lettuce, broccoli,
Chinese broccoli, mustard leaf, leaf lettuce, okra, rape, spinach, water spinach,
potherb mustard, amaranth, cauliflower, purslane, yam, carrot, celtuce, summer radish,
loofah, tomato, cucumbers, lappa, radish, potato, sweet potato, pumpkin, bitter gourd,
white gourd, chilli pepper, bell pepper, green pepper, sweet pepper, pod pepper,
pea sprout, soybean sprout, mung bean sprout, Chinese toon sprout, shiitake,
button mushroom, oyster mushroom, needle mushroom, agaric, day lily, tremella,
spring onion, Chinese onion, ginger, caraway, garlic, fragrant-flowered garlic,
garlic sprouts

Fruits
Apple, gala apple, bergamot pear, snow pear, mili pear, pineapple, orange, navel orange,
vibrio mimicus, pomelo, peach, nectarine, melon, watermelon, Hami melon, apricot,
plum, cherry, bayberry, grape, longan, lychee, winter jujube, red jujube, sugarcane, pitaya

Meals and eggs Pork, beef, mutton, chicken, duck, egg, duck egg, quail egg

Aquatic Kelp, laver, carp, grass carp, yellow croaker, perch, crucian, prawn, river prawn, crab,
river crab, river snail
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Table 2. All 227 contaminants used for morbidity prediction [21].

Class Subclass Contaminants

Inorganic
contaminants

Heavy metals Pb, Cd, Hg, Cu, Ni, As, Be, Bi, Sb, Tl, Cr, Mo, Ni, Zn, F, V

Others cyanide, nitrate, nitrite, sulfate, carbonate

Organic
contaminants

Hydrocarbons benzene series, polycyclic aromatic hydrocarbons, total petroleum hydrocarbon

Halogenated hydrochlorofluorocarbons, chlorinated solvents, polychlorinated biphenyls, dioxin

Oxygenated alcohols, phenols, ethers, esters, phthalate

Dyes Azo, quaternary ammoniun compounds, benzidine, naphthylamine

Plastics polypropylene, polyphenyl ether, polystyrene, phthalic acid esters

Pesticides 66 commonly used pesticides [24]

Herbicides 18 commonly used herbicides [25]

Endocrine disruptors 68 chemicals [26]

Others trichloroethylene, organochlorine pesticide

Pathogenic
organisms

Bacteria

salmonella, shigella, dysentery bacillus, plague bacillus,
tubercle bacillus, typhoid bacillus, diphtheria bacillus,
Francisella tularensis, Brucella, vibrio parahaemolyticus,
vibrio cholerae, vibrio mimicus, vibrio fluvialis, clostridium
tetani, clostridium botulinum, clostridium perfringens,
staphylococcus aureus, Bacillus anthraci, Escherichia coli,
Yersinia, helicobcter pylori, campylobacter jejuni,
aeromonas hydrophila, roundworm eggs, hookworm eggs

Fungi candida albicans, aspergillus fumigatus, mucor racemosus

Virus rotavirusm, norovirus, sapovirus, astrovirus

2.2. Methods

We used eight machine-learning models for gastrointestinal-morbidity prediction based on food
contamination. The aim of model training was to minimize the root mean squared error (RMSE)
between the actual model outputs and the expected outputs over the training set:

min RMSE =

√√√√ 1
N

N

∑
i=1
|yi − ŷi|2 (1)

where N is the number of tuples in the training set, yi is the model actual output of the i-th tuple, and ŷi
is the expected (labeled) output of the i-th tuple. In this study, the output morbidity yi is calculated as
the ratio of the incidences to the resident population in the investigated region (the floating population
is not taken into account because of the difficulty of data collection).

A model is evaluated based on its prediction accuracy over the test set. We used fivefold
cross-validation, i.e., we partitioned the dataset into five equal-size pieces, and ran the validation five
times, each using four pieces as the training set and the remaining piece as the test set. Prediction
accuracy was averaged over the five validations.

2.2.1. Multiple Linear Regression (MLR)

The MLR method calculates an output y from an n-dimensional input x as:

y = a0 +
n

∑
i=1

aixi (2)

where ai are the regression coefficients (i = 1, 2, . . . , n). Here, n = 27,013; if a value xi is missing, it is
filled by the mean value of those nonmissing xi of training tuples.
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2.2.2. Shallow Neural Network

We used a three-layer feed-forward ANN trained by the back-propagation algorithm. Each
neuron in the input layer directly accepts an input component xi, while each neuron j in the hidden
layer calculates an inner output zj as:

zj = s
( n

∑
i=1

wijxi − θj
)

(3)

where θj is the threshold of the neuron, wij is the connection weight between the i-th input neuron to
the neuron j, and s is the sigmoid activation function:

s(u) =
1

1 + e−u (4)

Similarly, the output neuron calculates the final output y as:

y = s
( m

∑
j=1

wjzj − θ0
)

(5)

Empirically, we set number of neurons m in the hidden layer to
√

n.

2.2.3. Deep Belief Network (DBN)

A DBN [23] consists of a stack of Restricted Boltzmann Machines (RBMs) [27]. An RBM, consisting
of a visible input layer and a hidden layer, is an energy-based probabilistic model that defines a joint
probability distribution over an input vector x and a hidden vector z as:

P(x, z) =
1

∑N
i=1 exp(−E(xi, zi))

exp(−E(x, z)) (6)

where E(x, z) = −xTbx − zTcz − xTwz, and b, c, and w are the parameter vectors representing
visible-to-visible, hidden-to-hidden, and visible-to-hidden interaction weights, respectively. Note that
a basic RBM learns distributions over binary vectors, but we can use Gaussian-Bernoulli energy
function to transform a real vector into a binary one [28], and then use DBN to learn distributions over
the transformed binary vector [29].

After fine-tuning the structural parameters of the DBN on the training sets, we set the number
of hidden layers to four, and set the numbers of neurons in the hidden layers to 3860, 550, 80,
and 12, respectively. A Gaussian mixture model was added to the topmost RBM of DBN to produce
output morbidity y from topmost hidden vector z. DBN training consists of two stages. The first
stage is pretraining, which tries to maximize the joint distribution of each RBM over the training
set layer-by-layer:

arg max
b,c,w

J =
1
N

N

∑
i=1

log P
(
xi, zi

)
(7)

The second stage is to minimize the RMSE of the whole DBN over the training set.

2.2.4. Evolutionary Deep Belief Network (EvoDBN)

A classical DBN is trained by a gradient-based, layerwise training algorithm [30], which is
easily trapped in local optima, especially when the dimension is high. This issue can be tackled by
using evolutionary training algorithms, which evolve populations of solutions to simultaneously
explore multiple regions in the solution space to increase the chances of jumping out of local
optima [31]. Here, we employed a recent efficient evolutionary algorithm called water wave
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optimization (WWO) [32], which has exhibited competitive performance compared to many other
popular evolutionary algorithms in neural-network training [33].

To solve an optimization problem, WWO evolves a population of candidate solutions by
mimicking wave propagation and breaking in shallow water. In WWO, each solution X is analogous
to a wave. The higher the energy (fitness) f (X), the smaller the wavelength λX , and thus the smaller
the range that the wave propagates. λX is initially set to 0.5, and then updated at each generation as:

λX = λX · α−( f (X)− fmin+ε)/( fmax− fmin+ε) (8)

where fmax and fmin are the maximum and minimum fitness among the population, respectively, α is
the wavelength-reduction coefficient suggested set to 1.0026, and ε is a very small number to avoid
division by zero. At each generation, X is propagated by adding an offset proportional to λX to each
dimension Xi as follows:

X′i = Xi + λX · rand(−1, 1) · Li (9)

where Li is the length of the i-th dimension of the solution space. Whenever a propagation produces a
new best solution X∗, it is broken into several solitary waves, each of which moves a small distance
from X∗ in a random dimension i:

X′i = X∗i +N (0, 1) · βLi (10)

where β is the breaking coefficient, and N denotes a normal distribution. The best solitary wave,
if better than X∗, replaces X∗ in the population.

The EvoDBN uses the same architecture as DBN, and also employs a Gaussian mixture model
to produce output morbidity. When training EvoDBN, WWO is first applied to optimize the
{b, c, w} parameters of each RBM layer by layer, where f (X) corresponds to the objective function in
Equation (7). After pretraining, WWO is applied to optimize the parameters of the DBN as a whole,
where f (X) is inversely proportional to RMSE.

2.2.5. Deep Autoencoder (DAE)

An autoencoder also consist of a visible input layer (called an encoder) and a hidden layer (called
a decoder). It first transforms (encodes) an input vector x to a hidden representation z through
affine mapping

z = s(wx + b) (11)

and then maps (decodes) z back to a reconstructed vector x′ in the input space:

x′ = s(w′z + b′) (12)

The aim of autoencoder training is to minimize the average reconstruction error over the
training set:

arg min
w,b,w′ ,b′

L =
1
N

N

∑
i=1
‖x, x′‖2 (13)

A DAE [23] consists of a stack of autoencoders. Its training consists of two stages. The first stage
is to train each autoencoder layer by layer, and the second stage is to train the whole DAE to minimize
the RMSE over the training set.

For the morbidity-prediction problem, we used a DAE with four hidden layers, and tuned the
numbers of neurons in the hidden layers to 4500, 640, 80, and 12, respectively. It also employed a
Gaussian mixture model to produce output morbidity.
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2.2.6. Evolutionary DAE (EvoDAE)

Similarly, we implemented a DAE trained by the WWO evolutionary algorithm, which is first
applied to minimize the reconstruction error in Equation (13) of each autoencoder layer by layer,
and then applied to minimize the RMSE of the whole DAE. The EvoDAE uses the same structure
(including the top-level Gaussian mixture model) as DAE.

2.2.7. Deep Denoising Autoencoder (DDAE)

A denoising autoencoder is a variant of the basic autoencoder. It first randomly adds some noise to
an initial input vector x to form a corrupted x̃, and then encodes x̃ to a hidden representation z, which
is then decoded to a reconstructed x′. The aim of denoising-autoencoder training is to reconstruct
a clean “repaired” x′ from a corrupted x̃, which can still be represented by Equation (13). The key
difference is that z is deterministic mapping of x̃ and thus the result of a stochastic mapping of x.

Similarly, a DDAE [22] consists of a stack of denoising autoencoders. Its training consists of two
stages. The first stage is to train each denoising autoencoder layer by layer, and the second stage is
to train the whole DDAE to minimize the RMSE over the training set. For our prediction problem,
the DDAE model uses the same structure (including the top-level Gaussian mixture model) as DAE.

2.2.8. Evolutionary DDAE (EvoDDAE)

Similarly, we implemented a DDAE trained by the WWO evolutionary algorithm, which is first
applied to minimize the reconstruction error of each denoising autoencoder layer by layer, and then
applied to minimize the RMSE of the whole DDAE. The EvoDDAE model uses the same structure
as DDAE.

3. Results

According to historical experience, the weekly morbidities of acute gastroenteritis, food poisoning,
and other acute gastrointestinal infections are predicted based on food-contamination data one week
before. However, the time-lag effects of food contamination on chronic gastroenteritis, gastrointestinal
ulcers, and gastrointestinal tumors are unknown. Therefore, we first tested the RMSE of the models
for predicting the morbidities of the three types of diseases with a time lag of 1–8 weeks, respectively.
Results are given in Figure 1, from which we can observe that:

• For chronic gastroenteritis, ANN and EvoDAE achieved the best RMSE when the lag was
2–3 weeks; DBN, EvoDBN, and DDAE achieved the best RMSE when lag was 3–4 weeks; DAE
achieved the best RMSE when lag was 5–6 weeks; EvoDDAE achieved the best RMSE when lag
was 3–5 weeks; and MLR showed good performance when lag was 3, 5, or 8 weeks (more irregular
than other models).

• For gastrointestinal ulcers, ANN, DDAE, and EvoDDAE achieved the best RMSE when lag was
3–4 weeks; DAE and EvoDAE achieved the best RMSE when lag was 2–3 weeks; DBN achieved the
best RMSE when lag was 4–5 weeks; EvoDBN achieved the best RMSE when lag was 3–5 weeks;
and MLR showed good performance when lag was 4 or 6 weeks.

• For gastrointestinal tumors, the time-lag effect greatly varied among the models.

Consequently, we chose a time lag of three weeks for predicting the morbidities of both chronic
gastroenteritis and gastrointestinal ulcers. For gastrointestinal tumors, because we could not determine
an appropriate time lag for most models, we determined a different time lag for each model that
resulted in the best RMSE for the model (6, 2, 6, 2, 1, 6, 5, and 1 week(s) for MLR, ANN, DBN, EvoDBN,
DAE, EvoDAE, DDAE, and EvoDDAE, respectively).

Figure 2a–f presents the prediction accuracies of the models for the six gastrointestinal diseases,
respectively. Results show that the traditional MLR exhibits the worst prediction performance on all
diseases, the shallow ANN exhibits significantly better performance than MLR, and all deep-learning
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models exhibited much better performance than the MLR and shallow ANN. Among the six deep
models, EvoDDAE exhibited the best performance on five diseases except gastrointestinal tumors.
The average prediction accuracy of EvoDDAE was over 80% on acute gastroenteritis and food
poisoning, close to 80% on other gastrointestinal infections, and approximately 72%–73% on chronic
gastroenteritis and gastrointestinal ulcers. For gastrointestinal tumors, except that EvoDBN obtained
an average perdition accuracy of approximately 52%, the accuracies of all other models were less
than 50%, which indicates that the gastrointestinal-tumor morbidity is difficult to predict using these
models. We also observed that, in most cases, the performance of a deep model could be significantly
improved by using evolutionary training to replace traditional gradient-based training.
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Figure 1. Prediction root mean squared error (RMSE) of the eight models using different time lags.
x-axis denotes the time lag in weeks, and y-axis denotes the RMSE. (a) Chronic gastroenteritis;
(b) gastrointestinal ulcers; (c) gastrointestinal tumors. MLR: multiple linear regression; ANN: artificial
neural network; DBN: deep belief network; EvoDBN: evolutionary DBN; DAE: deep autoencoder;
EvoDAE: evolutionary DAE; DDAE: deep denoising autoencoder; EvoDDAE: evolutionary DDAE.
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Figure 2. Cont.



Int. J. Environ. Res. Public Health 2019, 16, 838 9 of 12

41.50 44.93 

59.05 62.99 60.60 

75.21 72.36 
81.69 

0

20

40

60

80

100

Pr
ed

ic
tio

n 
A

cc
ur

ac
y

(e)

29.33 

51.73 
56.75 

61.07 63.79 
72.27 73.05 

78.50 

0

20

40

60

80

100

Pr
ed

ic
tio

n 
A

cc
ur

ac
y

(f)

Figure 2. Accuracies of the models for gastrointestinal morbidity prediction. (a) Acute gastroenteritis;
(b) chronic gastroenteritis; (c) gastrointestinal ulcers; (d) gastrointestinal tumors; (e) food poisoning;
(f) other gastrointestinal infections.

4. Discussion

This study constructed and compared eight models for predicting the morbidities of six main
gastrointestinal diseases from food contamination. Results demonstrate that some deep-learning
models can achieve relatively high prediction accuracy. However, this does not mean that
gastrointestinal diseases are mainly caused by food contamination, or that gastrointestinal morbidities
in a region are mainly determined by the levels of food contamination. In fact, the relationships between
food contamination and gastrointestinal morbidities can be highly complex and probabilistic, and
morbidities are also affected by many other factors, such as the dietary habits and working pressures
of inhabitants, and the levels of health services of that society. Our study reveals that, given a large
number of historical data of food contamination and gastrointestinal morbidities in a region, we could
use deep neural networks to learn such highly complex and probabilistic relationships. After sufficient
training, we could obtain models that embed other influencing factors into model parameters, and thus
output relatively accurate morbidities from food-contamination inputs. Consequently, the prediction
results would be very useful to improve healthcare services.

In general, the traditional MLR model is incapable of learning complex relationships for morbidity
prediction. According to our results, its average prediction accuracy is below 20% on most diseases.
For food poisoning, MLR achieves the highest prediction accuracy of 41.5%, which is also significantly
less than the seven other models. The low performance of MLR indicates that relationships between
food contamination and gastrointestinal morbidities are highly nonlinear and probabilistic, which is
beyond the capability of the linear model.

The shallow ANN model performs much better in approximating nonlinear relationships.
However, its average prediction accuracy is only between 30% and 40% in most cases, which is
still too low for medical management. This is mainly because the number of food-contamination
indicators is large, and the generalization ability of the classical three-layer structure of ANN decreases
dramatically with increasing dimension.

DNN models can effectively overcome the limitations of the MLR and shallow ANN models,
as they can learn complex probabilistic distributions over a large number of influence factors by
automatically discovering intermediate abstractions layer by layer. Comparing DBN and DAE, two of
the most widely used DNNs, DAE achieved higher accuracies than DBN on five gastrointestinal
diseases, while DBN only achieved higher accuracy on gastrointestinal tumors. This indicates that the
energy-based probabilistic model of DBN is less effective than the reconstruction-error minimization
model of DAE in morbidity prediction. By introducing the denoising learning mechanism into DAE,
DDAE achieved significantly higher accuracies than DBN and DAE on all gastrointestinal diseases.
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This is because the food-contamination data inevitably contain much noise, which can often mislead
the learning process of DAE, while DDAE is much more robust in handling noisy inputs.

It was also observed that the prediction performance of all three DDNs could be significantly
improved by equipping them with evolutionary training algorithms, because gradient-based training
algorithms are easily trapped in local optima. An evolutionary algorithm uses a population of
candidate solutions to simultaneously explore the search space; if some solutions are trapped in local
optima, others can still explore other regions and help the trapped solutions jump out of local optima.
Consequently, evolutionary DNNs can effectively suppress premature convergence and exhibit high
learning abilities. Among the eight models, EvoDDAE that combines DDAE with evolutionary learning
exhibited the best performance for morbidity prediction.

Among the six main types of gastrointestinal diseases, the prediction accuracies on three types
of acute diseases are generally higher than other diseases, because the pathogenic mechanisms of
acute diseases are relatively simpler, and their time-lag effects are easier to determine. That is why
all models achieved the highest prediction accuracies on food poisoning, which is considered as “the
most acute” disease. Among the diseases, each DNN model achieved the lowest prediction accuracy
on gastrointestinal tumors, mainly because the pathogenic mechanisms of tumors are more complex
than other diseases, and thus their correlation with food contamination is much weaker or is much
difficult to learn.

5. Conclusions

This study compared eight machine-learning models for predicting the morbidities of six main
gastrointestinal diseases from food-contamination data. Experiments on the datasets from ten
cities/counties in central China demonstrate that the DNN models achieved significantly higher
accuracies than the classical MLR and shallow ANN models, and the DDAE model with evolutionary
learning exhibited the best prediction performance. Results also indicate that model accuracies are
generally higher on acute gastrointestinal diseases than on other diseases, but it is difficult to predict
the morbidities of gastrointestinal tumors. Moreover, a drawback of DNN models is that it takes
significant effort to tune the structural parameters of the networks.

The studied deep-learning models could be utilized for the morbidity prediction of many other
diseases whose influencing factors are large and complex. However, DNNs typically need to be trained
on a large amount of labeled data, but disease- and health-related data are often very limited. Thus, we
are currently studying unsupervised and transfer-learning technologies [34] for adapting the models
from some well-known diseases to other diseases with insufficient data. Our future work also includes
integrating the deep-learning models with fuzzy systems to handle uncertain information in the
data [35,36], and utilizing the morbidity-prediction results for improving medical services, such as for
medical-resource preparation and drug-procurement planning [37]. We believe that the combination
of emerging deep-learning and intelligent decision-making technologies can significantly improve our
society’s healthcare services.
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Abbreviations

The following abbreviations are used in this manuscript:

ANN Artificial neural network
DNN Deep neural network
MLR Multiple linear regression
RMSE Root mean squared error
DBN Deep belief network
RBM Restricted Boltzmann machine
DAE Deep autoencoder
DDAE Deep denoising autoencoder
WWO Water wave optimization
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