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Abstract: Greenness exposure is nominated as a potential beneficial factor for health, but evidence is
limited on its diabetes effects. We conducted a cross-sectional study between May and September
2016 in rural areas of northwestern China, including 4670 Uyghur adults, to explore the associations
between residential greenness and fasting glucose levels and diabetes prevalence. Fasting glucose
levels were determined, and information on covariates was collected by questionnaire. Normalized
difference vegetation index (NDVI) and soil-adjusted vegetation index (SAVI) were calculated to
assess greenness levels. Generalized linear mixed models were applied to evaluate the associations
of greenness with fasting glucose levels and diabetes prevalence. The prevalence of diabetes was
11.6%. We found that living in rural areas characterized by increased amounts of greenness was
associated with reduced diabetes prevalence (e.g., NDVI1000m: OR, 0.92; 95% CI, 0.86, 0.99). Stratified
analyses showed that the protective effects of greenness on diabetes prevalence were found only in
women (NDVI1000m: OR, 0.90; 95% CI, 0.82, 0.99). However, none of the interaction was statistically
significant. Our study suggests that greater residential greenness levels were associated with a lower
odds ratio of diabetes prevalence in Xinjiang Uyghur adults. Further well-designed longitudinal
studies are needed to confirm our findings.
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1. Introduction

Diabetes mellitus is one of the major chronic diseases worldwide, and its prevalence has increased
in recent years [1]. In China, diabetes mellitus has also become a public health problem, and the most
recent national representative survey showed that the overall prevalence of diabetes in Chinese adults
has increased from 9.7% in 2007 to 11.6% in 2010, representing an estimated 114 million Chinese adults
with diabetes mellitus [2]. Therefore, there is an urgent need to take effective intervention strategies to
control the uprising trend.

The etiology of diabetes mellitus is complex and is thought to be influenced by both genetic and
environmental factors [3]. For environmental factors, high-sugar, high-fat, and high-energy diet habits,
lack of physical activity, being overweight/obese, and exposure to air pollution have been reported to
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increased risk of diabetes mellitus [4–6]. Recently, diabetic effects of greenness have attracted more
and more researchers’ attention worldwide. Mechanistically, greenness can bring health benefits by
reducing levels of ambient air pollutants, extreme heat waves, and noise exposure, by encouraging
physical activity, by reducing adiposity, and by enriching microbial diversity [7]. Several studies have
explored the associations of greenness exposure with glucose levels, insulin resistance, and diabetes
mellitus risk, but showed inconsistent results [8–20]. For example, cross-sectional studies conducted in
Netherlands, Australia, the United States, the United Kingdom, and Canada have found that green
space had a protective effect on diabetes mellitus [13–15,17,18,20], while a cross-sectional study among
the Norwegian population found no significant association [8]. Two prospective cohort studies from
England and Canada observed a significant association between increased greenness exposure and
lower relative hazard of developing diabetes mellitus [9,16], but the Framingham study did not find
such a longitudinal association [11]. While most prior studies were conducted among adults, a few
have also explored potential diabetic effects of greenness among children and adolescents [12,19].
For example, a study of 837 German adolescents identified significant associations between higher
greenness and lower insulin resistance [12]. Similarly, in a study of 3844 Iranian children, Dadvand et
al. observed inverse associations between time spent in green spaces and fasting blood glucose levels
and the risk of impaired fasting glucose [19]. Despite this, the prior studies were mostly conducted in
developed countries, and only one study was conducted in China [10].

Additionally, although most prior studies on greenness and health were conducted in urban areas,
few were performed among people living in rural areas (i.e., unurbanized areas like countryside or
village). Xinjiang Uyghur Autonomous Region is located in northwest of China and is the largest
province in China. The Uyghur is the largest inhabitant minority group in the province, whose lifestyle,
culture, religion, genetic, and diet habits are different from Han ethnicities. It is also usually reported
that the prevalence of diabetes mellitus is high in this region [21]. Further, Xinjiang belongs to the
typical temperate continental arid climate, where it is dry, receiving little rainfall (with the mean
annual precipitation of 100 mm in Southern Xinjiang), with little green space [22]. Additionally, rural
areas in Xinjiang are economically backward with low health service, and people may have low health
awareness, thus, rural population may be more vulnerable to environmental exposure [23]. Therefore,
the aim of the current study was to evaluate the effects of residential greenness on diabetes prevalence
and fasting glucose levels among rural Uyghur adults in Xinjiang Uyghur Autonomous Region.

2. Materials and Methods

2.1. Study Participants and Inclusion Criteria

The current study was conducted between May and September 2016 in Kashgar city. The city is
an important economic, political, and cultural center in northwestern China. Due to Xinjiang having
vast land area, low population density, and inconvenient transportation, we adopted a multistage
city–county–towns–village stratified cluster random sampling method to select participants for saving
cost. We chose Shufu county of Kashagar city as the study area. Shufu county consists of 10 towns
with 123 villages (16 villages in Bulacksou town, 11 in LanGan town, 9 in Mushi town, 16 in Sayibarg
town, 16 in Tashmeric town, 4 in Tierimu town, 8 in Toquzak town, 16 in WuPal town, 8 in Wucusack
town, and 19 in Zhanmin town). Population ranged between 2000 and 30,000 among the villages.
Over 290,000 people reside in Shufu county, of whom 98% are Uyghurs. First, we selected one village
from each of the 10 towns using the random number method. Second, from each study village, all
adults aged ≥18 years old and who had lived in the village for at least two years were selected for
study enrollment.

A total of 5087 potential individuals were invited to take part in the current study, of whom
4772 individuals returned the questionnaire, yielding a response rate of 93.81%. We excluded 102
individuals due to having malignant diseases (e.g., chronic liver disease, renal failure, or cancer), being
pregnant, and absence of a blood sample for glucose testing. Finally, a total of 4670 participants were
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included in the current analysis. The study procedures and protocols were reviewed and approved by
the Ethics Committee of Guangzhou Center for Disease Control and Prevention prior to the present
study (Identification code: GZCDC-ER[A]2016007). Written informed consent was obtained from all
participants before all survey data and specimens were collected.

2.2. Data Collection and Diabetes Mellitus Definition

We used a self-administered questionnaire delivered by a face-to-face interview to collect
information on demographic characteristics (e.g., age, sex, education levels, and marital status), tobacco
use and alcohol drinking status, and physical activity levels. As detailed in our previous paper [24],
tobacco use and alcohol drinking status were categorized as current, former, and non-smokers or
drinkers, while physical activity levels were categorized as low, moderate, and high levels.

All participants were asked for permission to collect a blood sample for biochemical analysis
after an overnight fasting (≥8 h). Fasting glucose concentration was determined by an enzymatic
colorimetric method, using a Roche Autoanalyzer (Cobas c702 type; Roche Ltd.; Mannheim, Germany)
in Guangzhou Center for Disease Control and Prevention.

Diabetes mellitus is defined as the fasting glucose level ≥7.0 mmol/L and/or a physician diagnosis
and/or currently receiving pharmacological treatment for diabetes, according to the recommendations
of the American Diabetes Association [25].

2.3. Confounders and Mediators

We chose confounders according to the recommendations by Jager et al. [26], in which a confounder
has to meet the following three criteria: (1) it should be a risk factor for diabetes or elevated blood
glucose; (2) it must be a cause of the greenness exposure and unequally distributed among participants
with different greenness levels; and (3) it must not be an “effect” of greenness exposure, nor be an
intermediate factor in the causal pathway of diabetes. Then, we developed a directed acyclic graph
(DAG, Figure S1) to select a minimally sufficient set of covariates to adjust for confounding [27].
According to the DAG, the following confounders were retained: age, sex, marital status, and
educational levels. Also, physical activity was chosen as a potential mediator (Figure S1).

2.4. Residential Greenness

We defined residential greenness using two satellite-based vegetation indexes, normalized
difference vegetation index (NDVI) [28] and soil-adjusted vegetation index (SAVI) [29]. Derivations of
both NDVI and SAVI indexes were calculated according to the land surface reflectance of the visible red
and near-infrared parts of the light wavelengths. SAVI is similar to NDVI while additionally includes
a correction factor to minimize soil influences. Both NDVI and SAVI values range from −1 (water) to
+1 (completely vegetated areas). We used two cloud-free Landsat 5 Thematic Mapper satellite images
at a resolution of 30 m (http://earthexplorer.usgs.gov) obtained in September 2017 to calculate the
greenness levels. Both NDVI and SAVI were defined as mean values in circular buffers of 100 m, 300
m, 500 m, and 1000 m around each participant’ residential address centroid. These calculations were
conducted by the ArcGIS 10.4 (ESRI, Redlands, CA, USA).

2.5. Statistical Analysis

Means and standard deviations were used to describe normally distributed continuous variables
(e.g., age, body mass index (BMI), and fasting glucose levels). Frequency and percentage were used to
describe the categorical variables (e.g., sex, education level, marital status, smoking and drinking status,
and physical activity). Student’s t-tests were used to test differences in mean levels for continuous
normally distributed variables between non-diabetes mellitus and diabetes mellitus groups, and
chi-square tests were used to test differences in percentages for categorical variables. Spearman
correlation analysis was performed to evaluate the intercorrelations between NDVI and SAVI.

http://earthexplorer.usgs.gov
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Generalized linear mixed models (GLMMs) were used to explore the association between greenness
with fasting glucose levels and diabetes mellitus prevalence, as described previously [10]. In the
models, study village was incorporated as random effect and greenness and covariates were included
as fixed effects. The effect estimates are presented as regression coefficients (β) and odds ratios (OR) and
their corresponding 95% confidence intervals (CI). Basic regression models were unadjusted, and we
further evaluated models with adjustment for confounders selected using DAG. We also built models
with additional adjustment for smoking and alcohol status to explore their potential impact. Then, we
categorized NDVI1000m and SAVI1000m into quartiles to test for nonlinear relationships. Additionally,
we assessed the associations between greenness and fasting glucose levels with diabetes mellitus
by sex (female vs. male) and age (<48 years vs. ≥48 years). We also explored potential mediation
effects of physical activity by comparing the effect estimates before and after additional adjustment
for physical activity [30]. For each model, effect estimates for fasting glucose levels and diabetes
mellitus were calculated per interquartile range (IQR) increase in NDVI and SAVI. All statistic analyses
were performed on SAS software (version 9.4; SAS institute, Inc. Cary, NC, USA). Levels of statistical
significance were set at an α level of 0.05.

3. Results

3.1. Study Population Characteristics

Mean age of the participants was 47.2 years old, and 64.7% were women (Table 1). About half
of the participants (49.3%) had low educational level (i.e., primary school), 88.6% were self-reported
nonsmokers, 97.0% were self-reported nondrinkers, and 93.2% had low physical activity level. The
overall prevalence of diabetes mellitus was 11.6%, of whom 110 reported a physician-diagnosed
diabetes or were receiving antidiabetic medicine. Compared with individuals without diabetes
mellitus, those with diabetes mellitus manifested significantly higher age, BMI, and fasting glucose
levels, and were more likely to be male and have lower education levels (no school and primary school)
(all p < 0.05).

Table 2 shows distributions and correlations of NDVI and SAVI. Greenness levels of the study
participants differed markedly among the study participants. For example, NDVI1000m ranged from
0.28 to 0.57 with a median value of 0.47. Additionally, we observed that NDVI was significantly
correlated with SAVI, and Spearman’s correlation coefficients ranged from 0.40 to 0.99 (all p < 0.01).

Table 1. Characteristics of the study participants.

Variables No Diabetes Mellitus (n = 4127) Diabetes Mellitus (n = 543) p

Age, years 46.4 ± 14.2 53.6 ± 13.1 <0.001
Sex, n (%)

Men 1418 (34.4) 229 (42.2) <0.001
Women 2709 (65.6) 314 (57.8)

Education level, n (%)
No school 370 (9.0) 78 (14.4) <0.001

Primary school 2002 (48.5) 299 (55.1)
Middle school 1497 (36.3) 136 (25.1)
>Junior college 258 (6.3) 30 (5.5)

Marital status, n (%)
Not married 164 (4.0) 9 (1.7) 0.025
Get married 3577 (86.7) 479 (88.2)

Divorce or widowed 386 (9.4) 55 (10.1)
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Table 1. Cont.

Variables No Diabetes Mellitus (n = 4127) Diabetes Mellitus (n = 543) p

Smoking status, n (%)
Non-smokers 3662 (88.7) 474 (87.3) 0.443

Former-smokers 380 (9.2) 59 (10.9)
Current-smokers 85 (2.1) 10 (1.8)

Drinking status, n (%)
Non-drinkers 3998 (96.9) 533 (98.2) 0.238

Former-drinkers 81 (2.0) 7 (1.3)
Current-drinkers 48 (1.2) 3 (0.6)

Physical activity, n (%)
Low strength 3848 (93.2) 506 (93.2) 0.963

Moderate or high strength 279 (6.8) 37 (6.8)

Body mass index, kg/m2 24.9 ± 4.7 26.3 ± 4.8 <0.001
Fasting glucose, mmol/L 5.3 ± 0.7 9.6 ± 4.5 <0.001

3.2. Relationship of Greenness with Fasting Glucose and Diabetes Mellitus

Table S1 and Table 3 summarize the results of linear regression analysis for greenness with fasting
glucose levels in crude and adjusted models, respectively. We observed that there was no significant
association for any buffers of NDVI and SAVI with fasting glucose levels.

In crude logistic regression analysis, an IQR increase in NDVI1000m and SAVI1000m was significantly
associated with 7% (NDVI1000m: OR = 0.93, 95% CI = 0.87, 1.00; SAVI1000m: OR = 0.93, 95% CI = 0.87,
0.99) reduction in odds for diabetes risk (Table S1). The effect estimates were not influenced by further
adjustments for age, sex, marital status, and education levels (Table 3). For example, an IQR increase
in NDVI1000m and SAVI1000m was associated with 8% (both OR = 0.92, 95% CI = 0.86, 0.99) reduction
in odds for diabetes risk. However, no significant associations were found for NDVI and SAVI in
smaller buffers.

We additionally adjusted the main models for smoking and alcohol drinking status and found that
the effect estimates were not materially changed (Table S2). Also, we performed mediation analysis
but did not find any mediating role of physical activity (Table S3). Further, we categorized NDVI1000m

and SAVI1000m into quartiles and found that effects estimates were lower in higher quartiles than in
lower quartiles, and p values for trend were significant for all (Table S4).

3.3. Relationship of Greenness with Fasting Glucose and Diabetes Mellitus Stratified by Sex and Age

Table 4 shows the sex- and age-stratified associations for residential greenness and fasting glucose
levels. We found that the relationship of residential greenness with fasting glucose levels failed to reach
significance in both sex and age subgroups. And the p values for the interactions were not significant.

Table 5 shows the results of analyses for residential greenness in relation to diabetes mellitus
stratified by sex and age. The protective association of greenness and diabetes prevalence was only
found in women (e.g., IQR increases in NDVI1000m and SAVI1000m were both associated with a 10%
(NDVI1000m: OR = 0.90, 95% CI = 0.82, 0.99; SAVI1000m: OR = 0.90, 95% CI = 0.82, 0.98) reduction in odds
for diabetes mellitus prevalence). However, none of the interactions were statistically significant. When
the analysis was stratified by age, the relationship of residential greenness with diabetes prevalence
failed to reach significance in both <48 and ≥48 age groups.
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Table 2. Distributions and intercorrelations (Spearman correlation coefficients) for NDVI and SAVI.

Median (IQR) Min Max NDVI100m NDVI300m NDVI500m NDVI1000m SAVI100m SAVI300m SAVI500m SAVI1000m

NDVI100m 0.45 (0.20) 0.20 0.67 1
NDVI300m 0.48 (0.12) 0.21 0.63 0.74 ** 1
NDVI500m 0.47 (0.09) 0.23 0.57 0.57 ** 0.88 ** 1
NDVI1000m 0.47 (0.06) 0.28 0.57 0.42 ** 0.63 ** 0.82 ** 1
SAVI100m 0.29 (0.14) 0.13 0.44 0.99 ** 0.74 ** 0.55 ** 0.42 ** 1
SAVI300m 0.32 (0.08) 0.14 0.42 0.71 ** 0.99 ** 0.90 ** 0.63 ** 0.71 ** 1
SAVI500m 0.32 (0.06) 0.15 0.39 0.53 ** 0.86 ** 0.99 ** 0.79 ** 0.52 ** 0.89 ** 1
SAVI1000m 0.32 (0.04) 0.19 0.39 0.41 ** 0.64 ** 0.84 ** 0.99 ** 0.40 ** 0.65 ** 0.82 ** 1

Abbreviations: IQR, interquartile range (computed by subtracting the first quartile from the third quartile); Max, maximum; Min, minimum; NDVI, normalized difference vegetation index;
SAVI, soil-adjusted vegetation index. ** Correlation is significant at the 0.01 level (two-tailed).
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Table 3. Associations of NDVI and SAVI (per IQR increase) around the residential address with fasting
glucose levels and diabetes mellitus prevalence (adjusted models).

Fasting Glucose Diabetes Mellitus

β (95% CI) * p OR (95% CI) * p

NDVI100m 0.04 (−0.07, 0.14) 0.487 0.97 (0.83, 1.13) 0.683
NDVI300m −0.01 (−0.08, 0.07) 0.864 0.92 (0.82, 1.03) 0.128
NDVI500m −0.01 (−0.08, 0.05) 0.657 0.92 (0.84, 1.01) 0.089
NDVI1000m −0.02 (−0.06, 0.03) 0.531 0.92 (0.86, 0.99) 0.024
SAVI100m 0.07 (−0.04, 0.18) 0.238 1.00 (0.85, 1.17) 0.966
SAVI300m −0.01 (−0.09, 0.07) 0.836 0.92 (0.82, 1.03) 0.132
SAVI500m −0.02 (−0.08, 0.04) 0.540 0.92 (0.84, 1.01) 0.075
SAVI1000m −0.02 (−0.07, 0.03) 0.458 0.92 (0.86, 0.99) 0.020

Abbreviations: IQR, interquartile range; NDVI, normalized difference vegetation index; SAVI, soil-adjusted
vegetation index; OR, odds ratio. * Adjusted for age, sex, marital status, and educational levels.

Table 4. Sex- and age-stratified associations between per IQR increase in NDVI and SAVI around the
residential address with fasting glucose levels (adjusted models).

Males Females <48 ≥48

β (95% CI) * β (95% CI) * β (95% CI) * β (95% CI) *

NDVI100m 0.07 (−0.10, 0.24) 0.00 (−0.13, 0.13) 0.08 (−0.04, 0.19) 0.01 (−0.15, 0.16)
NDVI300m −0.04 (−0.17, 0.09) 0.01 (−0.09, 0.10) 0.05 (−0.03, 0.14) −0.04 (−0.15, 0.08)
NDVI500m −0.06 (−0.16, 0.05) 0.01 (−0.07, 0.09) 0.02 (−0.06, 0.09) −0.02 (−0.11, 0.07)
NDVI1000m −0.04 (−0.12, 0.05) −0.01 (−0.07, 0.05) −0.03 (−0.08, 0.03) 0.00 (−0.07, 0.07)
SAVI100m 0.11 (−0.08, 0.29) 0.03 (−0.01, 0.17) 0.11 (−0.01, 0.23) 0.04 (−0.13, 0.20)
SAVI300m −0.03 (−0.16, 0.10) 0.00 (−0.09, 0.10) 0.05 (−0.03, 0.14) −0.04 (−0.15, 0.08)
SAVI500m −0.06 (−0.16, 0.05) −0.01 (−0.08, 0.08) 0.01 (−0.06, 0.09) −0.03 (−0.12, 0.07)
SAVI1000m −0.04 (−0.12, 0.04) −0.01 (−0.07, 0.05) −0.03 (−0.08, 0.03) −0.01 (−0.08, 0.07)

Abbreviations: IQR, interquartile range; NDVI, normalized difference vegetation index; SAVI, soil-adjusted
vegetation index. * Adjusted for age, marital status, and educational levels.

Table 5. Sex- and age-stratified associations between per IQR increase in NDVI and SAVI around the
residential address with diabetes mellitus prevalence (adjusted models).

Males Females <48 ≥48

OR (95% CI) * OR (95% CI) * OR (95% CI) * OR (95% CI) *

NDVI100m 1.01 (0.79, 1.28) 0.94 (0.77, 1.15) 0.85 (0.61, 1.17) 1.01 (0.85, 1.20)
NDVI300m 0.96 (0.80, 1.14) 0.87 (0.76, 1.03) 0.93 (0.73, 1.19) 0.92 (0.81, 1.05)
NDVI500m 0.96 (0.83, 1.02) 0.90 (0.80, 1.01) 0.95 (0.77, 1.16) 0.93 (0.84, 1.03)
NDVI1000m 0.95 (0.85, 1.07) 0.90 (0.82, 0.99) 0.89 (0.76, 1.03) 0.94 (0.87, 1.02)
SAVI100m 1.05 (0.81, 1.35) 0.96 (0.77, 1.20) 0.88 (0.62, 1.24) 1.04 (0.86, 1.26)
SAVI300m 0.96 (0.80, 1.15) 0.89 (0.76, 1.03) 0.95 (0.74, 1.21) 0.92 (0.81, 1.05)
SAVI500m 0.95 (0.82, 1.11) 0.89 (0.79, 1.01) 0.95 (0.78, 1.17) 0.92 (0.83, 1.03)
SAVI1000m 0.95 (0.85, 1.07) 0.90 (0.82, 0.98) 0.90 (0.77, 1.05) 0.93 (0.86, 1.01)

Abbreviations: IQR, interquartile range; NDVI, normalized difference vegetation index; SAVI, soil-adjusted
vegetation index, OR, odds ratio. * Adjusted for age, marital status, and educational levels.

4. Discussion

The findings from the population-based study of 4670 Uyghur adults showed that living in
greener areas was associated with reduced diabetes mellitus prevalence. In addition, neither age nor
sex significantly modified the associations. This is the first study to examine the relationship between
residential greenness and diabetic metrics among Uyghur rural population.
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The relationships of greenness and diabetes mellitus have received a great deal of attention during
the past decade. For instance, Maas et al. conducted a large cross-sectional study of 345,143 individuals
in Dutch and found that the annual prevalence rate of diabetes mellitus was lower in people living
in areas with higher green space levels [17]. Another study of 267,072 adult Australians (≥45 years
old) found that the rate of self-report diabetes mellitus was decreased with the increased green space
of residential neighborhoods [13]. A study of 249,405 USA elderly (≥65 years) also found greenness
significantly reduced diabetes mellitus risk; an increase in NDVI from 1 SD less to 1 SD more than
mean was associated with a reduced risk of 14% for diabetes mellitus [14]. Likewise, another three
cross-sectional studies conducted in USA [15], the United Kingdom [18], and Canada [20] observed
increased neighborhood or street green space was significantly associated with lower individual
diabetes mellitus prevalence. Additionally, several cohort studies have also documented a significant
and inverse relationship between greenness levels and diabetes mellitus incidence [9,16]. However,
there are also a few studies that found no association between them [8,11]. Our research group has
also investigated the association of greenness with diabetes mellitus in Chinese Han adults and found
that higher residential greenness was significantly associated with a lower prevalence of diabetes
mellitus [10]. Our current findings were consistent with most of the prior studies that residential
greenness was associated with diabetes mellitus prevalence.

However, we did not find an association of residential greenness with fasting glucose levels. To
the best of our knowledge, there were only three studies that have explored association between them.
Specifically, in a cross-sectional study of 3844 Iranian schoolchildren aged 7–18 years, Dadvand et
al. found that more time spent in green spaces, especially in natural green spaces, was significantly
associated with decreased fasting glucose levels [19]. In the Framingham Heart Study, Lee and
colleagues showed that higher green space was associated with lower fasting glucose levels in
cross-sectional analysis, although the association disappeared in longitudinal analysis [11]. Additionally,
the cross-sectional study conducted in the Chinese adults found that a 0.1-unit increase in NDVI500m

was significantly associated with a 1.14% reduction in fasting glucose levels [10]. Inconsistent with
these cross-sectional findings, our current study did not observe an inverse association of residential
greenness with fasting glucose levels among Uyghur adults. Additionally, we did not detect a
significant modification effect of sex and age on the associations between greenness and diabetes. The
current evidence in this topic is mixed. For example, consistent with our findings, Dadvand et al. [19]
did not find a difference in the strength of association of greenness and fasting glucose between Iranian
boys and girls. However, in the study by Yang et al., which we have already described, stronger
associations of greenness with fasting glucose levels were observed in men than in women [10]. Also,
unlike our study, Yang et al. reported that the association of greenness with diabetes mellitus prevalence
was stronger in younger participants, while no effect modification by age was observed for fasting
glucose levels [10]. Further studies with large sample size and longitudinal design therefore are needed
to validate these findings.

The precise mechanisms by which greenness benefits health are not fully understood. Several
investigators have proposed that green spaces might have beneficial effects on glucose homeostasis
markers and the development of diabetes mellitus via actively filtering out ambient air pollutions
levels [12]. Ambient air pollutions, such as NO, NO2, PM1, PM2.5, and PM10, were significantly
associated with increased risk of diabetes mellitus, which was observed in many previous
studies [5,31,32]. Green space would reduce ambient air pollutions levels. Thus, the association of
residential greenness with fasting glucose and diabetes mellitus risk may be plausible. Furthermore,
previous studies reported a significant negative relationship of green space with adiposity [33,34],
which is a major risk factor for diabetes mellitus. Therefore, it is also proposed that greenness may
benefit glucose metabolism by reducing adiposity. Reducing physical activity is also proposed as a
potential mechanism by which greenness affects health. We explored mediation analysis to explore this
but failed to detect a mediation role of physical activity. Additionally, greenness was also associated
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with psychosocial stress, reduced noise exposure, and greater and more diverse microbial exposure, all
of them might influence glucose homeostasis and the development of diabetes mellitus [9,35–37].

Our study has several limitations, which need to be acknowledged. First, the cross-sectional
design of the study precludes us to establish a temporal association between greenness exposure with
fasting glucose levels and diabetes mellitus risk. However, the possibility of the reverse causality, that
is, people with diabetes moved to areas with lower greenness levels, is very low. Second, although the
sample size of our study was relatively large, the statistical power remained not ideal and thus most
associations were not statistically significant, especially in linear regression analyses. Therefore, future
well-designed studies with large sample size are expected to validate our findings. Third, although
we calculated greenness exposure levels using high-resolution satellite images, the NDVI and SAVI
just represent general vegetation levels but cannot distinguish the type, utility, structure, and quality
of green space, which also may lead to exposure misclassification. Fourth, data on covariates were
collected by questionnaire, so recall bias cannot be ignored because the responses might be subject to
the participant’s memory influence. Fifth, although we considered and adjusted for some confounders,
information on potential mediators or confounders, such as air pollutions, mental stress, dietary habits,
noise exposure, and time spent of green space, were unavailable in the study. Therefore, we cannot
further explore potential mechanisms underlying the association between greenness and diabetes, and
residual confounding caused by unmeasured confounders (e.g., village-level income) remains possible.
Finally, we defined diabetes based on a single point measurement of fasting glucose, and detailed
data on fasting period were not available, which might have caused outcome misclassification and
precludes us from performing sensitivity analyses. Nonetheless, our study still has several apparent
strengths. First, the participants are homogenous, which improves the effectiveness of statistical
analysis, because they were of Uyghur nationality and from the same region of Kashgar. Second, to
the best of our knowledge, our findings provide the first evidence on the association of residential
greenness and diabetes mellitus risk in Uyghur population in Kashgar region.

5. Conclusions

In summary, exposure to higher residential greenness (large buffer in particular) was significantly
associated with a lower odds ratio of diabetes mellitus in Xinjiang Uyghur nationality adults. However,
further well-designed longitudinal studies with larger sample size are needed to confirm our findings
when considering the limitations of our study.
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