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Abstract: Previous studies have reported that air pollution negatively affects the tourism industry.
This paper attempted to answer the following question: among different air pollutants, which one acts
as the most adverse factor? The study was based on a sample of panel data covering 337 Chinese cities
for the period between 2007 and 2016. Four pollutant indicators were inspected: PM2.5 (particulate
matter 2.5 micrometers or less in size), PM10 (particulate matter 10 micrometers or less in size), SO2

(sulfur dioxide), and NO2 (nitrogen dioxide). It was found that PM2.5 had a significantly negative
impact on both domestic and inbound tourist arrivals. Regarding the other three pollutant indicators,
except for the negative influence of NO2 on inbound tourist arrivals, no statistically significant impact
was found. This study suggests that tourism policy makers should primarily focus on PM2.5, when
considering the nexus between air quality and tourism development. According to our estimates,
the negative impact of PM2.5 on tourism is substantial. If the PM2.5 concentration in the ambient
air increases by 1 µg/m3 (=0.001 mg/m3), domestic and inbound tourist arrivals will decline by
0.482% and 1.227%, respectively. These numbers imply an average reduction of 81,855 person-times
in annual domestic tourist arrivals and 12,269 in inbound tourist arrivals in each city.
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1. Introduction

In recent years, the tremendous industrial growth of the Chinese economy has caused high levels
of air pollution in some regions. Air pollution heavily affects public health. For instance, it was
reported that air pollution has caused an average of 1.1 million premature deaths in China annually [1].
Moreover, air pollution also inhibits many economic and social activities. In particular, the adverse
effect of air pollution on tourism has received increasing attention. Pollution damages tourism’s
development by evoking negative psychological states in tourists, reducing the aesthetics of scenic
spots, harming the tourist experience, and decreasing tourism’s demand (e.g., [2–4]).

Prior studies have found that air pollution negatively influences tourism’s development and
activities. The air pollutants examined included PM (particulate matter), SO2 (sulfur dioxide), NO2

(nitrogen dioxide), and so on. Among them, PM is one of the most well-known types of air pollutants.
PM with a diameter of 2.5 micrometers or less is known as PM2.5, while that with a diameter of
10 micrometers or less is known as PM10. At present, given that social media and news agencies
frequently associate PM2.5 with haze pollution, many people perceive PM2.5 and haze weather to be
interchangeable concepts [5]. Additionally, some people regard PM2.5 as the only pollutant necessary
for measuring the air quality index (AQI). Although PM2.5 is a dominant pollutant in haze pollution,
it should be noted that, according to the World Health Organization (WHO) Air Quality Guidelines,
relevant pollutants also include PM10, NO2, SO2, and ozone (O3). Different air pollutants have been
used together to calculate AQI scores and have also been found to be associated with negative health
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outcomes, such as hospital admissions, respiratory diseases, incidence of asthma symptoms, and
cardiovascular disease (e.g., [6,7]). When SO2 and NO2 combine with water and sunlight, the main
component of acid rain results, which can cause deforestation and destroy cultural heritage, such as
ancient historical buildings and monuments.

Yan et al. [8] empirically examined the effects of different air pollutants on urban activities in
China using geotagged check-in records on a Chinese social media platform, indicating that SO2 had
the largest impact, followed by PM2.5, NO2, and PM10. They further discovered that leisure-related
activities were much more sensitive to air pollution than work-related activities. To examine the
impact of air pollution on the tourism industry, a number of studies have used PM2.5, PM10, or AQI as
indicative measures of air quality (e.g., [9–12]). However, how other major air pollutants (e.g., NO2,
SO2) influence the tourism industry in China has seldom been explored. Given that these air pollutants
could all pose health threats to travelers [13] and destroy the attractiveness of destination cities to
potential tourists, knowledge about how and to what extent major air pollutants exert impacts on
tourism industry is required.

To address the above literature gap, this study aimed to examine the impact of air pollution
on the tourism industry by taking into account four major air pollutants: PM2.5, PM10, NO2, and
SO2. More specifically, this study examined whether and to what extent the different air pollutants
respectively impact domestic and inbound tourism. The study’s results are expected to help the
Chinese government formulate better air quality control strategies, in order to maintain a sustainable
tourism industry. Additionally, the results of this study could help the public health sector better
understand how to issue travel advice on air pollution.

The rest of this paper proceeds as follows. Section 2 presents a literature review. Section 3
discusses the empirical model and the data used in the analyses. The estimated results of the empirical
model are reported in Section 4. Section 5 discusses the implications of the results. Section 6 concludes
and talks about the directions for future research.

2. Literature Review

2.1. Air Pollutants: Sources and Impacts

SO2 and NO2 are among the major causes of smog and acid rain. SO2 arises from industrial
activities that burn fossil fuels (e.g., coal, oil, and diesel) containing sulfur. Sources include but
are not limited to power plants, metal processing and smelting facilities, and diesel vehicles and
equipment [14,15]. Common effects of SO2 are respiratory problems and increased hospital admissions
for cardiac disease [16]. NO2 is typically produced from combustion processes (e.g., heating, power
generation, and engines in vehicles and ships). NO2 emissions are more likely to be clustered in
densely populated urban areas and suburban industrial areas [17]. High levels of NO2 exposure
could cause respiratory infections and the prevalence of bronchitic symptoms in asthmatic children
aged between 5 and 14 years old [6]. NO2 exposure has also been found to be associated with lung
cancer [18], mortality, hospital admissions, and respiratory diseases across all ages [6]. In addition to
the health effects of SO2 and NO2, their environmental effects are largely due to the acid rain that forms
from SO2 and NO2. It is well known that acid rain not only damages natural ecosystems, but also
man-made materials, such as limestone, marble, and sandstone [19]. For example, the Giant Buddha at
Leshan in Sichuan Province, the Longmen Grottoes in Henan Province, and the Dazu rock carvings in
Chongqing, which are famous tourist attractions in China, have been reported to be at a high risk of
rapid deterioration from acid rain [20].
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Compared to SO2 and NO2, PM is more tangible and visible. Wang et al. [21] identified soil dust,
vehicular emission, coal combustion, secondary aerosol, industrial emission, and biomass burning
as six common sources of PM2.5 and PM10 in Beijing, China. A high concentration of PM directly
reduces the visibility of air. It is also well known that PM severely damages public health [22–24].
For the Chinese population, Lu et al. [25] found that short exposures to PM2.5 and PM10 were positively
associated with increases in mortality due to cardiovascular and respiratory disease. Feng et al. [26]
further suggested a strong association between PM2.5 and influenza-like illness counts in the flu season.

Among the above four air pollutants, PM2.5 has received the most widespread attention in recent
years. This may be due to the fact that PM2.5 is small enough to penetrate deep into the lungs, travels
long distances and transcends boundaries or regions, and largely contributes to the impairment of
visibility [27]. However, ignoring the impacts of other pollutants could lead to increasing health
risks and detrimental climate changes in the long run. From the perspective of the tourism industry,
overlooking the impact of other pollutants could lower travelers’ satisfaction with respect to tourist
destinations and expose travelers to more serious health threats.

2.2. The Impact of Air Pollution on Tourism

Two major streams of studies have examined the impacts of air pollution on tourism. One stream
of literature relied on questionnaire survey tools to measure travelers’ subjectively perceived level
of air pollution, which is actually a psychological response to the actual air quality (e.g., [2,5,28,29]).
Another stream of literature examined the impacts of actual air pollution on the tourism industry by
applying different scientifically measured indices of air pollution (e.g., [9–11,30]). Table 1 presents a
non-exhaustive summary of previous studies. The table reports the area studied, the period covered,
and the type of pollutants studied by each research. As shown in the table, the air pollution indicators
that were utilized to measure air quality varied across the different studies. It was found that PM2.5 and
PM10 were two of the most frequently used air pollution indicators, followed by the comprehensive
index of AQI, or the air pollution index (API). It was noticed that other air pollutants, such as SO2 and
NO2, have been less focused on. Some studies also relied on the number of good or bad air-quality
days within one year or the subjectively perceived level of air pollution reported in questionnaire
surveys to measure air quality.
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Table 1. A non-exhaustive summary of previous studies about the impact of air pollution on tourism.

Literature Area Studied Period Covered
Type of Pollutants Studied

PM2.5 PM10 SO2 NO2
AQI

(or API) Other Objective Indicators Perceived
Pollution

Anaman and Looi [31] Brunei Darussalam 1995M1–1999M9 dummy variable for
haze-related pollution

Becken et al. [2] China 2014
√

Chen et al. [32] Sun Moon Lake Scenic Area, Taiwan, China 2004M1–2011M12 days of bad air quality

Deng et al. [30] 31 provinces in China 2001–2013 industrial waste gas emission

Dong et al. [9] 274 cities in China 2009–2012
√

Dong et al. [10] 337 cities in China 2004–2013
√

Law and Cheung [33] Hong Kong, China 2003
√

Li et al. [34] Beijing, China 2014
√

Liu et al. [11] 17 provinces in China 2005–2015
√

Peng and Xiao [35] Beijing, China 2016
√

Poudyal et al. [3] Great Smoky Mountain National Park, USA 1988M3–2009M12 visibility of air

Qiao et al. [36] China 2015
√

Sun et al. [12] 28 cities in China 1999–2015
√

Tang et al. [37] Beijing, China 2004M1–2015M12
√

Wang and Wang [38] 35 OECD countries 1995–2014 CO2 emission

Wang et al. [39] 11 cities in China 2016M1D1–2016M12D31
√

Xu and Reed [28] China 2006–2014
√

Xu and Reed [29] Shanghai, China 2011M12–2016M10
√ √

Xu et al. [40] 174 cities in China 1998–2016
√

Yan et al. [8] 251 cities in China 2015M1D1–2016M10D30
√ √ √ √ √

CO

Yoon [41] Seoul, South Korea 2015M4–2017M2
√

Zhang et al. [5] Beijing, China 2014
√

Zhang et al. [4] Thailand 2001–2017 CO2 emission

Zhou et al. [42] 24 cities in China 2007M1–2012M12
√

Zhou et al. [43] Beijing, China 2005–2016 O
√

O O days of good air quality

Note: (1) The symbol “
√

” indicates that the corresponding air pollutant indicator was used in the study and demonstrated a statistically significant impact on tourism. The symbol
“O” indicates that the corresponding air pollutant indicator was used in the study but did not demonstrate statistical significance. (2) The sample period covered in each study is
described in the column "Period Covered". For the study based on the questionnaire survey to measure the perceived degree of air pollution, rather than the objectively measured
level of air pollution, the "Period Covered" refers to the time of conducting questionnaire survey.
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Overall, there was no consensus on the selection of air pollution indicators in the literature.
The choice of air pollution indicator largely depended on the degree of convenience in data collection.
Although different pollutants all reduce the quality of air, their respective impacts on tourist activities
may be different. Interestingly, Yan et al. [8] reported that PM2.5, PM10, SO2, and NO2 all depressed
humans’ leisure-relevant behaviors, while Zhou et al. [43] reported that only PM10 had a statistically
significant impact. As an extension of these two studies, our study also examined and compared
the regression results for different pollutants. However, differently from Yan et al. [8] who used
geotagged social media check-in data of “Weibo” covering 2015 and 2016, and Zhou et al. [43], who
solely concentrated on one city in China (the city of Beijing), this study used a city-level sample,
including 337 Chinese cities and covering the period between 2007 and 2016. Based on a wider sample,
this study was able to examine the impact of air pollution on both inbound and domestic tourism more
precisely from an aggregate perspective.

3. Empirical Model and Data

3.1. Model

The study was based on a city-level sample with panel data structure, consisting of both temporal
and spatial dimensions. Following the previous studies investigating the pollution-tourism nexus
(e.g., [12,31,32,39]), it was assumed that the impacts of air pollution and other explanatory variables
on tourism could be captured by a linear econometric regression model. To be precise, in this study
the following panel data econometric model was used:

yit = xitβ + si + ut + εit, (1)

where yit is the dependent variable in city i during period t. xit refers to a vector of explanatory
variables. si is the section-fixed effect, and ut is the time-fixed effect. εit is the error term. β is a vector
of parameters to be estimated.

In this study, we investigated the impacts of air pollution on both domestic tourism and inbound
tourism. Thus, we separately considered two dependent variables: Arrivalsdomestic, the domestic
tourist arrivals (in 10,000 person-times), and Arrivalsinbound, the inbound tourist arrivals (in 10,000
person-times). As usual, in the econometric regressions, we used the logarithmic values of these two
variables to deal with the scaling problem. Accordingly, the variations of dependent variables are
expressed as percentage changes.

Among the explanatory variables, the core variable of interest was the air pollutant indicator.
In this study, we inspected four important air pollution indicators: PM2.5, PM10, SO2, and NO2.
These variables of air pollutants are expressed by their degrees of concentration density (mg/m3) in
ambient air.

A set of control variables was contained in the regressions: Scenic, Hotel, Road, GovSize,
Population, and GDPpc. (i) The first control variable, Scenic, measures the abundance of local tourism
endowment. It was calculated by the logarithmic value of the number of 4A- and 5A-rated scenic
spots within each city. Since a 5A-rated scenic spot is typically considered as much more attractive
than a 4A spot [9,30], we assumed that one 5A spot equalled three 4A spots. To avoid the problem
of logarithmic computation when a city has zero 4A and 5A spots, we assigned a value of 0.01 to the
number of scenic spots when it was actually zero. (ii) The second control variable, Hotel, measured
the availability of tourism-specific infrastructure. We used the star-rated hotels to proxy this, since
hotels are one of the most crucial tourism infrastructures. This variable was calculated by the ratio
of the number of hotels divided by local population (in ten thousand). (iii) The third variable was
Road, the length of road (km) per area (km2). This was an indicator of the transportation infrastructure.
(iv) GovSize was the government size, measured by the ratio of local government expenditure to
GDP. This variable was used to capture the impact of the government on local tourism’s development.
(v) Population was the logarithmic value of the local population (in ten thousand), as a control variable
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for the potential economies of scale in tourism development. (vi) The last control variable was GDPpc,
the logarithmic value of real GDP per capita (RMB). The nominal GDP was deflated, taking 2000 as the
base year. Since previous studies have found that tourism might have impacts on economic and social
development, which are directly linked to the values of the control variables in the current period,
we lagged these control variables for three periods to mitigate the potential endogeneity problem.
The idea is that the three-period-lagged values of the control variables probably affect the current
value of the dependent variable (through their impacts on the current values of the control variables),
but the current dependent variable has no effect on the past value of the control variables. That way,
the potential endogeneity caused by reverse causality from the dependent variable to explanatory
variables was mitigated. Definitely, one limitation of using the lagged values of control variables is
that the estimated coefficients of them may not accurately reflect the impacts of the variables in the
current period. However, given the large benefit of using this approach to mitigate the endogeneity
issue, its limitation was deemed acceptable, and hence, it has been widely used in applied economics
research (e.g., [44,45]).

3.2. Data

The data of PM2.5 were collected from NASA’s Global Annual PM2.5 Grids data [46,47]. The data
of PM10, SO2, and NO2 were mainly extracted from a series of yearly published environmental quality
reports—“The Report on the State of the Environment of China” [48–50]. These reports were written
by China’s Ministry of Environmental Protection (MEP), and later, by the Ministry of Ecology and
Environment (MEE). These reports provided detailed official data of air quality in different areas
of China since 2007. The reports did not offer city-level air pollution data for the years 2013 and
2015. We checked the China Statistical Yearbook on Environment and several province-level statistical
yearbooks to supplement the missing data for some cities in 2013 and 2015, as well as some observations
in other years. It is worth mentioning that the MEP, and later, the MEE, have also reported the PM2.5

data in recent years. However, the available sample size was much smaller compared to that based
on NASA’s data. That is why we relied on the latter data source for PM2.5 in our empirical analysis.
In fact, an examination of the overlapping sample of these two data sources would make it clear that
they are both reliable and highly correlated, though the reported values are not directly comparable,
due to the technological disparity in measurement. NASA’s PM2.5 data were constructed on the basis
of the information supplied by the remote sensing measurements of satellites, whereas the data offered
by the MEP and MEE were from the direct measurements in local observation stations. Although
there were uncertainties associated with the remote sensing measurements (for example, affected by
weather and the precision of the electrical instruments), the accuracy and reliability of the PM2.5 grids
data have been highly appreciated. In fact, both data sources have been widely utilized in previous
research (e.g., [8,9,11,12,42]). The data from the two data sources were highly correlated. For example,
for the sample cities in the year of 2016, the Pearson correlation coefficient between PM2.5 values from
the two data sources was 0.753, indicating a strong positive correlation.

The data of the dependent variables Arrivalsdomestic and Arrivalsinbound, and the control variables
Hotel, Road, GovSize, Population, and GDPpc during the period 2007–2013 came from the China
Statistical Yearbook for Regional Economy. For the period covered, this yearbook provided city-level
data for almost all Chinese cities above the prefecture-level, though with occasional missing values.
The data between 2014 and 2016 were obtained from the EPS database, available at its website:
http://www.epschinadata.com. In addition, we checked different province-level statistical yearbooks
or utilized the linear interpolation method to supplement some missing observations. The data of
Scenic were collected from the public information released by the tourism-relevant local governmental
sectors in different provinces.

Ultimately, our sample was comprised of unbalanced panel data covering 337 Chinese cities
for the period between 2007 and 2016. This sample covered almost all regions in Mainland China,
including all four province-level municipalities (Beijing, Tianjin, Shanghai, and Chongqing) and all

http://www.epschinadata.com
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prefecture-level administrative districts except Sansha City and Danzhou City of Hainan Province.
Sansha and Danzhou, which were respectively established in 2012 and 2015, were excluded due to lack
of statistical data. Table 2 shows the summary statistics for the variables used in empirical analyses.
It is clear from the table that there were rich heterogeneities among the sample cities. The sample
contained both less developed and well developed, small and large, and clean and severely polluted
cities. Some cities had highly developed tourism industries, but the tourism size in some cities was
quite small. Overall, our sample was highly representative and able to provide sufficient information
on the general situation of China.

It is notable that the different air pollutants are probably correlated. Indeed, since human
activities often emit more than one kind of pollutant, a district may be polluted by multiple pollutants
simultaneously [51,52]. Moreover, since different pollutants may have complex chemical and physical
interactions within the air, the degree of air pollution caused by one pollutant may be exacerbated by
another one. Considering this, we had a concern that if the correlation among different pollutants
was sufficiently high, there would be no way to distinguish different pollutants and use traditional
econometric regressions to estimate their individual impacts on tourism. Table 3 shows the Pearson
correlation coefficients among the four pollutants. From the table, we see that different pollutants are
indeed positively correlated, as expected. However, the correlation coefficients are not very high and
do not exceed 0.5. Thus, the indices of these four pollutants reflect different aspects of air pollution,
and can be considered separately as different explanatory variables in the regression model.

Table 2. Summary statistics.

Variable Unit Obs Mean SD Min Max

Dependent
Variable

Arrivalsdomestic 104 person-times 2892 6.832 1.229 1.033 10.658
Arrivalsinbound 104 person-times 2952 1.447 2.311 −9.210 7.106

Air
Pollutant

PM2.5 mg/m3 3364 0.033 0.018 0.002 0.087
PM10 mg/m3 2376 0.083 0.033 0 0.436
SO2 mg/m3 2379 0.033 0.018 0.002 0.148
NO2 mg/m3 2379 0.030 0.012 0.002 0.069

Control
Variable

Scenic - 3367 −0.334 2.640 −4.605 4.331
Hotel - 3367 0.143 0.226 0.003 4.338
Road km/km2 3367 0.767 0.497 0.003 2.249
GovSize - 3367 0.189 0.179 0.040 3.581
Population 104 persons 3367 5.665 0.877 2.077 7.996
GDPpc RMB 3367 9.720 0.731 7.613 11.874

Note: (1) The variables Scenic, Hotel, and GovSize have no unit. Scenic is the number of scenic spots. Hotel is the ratio
of the number of hotels divided by local population (in ten thousand). GovSize is the ratio of government spending
to GDP. (2) The variables Arrivalsdomestic, Arrivalsinbound, Scenic, Population, and GDPpc were log-transformed. (3) The
abbreviations “Obs”, “SD”, “Min”, and “Max” in the first row denote “Observations”, “Standard Deviation”, “Minimum”,
and “Maximum”, respectively.

Table 3. Correlation coefficients among the four pollutants.

PM2.5 PM10 SO2 NO2

PM2.5 1
PM10 0.329 1
SO2 0.309 0.403 1
NO2 0.435 0.492 0.401 1

4. Results

The regression results for Equation (1) are reported in this section. Section 4.1 discusses the
estimated impacts of air pollutants on domestic tourism. Section 4.2 discusses the circumstances
regarding inbound tourism.
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4.1. Impacts of Air Pollutants on Domestic Tourism

Table 4 shows the estimated influences of different air pollutants on domestic tourism. First,
we focused on PM2.5. As reported in column (1) of the table, the coefficient of PM2.5 was −4.815,
statistically significant at the 1% level. This implies that if the PM2.5 density increased by 1 µg/m3

(=0.001 mg/m3), domestic tourist arrivals would decline by 0.482%. Given that the mean value of
annual domestic tourist arrivals among our sample cities was around 17 million person-times, this
magnitude corresponds to a decline of 81,855 person-times in tourist arrivals. This is indeed a huge
loss. Regarding the control variables, we found that the coefficients of Scenic and Hotel were both
significantly positive, consistent with the straightforward idea that more scenic spots and more tourism
infrastructure benefit tourism. Government size, GovSize, had a significant positive coefficient, perhaps
because local government plays an important role in tourism development in China. The coefficient of
GDP per capita, GDPpc, was also positive, indicating that, on average, Chinese tourists considered
more developed regions to be more attractive. The variables Road and Population did not show
significant impacts on domestic tourism.

Table 4. The impacts of air pollutants on domestic tourism.

Variable

PM2.5
PM10 SO2 NO2

All
PollutantsBaseline System

GMM
Smaller
Sample

Tourism
Receipts

(1) (2) (3) (4) (5) (6) (7) (8)

PM2.5 −4.815 *** −2.136 * −5.304 *** −4.394 ** −5.376 ***
PM10 0.558 0.817
SO2 −0.589 −0.768
NO2 0.001 0.070
Scenic 0.016 *** 0.138 *** 0.011 ** 0.024 *** 0.012 ** 0.012 ** 0.012 ** 0.011 **
Hotel 0.176 *** 0.068 0.147 *** 0.055 0.145 *** 0.149 *** 0.147 *** 0.146 ***
Road −0.006 0.275 ** 0.091 * −0.199 *** 0.111 ** 0.111 ** 0.113 ** 0.084
GovSize 0.539 *** −0.238 0.594 ** 0.313 0.569 ** 0.555 ** 0.551 ** 0.598**
Population 0.310 0.805 *** 0.238 0.014 0.267 0.280 0.282 0.220
GDPpc 0.192 ** 0.048 0.227 ** 0.298 *** 0.230 ** 0.227 ** 0.228 ** 0.231 **

Observations 2892 2892 2033 2783 2033 2036 2036 2033
Cities 337 337 328 337 328 328 328 328
R2 0.776 - 0.815 0.738 0.814 0.814 0.814 0.816

Statistical significance: * p < 10%, ** p < 5%, *** p < 1%.

To investigate the robustness of our finding on the harmful effect of PM2.5, we conducted three
further robustness analyses on the result. (i) One concern is that air pollution and tourism might have
complex reciprocal interactions [53], which might cause the endogeneity problem in the econometric
estimation [9]. System GMM (general method of moments) estimation is a reliable approach to deal
with the endogeneity problem in a “short panel” with many individuals but a small number of
periods like our data structure. Column (2) of the table reports the result of System GMM estimation,
which shows a significant negative coefficient of −2.136. The magnitude was smaller than that of the
coefficient in column (1), but was still quite considerable. (ii) Comparing the number of observations of
PM2.5 and the other three pollutants, as previously reported in Table 2, we found that PM2.5 data had
more observations than the other three pollutants. This raised the concern that the regression results
regarding PM2.5 might not be fully comparative to those for the other pollutants, due to the difference
in sample size. To address this concern, we deleted the sample points that had data for PM2.5 but not for
the other pollutants, and repeated the regression based on the smaller sample obtained. The estimated
coefficient of PM2.5 was −5.304, as displayed in column (3). Clearly, our previous finding held.
(iii) To date, we have only considered the impact of PM2.5 on tourist arrivals. In column (4), we report
the estimate when the dependent variable was the logarithmic value of tourism receipts (in 100 million
RMB, deflated based on the year 2000 price), instead of tourist arrivals. The estimated coefficient was
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−4.394, very close to that in column (1). Given that the mean annual domestic tourism receipt was 12
billion RMB, the coefficient implies that, on average, a 1 µg/m3 increase in PM2.5 concentration would
cause a reduction of 53 million RMB (approximately 8 million US dollars) in domestic tourism receipts
at the city level. In a nutshell, combining the results in columns (1)–(4) together, we are able to claim
that PM2.5 had a robust and significant negative impact on domestic tourism.

Next, we examined the effects of PM10, SO2, and NO2 on domestic tourism, respectively.
As reported in column (5), the estimation did not detect a statistically significant impact from PM10.
Column (6) reports the estimated coefficient of SO2, which was not significant either. Similarly, as can
be seen from column (7), NO2 did not significantly affect domestic tourism.

Lastly, we put all four pollutants into one regression equation and reported the estimates in
column (8). The result still showed a significant negative coefficient for PM2.5, but not for PM10, SO2,
or NO2. This result supported the findings from columns (1)–(7) when we checked the impacts of the
four pollutants one by one.

4.2. Impacts of Air Pollutants on Inbound Tourism

Table 5 demonstrates the impacts of air pollutants on inbound tourism. Column (1) reports
the baseline estimates for PM2.5. The statistically significant coefficient was −12.269, indicating that
inbound tourist arrivals would decline by 1.227% in response to a 1 µg/m3 (=0.001 mg/m3) increase
in PM2.5 concentration. Given that the mean value of annual inbound tourist arrivals in our sample
cities was nearly 1 million person-times, this magnitude indicates a decline of 12,269 person-times in
tourist arrivals. This loss is indeed substantial. The control variables were generally not statistically
significant, indicating that inbound tourists were not sensitive to the economic and social characteristics
of destination cities.

Table 5. The impacts of air pollutants on inbound tourism.

Variable

PM2.5
PM10 SO2 NO2

All
PollutantsBaseline System

GMM
Smaller
Sample

Tourism
Receipts

(1) (2) (3) (4) (5) (6) (7) (8)

PM2.5 −12.269 *** −12.517 ** −7.185 * −8.259 * −7.359 *
PM10 0.924 1.780
SO2 −0.567 0.804
NO2 −5.069 * −6.625 *
Scenic 0.002 0.455 *** 0.011 0.046 *** 0.012 0.012 0.010 0.008
Hotel 0.105 2.034 * 0.085 0.089 0.080 0.086 * 0.094 * 0.086 *
Road −0.182 −1.071 ** −0.283 ** −0.198 −0.262 * −0.260 * −0.239 * −0.268 *
GovSize −0.472 ** −11.859 *** 0.090 −0.656 ** 0.064 −0.024 −0.021 0.094
Population −0.246 −0.306 −0.667 −1.150 −0.623 −0.643 −0.684 −0.733
GDPpc 0.031 0.152 −0.052 0.034 −0.039 −0.053 −0.047 −0.033

Observations 2952 2952 2111 2941 2111 2114 2114 2111
Cities 337 337 324 337 324 324 324 324
R2 0.214 - 0.266 0.100 0.265 0.262 0.264 0.270

Statistical significance: * p < 10%, ** p < 5%, *** p < 1%.

Three robustness analyses on the impact of PM2.5 are reported in columns (2)–(4). (i) In column (2),
the System GMM estimates are reported. The coefficient of PM2.5 was −12.517, very close to that
reported in column (1). (ii) In column (3), we relied on a smaller sample, in which all sample points
had data for all four pollutants. The estimated coefficient of PM2.5 was−7.185. This coefficient was still
significantly negative, supporting the result in column (1). (iii) In column (4), we used the logarithmic
value of inbound tourism receipts (in 100 million RMB, deflated based on the year 2000 price) as the
dependent variable, instead of tourist arrivals. The estimated significant negative coefficient of −8.259
supported the finding that PM2.5 harmed inbound tourism. The magnitude implies that inbound
tourism receipts would decline by 7 million RMB (approximately 1 million US dollars) after PM2.5
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concentration increased by 1 µg/m3, given that the average inbound tourism receipt of the sample
cities was 893 million RMB per year.

Next, we checked the impacts of the other three air pollutant indices. The impacts of PM10 and
SO2 were not significant, as reported in columns (5) and (6), respectively. From column (7), it was
found that the impact of NO2 was negative and statistically significant at the 10% level. This implies
that inbound tourists were responsive to the rise of NO2 pollution.

In column (8), we report the estimates after we put all four pollutants together within one
regression equation. The coefficient of PM2.5 was −7.359 and maintained statistical significance. PM10

and SO2 did not have significant impacts. The coefficient of NO2 was significantly negative, analogous
to that in column (7).

5. Discussion and Implications

5.1. Discussion

The analyses in this study provide three important findings. Firstly, it was found that air pollution,
measured by PM2.5, shows a harmful effect on both domestic and inbound tourism. This finding is
consistent with previous studies (e.g., [29–31,33]) that reported the negative impact of air pollution on
tourism. As our sample covered a wide geographic area and a long time-span, this study supplements
the prior literature by providing further evidence on the pollution-tourism nexus. As claimed in
the previous studies, policy makers should take actions to mitigate the air pollution problem for the
purpose of boosting tourism. Good air quality is a substantially attractive characteristic for tourist
destination cities.

Secondly, different pollutants were found to exert different impacts on the tourism industry.
According to our estimates, the most adverse pollutant indicator is PM2.5, which was compared to
PM10, SO2, and NO2. The estimates demonstrate a robust, large, and statistically significant impact of
PM2.5 on tourism. Given that PM2.5 can be especially harmful, due to its relatively small size compared
to other air pollutants, it has attracted more public attention through microblogging platforms such as
Weibo [54]. In addition, PM2.5 is more closely associated with the reduction of visibility than some
other pollutants [55,56]. Travelers are highly concerned about the low visibility issue, as it can reduce
the aesthetics of tourist attractions [5,57] and interrupt traffic by causing flight delays or cancellations,
or highway closures [58]. Regarding the other three pollutants, PM10, SO2, and NO2, the estimation
results show that they do not have a similar impact to that of PM2.5. No statistically significant effect
of PM10 and SO2 on tourism was detected. NO2 was found to negatively influence inbound tourism,
but it does not significantly affect domestic tourism. This finding is novel and not consistent with some
previous studies, including Yan et al. [8], Yoon [41], and Zhou et al. [43], which reported a negative
effect of PM10, SO2, or NO2 on tourism. The different impacts of NO2 on domestic and inbound
tourism are especially interesting. There may be at least two plausible explanations. The first reason
is relevant to the degree of perception and concern about air pollution in different tourist groups.
The previous studies have confirmed that people’s opinions about the severity of air pollution largely
depend on their sociodemographic status, including education, knowledge, income, and so on [59,60].
For instance, tourists with higher income levels are typically more sensitive to air pollution than those
with low income [39]. It is possible that, on average, the sociodemographic characteristics of inbound
tourists make them more aware of the damage of NO2, compared to domestic tourists in China.
The second reason is relevant to the differences in the health risks faced by inbound and domestic
tourists during the tourist activities. As the stay time of foreign tourists is usually longer than that
of domestic tourists, inbound tourists are potentially exposed to more NO2 when they visit polluted
cities. Therefore, inbound tourists might become more responsive to the variations of pollution.
For example, Song et al. [61] demonstrated increasing prevalence trends of adult asthma in Asian
regions, especially in Japan and South Korea, which are the top source countries of China’s inbound
tourism. Given that exposure to NO2 could lead to asthma exacerbations [62], it is possible that people
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with potential asthma or other respiratory diseases would stay away from travel destinations with
high NO2 concentrations.

It is notable that, although our study did not report as significant a harmful impact of PM10, SO2,
or NO2 on tourism as PM2.5, this does not necessarily mean that these three pollutants are trivial to
sustainable tourism development in China. From the perspective of public health, the threats to tourists’
health conditions posed by PM10, SO2, and NO2 should be noticed. It is also notable that, since the
inference from our regressions reflects an average situation based on a sample of 337 Chinese cities,
it does not rule out idiosyncratic properties in different areas. It is possible that, although PM2.5 is the
most adverse pollutant on average, pollution problems in certain regions are majorly caused by other
pollutants. The unequal impacts of different pollutants on tourism detected by our study essentially
indicate that tourism-relevant policy makers and researchers should pay attention to monitoring
suitable air pollution indictors. In particular, PM2.5 should not be ignored in tourism analysis.

The third finding was that domestic tourists and inbound tourists respond to air pollution at
different magnitudes. According to our estimates, if PM2.5 concentration rises by 1 µg/m3, domestic
and inbound tourist arrivals will decline by 0.482% and 1.227%, respectively. Thus, in terms of
percentage change, inbound tourists are more sensitive to the degradation of air quality. It is plausible
that foreign travelers are more aware of the harmfulness of air pollution, compared to Chinese travelers.
An earlier study by Law and Cheung [33] has signaled that travelers from Western countries were more
sensitive to the air pollution in Hong Kong than Asian travelers. Our study extends the result of Law
and Cheung [33], which used Hong Kong as a case study, to a large geographic scope. In addition,
it should be noticed that, as the aggregate size of domestic tourism is much larger than inbound
tourism in China, in absolute values, the impact of air pollution on domestic tourism is much stronger.
Our estimates imply a reduction of 81,855 person-times in annual domestic tourist arrivals and 12,269
in inbound tourist arrivals, in response to a 1 µg/m3 increase in PM2.5. These estimates could help
the tourism sectors predict the trends and variations of domestic and inbound tourism development
associated with varying air quality problems. Moreover, these estimates could not only exert pressure
on policy makers to improve environmental outcomes, but also raise Chinese citizens’ awareness of
environmental protection to build a positive destination image.

5.2. Implications

From a theoretical perspective, this study made the following contributions. First, this study
empirically examined the impacts of four important components of air pollution (PM2.5, PM10, SO2,
and NO2) on both the domestic and inbound tourism industries in China using a sample of 337 cities
covering the period between 2007 and 2016. The sample used in the study may generate more precise
and updated estimates, since it covers the period of recent years for a wide geographic range. Second,
the findings enrich the air pollution–tourism nexus literature by confirming the finding from previous
research that PM2.5 plays a vital role in depressing both domestic and inbound tourist numbers in
China, and by providing new insights into how NO2 exerts different effects on the domestic and
inbound tourism industries. The study results remind researchers that air pollution might be more
accurately studied from the perspective of different air pollutants.

Practically, the results indicate that the Chinese government should continue tackling air pollution
in China for the benefit of human health and for the sustainable development of the tourism industry.
On the one hand, among the four common air pollutants considered, it seems that PM2.5 has received
the most attention from travelers over the last decade. Therefore, tourism policy makers should
primarily focus on PM2.5, concerning the nexus between air quality and the development of tourism.
On the other hand, given the fact that other air pollutants could also result in negative health effects,
emphasizing the importance of PM2.5 should not overshadow the threats posed by other air pollutants.
It is suggested that great efforts should be made to raise travelers’ awareness of other air pollutants.
Furthermore, although China’s outbound tourism market has attracted the attention of the world,
its inbound tourism has been experiencing very slow growth [63]. As suggested by this study, NO2
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pollution should also be tackled to attract more international travelers. The estimation results also
reveal that inbound tourists are more sensitive to the air pollution issue in China. Given that Beijing,
the capital of China with notorious air quality records, has attracted a lot of international attention
in recent years, inbound tourists may believe that the air quality in other Chinese cities is also poor.
In fact, there are a number of Chinese tourist cities with air quality up to standard, including Haikou,
Zhoushan, Lhasa, Fuzhou, Zhuhai, and Huizhou, among others [64]. Destination marketers in China
could strive to promote these cities to potential inbound tourists and design more haze-avoidance or
smog-free travel packages.

6. Conclusions and Directions for Future Research

To conclude, the present study utilized an econometric model to empirically investigate how
four atmospheric pollutants (PM2.5, PM10, SO2, and NO2) affected the tourism industry in China.
The results of the analyses demonstrated that PM2.5 played a dominant role in negatively influencing
China’s inbound and domestic tourism industries. The results also revealed that NO2 reduced the
number of inbound tourists.

This study was restricted by several limitations, which actually indicate promising directions for
future research. Firstly, some other air pollutants, such as CO (carbon monoxide) and O3 (ozone), were
not investigated in this study due to the limitation of data availability. These two pollutants are also
monitored and reported by the environmental sectors of the government in China. Unfortunately, data
are only available for a very small sample from our data sources. In the future, the impact of other air
pollutants could also be inspected if more data can be collected.

Secondly, this study examined the effects of different air pollutants but did not consider any
comprehensive air pollution indices, such as AQI. Estimating the impact of AQI on tourism and
comparing it with the estimated impact of PM2.5 will provide more information for better decision
making. However, in this study, we were not able to do this because of the data availability problem.
Given that AQI was not directly available from our data sources, in order to infer the values of AQI,
we need to know the values of different pollutants, including PM2.5, PM10, SO2, NO2, CO, and O3.
On the one hand, as mentioned previously, there were no sufficient data of CO and O3. On the other
hand, our PM2.5 data provided by NASA were constructed based on the remote sensing measurements
of satellites. The data are not directly comparable to those provided by the MEP and MEE based on
direct measurements in different local observation stations, though they are both reliable and highly
correlated. Hence, we can investigate the correlation between AQI and tourism in the future, after
more data are released.

Thirdly, this study inspected the actual level of air pollution measured by scientific instruments.
It is notable that the objectively measured air pollution level might not be completely consistent with
people’s perceived level of air pollution, since the perception of air pollution is subjective and affected
by a lot of social and individual factors, such as education and mass media. Future studies could
collect data on the perceived air pollution level by potential tourists and examine whether the study
results using subjective data match the results in this study.
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