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Abstract: Seafood-borne Vibrio parahaemolyticus illness is a global public health issue facing resource
managers and the seafood industry. The recent increase in shellfish-borne illnesses in the Northeast
United States has resulted in the application of intensive management practices based on a limited
understanding of when and where risks are present. We aim to determine the contribution of
factors that affect V. parahaemolyticus concentrations in oysters (Crassostrea virginica) using ten years
of surveillance data for environmental and climate conditions in the Great Bay Estuary of New
Hampshire from 2007 to 2016. A time series analysis was applied to analyze V. parahaemolyticus
concentrations and local environmental predictors and develop predictive models. Whereas many
environmental variables correlated with V. parahaemolyticus concentrations, only a few retained
significance in capturing trends, seasonality and data variability. The optimal predictive model
contained water temperature and pH, photoperiod, and the calendar day of study. The model
enabled relatively accurate seasonality-based prediction of V. parahaemolyticus concentrations for
2014-2016 based on the 2007-2013 dataset and captured the increasing trend in extreme values
of V. parahaemolyticus concentrations. The developed method enables the informative tracking of
V. parahaemolyticus concentrations in coastal ecosystems and presents a useful platform for developing
area-specific risk forecasting models.
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1. Introduction

Vibrio parahaemolyticus is the leading cause of seafood-borne gastroenteritis in the US and
worldwide [1-3]. Most strains are believed to be non-pathogenic and the strains that do cause
gastroenteritis and septicemia in humans have been historically associated with warm water
environments [4-6]. Over the past decade, however, illnesses caused by V. parahaemolyticus have
become more frequent in some cold and temperate water environments where illnesses were previously
rare [7-14]. This new pattern of V. parahaemolyticus disease likely stems from a combination of observed
trends, such as introduced and ecosystem establishment of pathogenic strains, increased summertime
production and consumption of raw shellfish, and climate related changes causing warmer sea surface

Int. J. Environ. Res. Public Health 2019, 16, 4341; doi:10.3390/ijerph16224341 www.mdpi.com/journal/ijerph


http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
https://orcid.org/0000-0001-7726-0765
https://orcid.org/0000-0002-9562-4734
http://www.mdpi.com/1660-4601/16/22/4341?type=check_update&version=1
http://dx.doi.org/10.3390/ijerph16224341
http://www.mdpi.com/journal/ijerph

Int. |. Environ. Res. Public Health 2019, 16, 4341 2o0f 24

temperatures and more variable salinities [7,8,13—-19]. In the Northeast United States (US) where
pathogenic V. parahaemolyticus is now established, foodborne illness is most frequently acquired from
the consumption of raw or undercooked shellfish [3]. Post-harvest management has effectively reduced
the incidence of V. parahaemolyticus disease outbreaks in this region. However, illness still occurs and
achieving effective post-harvest control is both resource and time intensive. Effective pre-harvest V.
parahaemolyticus forecasting tools would be valuable to shellfish growers and managers alike to make
informed decisions about the V. parahaemolyticus risk conditions at the time of harvest and potentially
reduce the risk and cost of V. parahaemolyticus management.

V. parahaemolyticus is a naturally occurring bacterial species that persists in a wide range of
conditions in most marine and estuarine environments [5,20-30]. In multiple studies, temperature and
salinity correlate most strongly with V. parahaemolyticus, but the strength of this relationship varies
by region and season [31]. Similarly, nutrients, chlorophyll a, pH and turbidity were inconsistent
and depended on the region and the variability of these factors. Therefore, region and even harvest
area-specific studies are necessary to provide an accurate description of the influence of environmental
conditions on V. parahaemolyticus concentration [32].

Long-term monitoring has been established in the Great Bay Estuary (GBE) by the Northeast
Center for Vibrio Disease and Ecology at the University of New Hampshire (UNH) since 2007 [33-36].
The GBE is located on the border of New Hampshire and Maine (Figure 1) and has a long history
of studies on pathogenic Vibrio spp. [37-39]. It is a regionally significant estuary that experiences
wide-ranging environmental, climatic, and biological conditions [10], and thus serves as a useful model
representative of regional estuaries. It is unique in that V. parahaemolyticus illnesses are still rare [40],
although the V. parahaemolyticus population in the Northeast is evolving [13,14] and commercial shellfish
harvests are rapidly increasing. The ongoing surveillance enables the development of pre-harvest
risk-forecasting models.

o8

Little Bay

Great Bay :

Atlantic
Ocean

Figure 1. Study area and sites for oyster and water sampling in the Great Bay Estuary, New Hampshire,
USA. OR = Oyster River; NI = Nannie Island.
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The goal of this study was to develop an integrated modeling approach to predict V. parahaemolyticus
concentrations in shellfish at a pre-harvesting stage as a tool for managing this significant public health
issue. We used data from 2007 to 2016 to capture long-term trends, seasonal fluctuations in a broad
range of environmental and climatic predictors of V. parahaemolyticus dynamics, aiming to create a
model development approach that could be transferable to other estuaries.

2. Materials and Methods

2.1. Study Sites, Environmental Sampling and Bacterial Analysis

The study area was the Great Bay estuary in New Hampshire. The two sampling locations (Figure 1)
were near Nannie Island (NI) in Great Bay, where shellfish harvest classification is approved, and a site
in the tidal portion of the Oyster River (OR), where harvesting is prohibited because of proximity to the
Durham NH wastewater treatment facility. Both are locations of significant oyster (Crassostrea virginica)
beds and long-term monitoring locations [36,38] and have different ecosystem and environmental
conditions. The estuary has been monitored for over 30 consecutive years (March-December) through
efforts by multiple agencies, including the Great Bay National Estuarine Research Reserve (GBNERR)
and their System Wide Monitoring Program [41]. The average temperature, salinity, dissolved oxygen
(DO), pH, and turbidity data were calculated from continuous (Q15) measurements obtained from the
SWMP database for 20072016 for times simultaneous with and preceding oyster sampling in 12 h
periods to account for ecological lag times and capture a more complete assessment of the potential
environmental conditions that may have contributed V. parahaemolyticus concentrations observed at
the time of collection. Monthly SWMP samples provided nutrient (total dissolved nitrogen (TDN))
and chlorophyll a (concentration by fluorescence; CHL)) data for monitoring sites in close proximity to
the NI and OR sampling locations. Meteorological data were acquired from several weather stations
(SWMP; UNH) in the Great Bay region. Water quality parameters were measured in situ at the time
of sampling using calibrated YSI 6600 and EXO multiprobe datasondes (Yellow Springs Instruments,
Yellow Springs, OH, USA).

2.2. Oyster Sample Collection and Processing

Oyster samples were collected from the two oyster beds at NI and OR except during the period
January-March from June 2007 through December 2016. For each sampling date, 10-12 oysters were
cleaned and aseptically shucked into a sterile beaker (liquor and meat), weighed and diluted 1:1 with
alkaline peptone water (APW (pH 8.6, 1% NaCl), and homogenized. A volume of 20 mL homogenate
was further diluted in 80 mL APW for a starting dilution of 1:10. A volume of 1 mL of 1:10 solution was
added to three tubes and then serially diluted with 1 mL aliquots into three serial dilutions containing
9 mL APW (pH 8.6, 1% NaCl). Each tube was incubated at 37 °C overnight (18-20 h) following the U.S.
Food and Drug Administration Bacteriological Analytical Manual (BAM) [42].

Following incubation, turbid APW tubes were scored positive for growth. From 2007 to 2010,
turbid tubes were streaked to Thioglycollate-Citrate-Bile-Salt (TCBS) agar (Beckton Dickson (BD),
Franklin Lakes, NJ, USA) and incubated at 37 °C for 18-20 h. From 2011 to 2016, turbid tubes were
streaked onto Vibrio CHROMAgar (CHROMagar, Paris, France) and incubated at 37 °C for 18-20 h.
Sucrose negative (green) colonies from TCBS or purple colonies from CHROMagar were streaked
onto tryptic soy agar (TSA; BD) and incubated at room temperature for 18-20 h. TSA isolates were
inoculated in Heart Infusion (HI) broth for 18-20 h. Then, 1 mL HI aliquots were pelleted for 5 min at
8000 rpm, re-suspended in 1 mL molecular biology grade water (Phenix Research Products, Candler,
NC, USA), boiled at 100 °C for 10 min and debris removed by centrifugation. Species identity of
isolates was determined by polymerase chain reaction (PCR) performed using 2 pL cleared supernatant
in 13 pL Mastermix, iQSupermix (BioRad, Hercules, CA, USA) using a BIO RAD T100 thermocycler
and published primers and conditions [43] for 2007-2014, with slight modifications for 2015-2016 [19].
The PCR amplicons were visualized on 1.2% agarose gel with addition of Gel Red (Phenix Research
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Products, Candler, NC, USA) under UV light. The concentration (Most Probable Number) was
calculated from V. parahaemolyticus species-specific gene (tlh)-confirmed isolates from enrichment tubes
and the BAM Most Probable Number (MPN) tables.

2.3. Statistical Analysis

All statistical computations were performed in the R Statistical Program and Environment, version
3.5.1 [44] with add-on packages MGCV [45]. Graphics were produced with ggplot2 [46]. Multiple steps
of data analysis were performed to evaluate the relationship between environmental determinants,
seasonality and V. parahaemolyticus concentrations in the GBE. MPN values for V. parahaemolyticus
concentrations were log-transformed for analysis and model development to approximate normality
and reduce skewness. Sampling events with missing environmental measurements (n = 29) when V.
parahaemolyticus was not detected (n = 71) and one sample that exceeded >2 standard deviations were
excluded from concentration model development. Statistical significance for all analysis in this study
was determined using an alpha level of p < 0.05.

2.3.1. Model Development Strategy

All measurements were arranged in chronological order based on the date of measurement and
multiple time series were compiled for the entire study period. The relationships between the time
series for water quality variables, including water temperature, salinity, pH, DO, turbidity, CHL,
TDN, rainfall and V. parahaemolyticus concentrations in oysters were evaluated using correlation and
regression analysis. We used log-transformed values of V. parahaemolyticus concentrations (Y;) and
applied a Gaussian family distribution with an identity link function relating the expected value of
response variable Y; to selected predictors [47,48]. The transformation of water temperature, salinity,
pH, DO, turbidity, CHL, TDN and rainfall was also explored as response variables in seasonality
analysis and as predictor variables for V. parahaemolyticus in regression analysis with log or log + 1. We
assessed the shape of relationships (linear and non-linear) between V. parahaemolyticus concentrations
in oysters and environmental predictors. Variables that were significant in univariate regression were
used to develop multiple regression models. We also assessed seasonality and trends over time and
explored alternative variables representing seasonality with respect to their ability to improve the
stability of forecasting. Assumptions of inter-correlation among predictors were evaluated using
Spearman correlation analysis. Below we provide the detailed description of model building.

2.3.2. Seasonality and Trend Analysis

To explore the seasonality and the general trend throughout the whole study period (2007-2016)
in all variables—V. parahaemolyticus concentrations, temperature, DO, salinity, pH, turbidity, CHL,
TDN and rainfall—we developed two models with different ways of presenting the periodicity of
seasonal oscillations. Model 1 contains variables for a linear trend and photoperiod. Model 2 uses
terms for a linear trend and harmonic regression terms for the calendar day in the study as follows:

Modell : E(Y;) = Bo + p1t + ppPhotoperiod, (1)

Model2 : E(Y;) = Bo + it + Bs sin(2nwt ) + . cos(2mwt). )

In both models, Y; is the daily time series for the outcome of interest, fy is the intercept, t is the
daily time series, 81 indicated a general trend in the outcome of interest, s and S, are the coefficients of
the harmonic terms and w is the term representing the annual cycle (365.25 days, w = 1/ 365.25). The
harmonic terms in Model 2 are expected to depict the periodic oscillation that can also be captured
by the f, in Model 1. The phase shift of periodic oscillations identified by Model 2 was determined
as follows:

Y= arctan(%) + k. 3)
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When estimates of s and 5. were positive, k = 0. If fs < 0 and . > 0, then k = 27t. If fs and f;
were negative, or if s > 0 and f; < 0, then k = 7. The phase shift (1) was multiplied by 365.25 days in
order to calculate peak timing. Covariance of s and . (9g,4,) and variance of s and f. (B% and f?)
estimated the variance of the phase shift (1) as:

(oﬁsﬁc)z + (aﬁcﬁs)z - (20ﬁcﬁs ﬁsﬁc)
(B2 + )32 + B2)°

var(y) = / (4)

and confidence intervals of the peak timing were determined as: 1.96 X /Var(y) x 365.25/2m. Secular
trends were assessed using nine default thin-plate splines (f) from the MGCV package in R [46] in
Model 3 and Model 4 as shown

Model3 : E(Y;) = Bo + B1f(t) + ppPhotoperiod, (5)

Model4 : E(Y;) = Bo + B1f(t) + Bssin(2nwt) + Becos(2mwt). (6)

The models’ performance was determined by the deviance explained, residual variation, Akaike’s
Information Criterion (AIC), and coefficient of determination (r2) value. The trend term was determined
to be non-linear based on visual assessment, positive AAIC and positive Ar?> and ADeviance > 0.1.

2.3.3. Extreme Value Trend Analysis

In addition to a general trend and Mann-Kendall trend analysis, we explored potential trends
in high values of V. parahaemolyticus concentration as well as TDN, pH and salinity based on their
importance in multiple regression models to estimate V. parahaemolyticus concentration by determining
the number of events when the observations were above its 75th percentile. For other variables, trends
were evaluated using the number of observations within the 25th and 75th percentile.

2.3.4. Variable Selection and Non-Linearity Assessment

To explore the relationship between the response variable, V. parahaemolyticus concentrations, and
predictor variables, we incorporated each environmental parameter individually into linear (Model 5)
and non-linear (Model 6) regression models. These two models were applied to the log-transformed
values of V. parahaemolyticus concentrations (Y;):

Model5 : E(Yt) = ‘Bo + ,let/ (7)

where Y} is the daily time series for the log-transformed V. parahaemolyticus concentrations in oyster, X;
is the daily time series for an environmental predictor and f8; reflects the degree of captured linear
relation in the daily time series of response and predictor variables.

Non-linear relationships were initially assessed using nine default thin-plate splines (f) from the
MGCYV package in R [46] as shown in

Model6 : E(Y:) = By + of(X¢). ®)

The relationships between the environmental conditions and V. parahaemolyticus concentrations
were overlaid with loess curves to visualize the relationship. Non-linear relationships were evaluated
by the differences between the significance of the coefficient, residual variation, AIC, and coefficient of
determination (1) value. Positive values indicate that the measure improved in Model 6 compared to
Model 5 and negative values indicate a decrease in the model evaluation measurement. Variables were
determined to be non-linear based on visual assessment, positive AAIC and positive Ar?> and ADeviance
> 0.1. When strong non-linear non-monotonic relationships were detected, we re-parametrized the
predictor by centering the variable around its V. parahaemolyticus concentration maximum and created
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a new variable to provide biological interpretability to the model [49]. For example, a new variable
for pH was created by squaring the difference between the observed pH values and the value of 7.8
selected for the centering. Re-parametrized variables are indicated as C-variable name (e.g., C-pH).

2.3.5. Model Building

The environmental parameters determined to be significant in univariate models (Models 5 and 6)
were incorporated into a multivariate general linear regression model using Gaussian (GLM-G) and
negative binomial (GLM-NB) distributional assumptions. For GLM-NB, the dispersion was determined
by the index of dispersion: 0 = variance/mean =1, where @ < 1 refers to under-dispersion and 0>1 refers
to over-dispersion. We started with the sequential model building (Model 7):

Model7 : E(Y¢) = Bo + p1 X1t + PrXk ts ©)

where Y} is the daily time series for the outcome of interest, 3y is the intercept and t is the daily time
series; Xy ;... Xy ; are the daily time series for environmental predictors, including the reparametrized
centered variables and interaction terms; f . .. f; are the corresponding coefficients.

We then added variables to reflect the trend and seasonal oscillations and fine-tuned the model by
using the photoperiod variable (Model 8), or harmonic terms (Model 9). In both models:

Model8 : E(Y;) = Bo + 1 X1, + P2Xo + ... fit + BpPhotoperiod, (10)

Model9 : E(Y) = Bo + p1Xut + PaXos + ... fit + Ps sin(2mwt) + Be cos(2nwt), (11)

where Y} is the daily time series for the outcome of interest, 8y is the intercept and f is the daily time
series; X1 ;... Xy are the daily time series for the selected environmental predictors, including the
reparametrized centered variables and interaction terms; f ... ; are the corresponding coefficients.
In Model 8 and 9, B, is the coefficient of the photoperiod variable. In Model 10, s and . are the
coefficients of the harmonic terms and w is the term representing the annual cycle (365.25 days), as in
Model 2.

For these hybrid models, we employed sequential model building using both Gaussian and
negative binomial distributional assumptions in parallel and explored the contribution of interaction
terms to the model’s fit. Overall performance of GLMs was evaluated by evaluation of Akaike’s
Information Criterion (AIC) [50], residual variation, and deviance explained to determine the number
and combination of variables that provided the strongest fit for the full time period of 2007-2016. Model
fit was evaluated by the differences between the significance of the coefficient, residual variation, AIC,
and coefficient of determination (12) value. Model selection was based on AIC value and improvement
of r? and deviance explained >0.1.

Using the parameters of the harmonic terms, e.g., the estimates of s and f. regression coefficients
and their error from Model 9, we applied the 8-method [51,52] to estimate seasonal peak timing along
with its error term, expressed in days.

2.4. Assessment of Model Forecasting Ability

The predictive skill or forecasting ability of the selected versions of Models 7, 8 and 9 were
evaluated by splitting the whole dataset into two datasets representing two periods: a training dataset
from 2007 to 2013, and a test dataset from 2014 to 2016. Correlations between environmental variables
and V. parahaemolyticus concentrations were compared for the full, training, and testing intervals. The
forecasting ability and model performance were determined by coefficient of determination (1), and
overall residual deviance. Forecasting error was evaluated by root mean square error (RMSE).
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3. Results

3.1. V. parahaemolyticus Concentrations in the GBE, 2007-2016

V. parahaemolyticus was detected in 144 oyster samples during May through December from 27
June 2007 to 5 December 2016 for both the NI (n = 77) and OR (n = 67) study sites that included
complete sets of data for environmental variables. There were no significant between-site differences
for V. parahaemolyticus concentrations or measured condition parameters (data not shown) at the two
sites, so all the following analyses use a combined-site database. Our analysis of the samples from
2007 to 2016 included the detection of tdh and trh, the traditional indicator markers for presence of
‘pathogenic’ V. parahaemolyticus. However, these markers were only detected in two samples during
2009 and were not detected again until 2015. Thus, our study focused on total V. parahaemolyticus
concentrations because it is important to understand the ecosystem dynamics of the population of
this species in shellfish harvest areas [36] as a proxy for risk assessment, and, in part because not all V.
parahaemolyticus strains in clinical cases in the Northeast US and elsewhere contain either tdh or trh.
Three main aspects of the full ten-year database are the marked seasonality, upward trend in high
concentration values, and the wide variability/dispersion of V. parahaemolyticus concentrations between
years and within each year (Figure 2). The observed V. parahaemolyticus concentrations were highly
seasonal, ranging from 0.036 MPN/g oyster tissue during cold seasonal conditions to 4600 MPN/g
during warm summertime conditions. The highest annual V. parahaemolyticus concentrations were
higher during the later years than in early years. The detailed analysis of the trends and seasonality is
presented below.
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Figure 2. Vibrio parahaemolyticus concentrations in oysters from NI and OR at low tide in the Great Bay
Estuary (GBE) in 2007-2016.

3.1.1. Trends and Seasonality

V. parahaemolyticus concentrations in oysters and environmental variables in the GBE were formally
assessed for seasonality by using a photoperiod (Model 1) and a harmonic regression model (Model 2).
These models allowed us to determine whether the study variables displayed re-occurring periodicity
and a linear trend using calendar day of study to assess change over time. We examined trends, peak
timing and seasonal oscillations in water temperature, DO, salinity, pH, turbidity, CHL, TDN and
rainfall. The patterns of data had various shapes, including an extended period of V. parahaemolyticus
detection during fall compared to spring. The variability in V. parahaemolyticus concentration in oysters,
water temperature, DO and salinity were highly seasonal and well detected by both photoperiod
and harmonic regression models, though the harmonic regression model provided a better fit in all
instances (Table 1).



Int. |. Environ. Res. Public Health 2019, 16, 4341 8 of 24

Table 1. Trend and seasonality estimates detected by Model 1 and Model 2 for V. parahaemolyticus
concentrations and environmental variables (Model 1, top and Model 2, bottom).

Coefficients P Standard Error >  Deviance AIC  Peak Timing ¢
Variable 2
Trend Seasonality Trend Seasonality
0.0005 *** 0.57 *** 0.0001 0.11 0.19 0.21 673.4
Vp (MPN/g) s —2.87 *** 0.34
0.0006 366+ 0.0001 033 0.50 0.51 597.4 222 +5
<0.001 2.01 **+* <0.001 0.15 0.53 0.54 774.1
Water . —5.81 *** 0.24
Temperature (°C) 0.002 1022 ** <0.001 0.23 0.93 0.93 4979 213 +2
<0.001 —0.31 *** <0.001 0.05 0.22 0.23 441.5
Dissolved Oxygen 1.45 #** 0.15
(mg/L) <0.001 1.9 #* <0.001 014 0.58 0.59 352.0 220+ 6
0.001 *** -0.19 0.0003 0.20 0.12 0.13 849.4
Salinity (ppt) —4.06 = 0.76
0.002 . 0.0003 072 0.26 0.28 825.5 251 +18
<0.001 *** —0.02 % <0.001 0.01 0.08 0.10 19.9
pH ot -0.06 0.05
<0.001 0.03 0.006 0.05 0.09 0.11 20.9 298 + 98
—0.02 *#** 3.93 0.007 4.10 0.06 0.09 1723.6
Turbidity (NTU) 0 () # —6.34 16.77
0.02 —9.83 0.007 15.87 0.06 0.08 1716.5 135 + 111
—-0.0002 0.62 *** 0.005 0.0002 0.09 0.10 7753
Chlorophyll-a 0.11 0.65
(ng/L) <0.001 _p.0p # <0.001 0.61 0.09 0.10 778.2 180 + 37
<0.001 *** —0.008 * <0.001 0.005 0.15 0.16 —229.0
Total Dissolved 0.02 0.02
Nitrogen (mg/L) <0.001 *** 0.64 N <0.001 0:02 0.15 0.17 —228.2 206 + 45
<0.001 0.01* <0.001 <0.001 0.01 0.02 -76.7
Rainfall (mm) <0.001 00 <0.001 0001 951 004 -746 209 + 38
' —-0.07 ** ’ <0.001 ’ ' ' -

2 Variables are shown for Model 1, top row and Model 2, two bottom rows for sine and cosine terms; b the significance
of coefficients is indicated as *** 0.001, ** 0.01, and * 0.1; © peak timing estimates are represented by the mean and
standard error values; for two parameters, dissolved oxygen (DO) and total dissolved nitrogen (TDN), the estimates
reflect the seasonal nadir. AIC, Akaike’s Information Criterion.

The peak timing of V. parahaemolyticus (day 222 + 5) was determined to be approximately 10 days
after the peak timing of water temperature that occurred at day 213 + 2. The peak timing of salinity
and pH were within 25 days of the peak timing of V. parahaemolyticus, though as the strength of the
seasonality of the variable decreased the confidence interval around the corresponding the peak timing
was observed to increase. Neither model offered a fit to the variability observed in other variables. For
instance, less than 4% of the variability in rainfall was attributed to seasonality. Rainfall and turbidity
measurements above zero were episodic and model fit did not improve above 1% variance explained
with log or log + 1 transformation. Figure 3 provides an explanation for the model fit by superimposing
daily values for each year and depicting seasonal patterns for each variable.
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Figure 3. Patterns in (a) V. parahaemolyticus concentration, (b) water temperature, (c) dissolved oxygen,

(d) salinity, (e) pH, (f) turbidity, (g) CHL, (h) TDN, and (i) rainfall versus the calendar day of the year
superimposed from 2007 to 2016.

Over the ten-year period of surveillance there were significant increases in V. parahaemolyticus
concentrations, salinity, pH and TDN. Only turbidity decreased during this same period (Table 1).
To further explore these findings, we used thin-plate splines to assess secular trends (Table S1) and
examined the trend in extreme values for salinity, pH, TDN, and V. parahaemolyticus concentrations
that were above the 75% percentile (Table 2; Figure 4). The improvement in fit from the non-linear
trend term in the photoperiod model (Model 1 and Model 3) was not seen in the harmonic regression
model (Model 2 and Model 4). The change in fit can be largely attributed to interannual variation
that was accounted for in the harmonic regression model and so a linear trend term was applied
moving forward. For pH, the range of observed pH values decreased over time with more observations
occurring within the pH range of 7.56 (25th percentile) to 7.88 (75th percentile). For salinity and pH,
more than 55% and 62.1% of days observed in 2015 were above 27.0 ppt for salinity and within the
7.56-7.88 pH range, respectively. TDN above 0.27 mg/L was observed in in six of ten years of the
study. In later years, at least 45.0% percent of measured TDN was above the 75% percentile. Yearly V.
parahaemolyticus concentrations above 240 MPN/g oyster tissue increased from 11.8% of samples in
2007 to 38.1% in 2016. Kendall-Mann trend analysis identified significant upward trends in extreme
values for V. parahaemolyticus, salinity, pH, and TDN (p < 0.05).
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Table 2. Trends of the frequency of days when V. parahaemolyticus concentrations, water temperature
and salinity exceeded the 75th percentile of data and pH data were within the 25th to 75th percentile
range in GBE during the period 2007 to 2016.

V. Parahaemolyticus Salinity TDN pH
75th Percentile 25th and 75th Percentile
Year
220 MPN/g 27 ppt 0.27 mg/L 7.56-7.88
n % n % n % n %

2007 2/17 11.8% 196/488 40.2%  6/17  353%  215/488 44.1%
2008 2/18 11.1% 10/465  2.2% 0/18 0.0% 148/465 31.8%
2009 1/11 9.1% 18/463  3.9% 1/11 9.0% 173/449 38.5%
2010 3/14 21.4% 58/451 129%  0/14 0.0% 157/451 34.8%
2011 0/9 0.0% 46/377  12.2% 0/9 0.0% 102/430 23.7%
2012 3/7 42.9% 135/475 28.4% 0/7 0.0% 217/447 48.5%
2013 1/6 16.7% 65/438 14.8% 3/6 50.0%  231/438 52.7%
2014 7/22 31.8% 135/432 31.3% 13/22  59.1%  277/432 64.1%
2015 8/24 33.3% 205/443 46.3% 10/22  455%  230/408 56.3%
2016 8/21 38.1% 266/479 55.5%  4/18  222% = 289/465 62.1%
1.001 100 1,00 1.001
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Figure 4. The number of observations per year above the 75th percentile for (a) V. parahaemolyticus
concentrations, (b) salinity, (¢c) TDN and between the 25th and 75th percentile for (d) pH.

3.1.2. Univariate Regression

Individual linear and non-linear regression analyses conducted between V. parahaemolyticus
concentration in oysters and eight measured variables from 2007 to 2016 identified water temperature,
salinity, DO, pH, CHL and rainfall as significant model parameters in linear or non-linear regression.
Model fit improved by less than 0.1 with log or log + 1 transformation of the independent
variables. Water temperature accounted for the largest degree of V. parahaemolyticus variation (48.1%),
DO accounted for 32.1%, followed by salinity (11.0%), pH (4.8%), CHL (2.8%) and rainfall (2.3%).
The significance of pH increased in non-linear versus linear regression (Table 3), and the variability
explained by pH also increased from 4.8% to 13.4%.
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Table 3. The relationship between V. parahaemolyticus concentrations and environmental variables
and fit improvement based on linear (Model 5) and non-linear (Model 6) regression models in GBE in
2007-2017. Positive values indicate that the measure improved in Model 6 compared to Model 5 and

negative values indicate a decrease in the model evaluation measurement.

Model 5 Model 6

AModel 6-Model 5

Variable
p-Value p-Value AP ADeviance AAIC
Water Temperature (°C) <0.001 <0.001 0.03 0.03 8.27
Dissolved Oxygen (mg/L) <0.001 <0.001 0.04 0.05 7.28
Salinity (ppt) <0.001 <0.001 -0.01 0.0 0.0
pH 0.009 0.002 0.14 0.08 8.48
Chlorophyll a (ug/L) 0.05 0.09 0.01 0.29 0.11
Rainfall (mm) 0.03 0.02 0.04 0.04 -6.31
Turbidity (NTU) 0.27 0.48 0.01 0.25 0.43
Total Dissolved Nitrogen (mg/L) 0.38 0.31 0.02 0.03 3.20

The form of the relationship between the environmental conditions and V. parahaemolyticus
concentrations was further explored using loess smoothing to determine the parameters for each
variable (Figure 5). The strength and significance of the linear response (Model 5) can be observed
between V. parahaemolyticus and temperature, salinity and DO. Likewise, the non-linear relationship
between pH and V. parahaemolyticus, identified by Model 6, is also highlighted by the loess smoothing.
Though the fit between V. parahaemolyticus and CHL improved in Model 4 compared to Model 3, visual
inspection of this relationship shows that this improvement can be attributed to rare events in the

extremes of the observations.
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Figure 5. Loess smoothing applied to V. parahaemolyticus concentrations and (a) water temperature,
(b) salinity, (c) pH, (d) DO—dissolved oxygen, (¢) CHL—chlorophyll-a, and (h) rainfall.
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The nonlinear regression between pH and V. parahaemolyticus was first improved with the addition
of thin-plate splines. Based on the application of loess smoothing, pH was then re-parametrized as the
square of the difference between the observed pH and 7.8, an apparent ecological optimum relative to
observed V. parahaemolyticus concentrations in the study area. Re-parameterization of pH improved
the percent variability explained, 2 and p values from 4.8%, 0.04 and 0.008 (for the unmodified pH
data) to 8.6%, 0.1 and 0.0003, respectively.

3.2. Sequential Model Building

A multiple regression model was next developed to determine a set of environmental variables
that predict V. parahaemolyticus concentrations in oysters between 2007 and 2016 (Table 4). Water
temperature was a foundational model variable for multiple regression model development and thus
used in all multiple variable regression models. Single and multi-parameter models excluding water
temperature explained less than the 48.1% of V. parahaemolyticus concentration variation explained by
water temperature alone (data not shown). The addition of the trend term, photoperiod and harmonic
regression variables to the environmental variables in negative binomial regression optimized model
estimations (Figure 6, Table S2).

Table 4. The sequential building of multiple regression models for V. parahaemolyticus concentrations in
oysters using Gaussian (GLM-G) and negative binomial (GLM-NB) models (Models 7, 8, 9).

Model Composition?  Coefficients  St. Error  Deviance AIC Coefficients ~ St. Error  Deviance AIC
Model 7 GLM-G GLM-NB
1. Temperature 0.34 *** 0.03 0.34 *** 0.03
Salinity 0.12** 0.03 054 586.9 0.13 *** 0.03 048 15334
2. Temperature 0.37 *** 0.03 0.41 *** 0.03
C-pH b _4.73 0.94 0.57 583.1 _5.50 091 0.51 1521.6
3. Temperature 0.35 *** 0.03 0.34 *** 0.02
C-pH —3.93 *** 0.99 0.59 572.5 —4.38 *** 0.93 0.53 1518.3
Salinity 0.07 ** 0.03 0.07 ** 0.02
4. Temperature 0.35 *** 0.02 0.34 *** 0.02
C-pH 4.61 3.35 5.52% 0.03
Salinity 0.17 *** 0.04 061 567.8 0.10 ** 297 057 1507.1
C-pH*Salinity —0.41 *** 0.16 —-0.53 ** 0.14
Model 8 GLM-G GLM-NB
1. Trend 0.0003 ** 0.0001 0.0003 *** 0.0001
Photoperiod -0.35** 0.11 —0.32 *** 0.09
Temperature 0.46 *** 0.04 062 5644 0.43 *** 0.03 0.58 1501.9
C-pH —3.77 *** 0.95 —4.52 *** 0.86
2. Trend 0.0002 ** 0.001 0.0003 *** 0.0001
Photoperiod -0.32** 0.11 —0.32 *** 0.13
Temperature 0.44 *** 0.04 0.62 565.9 0.43 *** 0.04 0.58 1503.9
C-pH —3.77 *** 0.99 —4.48 *** 0.89
Salinity 0.02 0.06 —0.004 0.03
Model 9 GLM-G GLM-NB
1. Trend 0.0003 ** 0.0001 0.0003 *** 0.0001
Sin(.) 0.07 0.69 -0.28 0.56
Cos(.) 1.47 1.12 0.62 566.3 0.79 091 0.58 1504.2
Temperature 0.50 *** 0.11 0.41 *** 0.09
C-pH —3.78 *** 0.96 —4.49 *** 0.87
2. Trend 0.0003 ** 0.0001 0.0003 *** 0.0001
Sin(.) 0.15 0.69 -0.31 0.57
Cos(.) 1.47 1.12 0.77 0.91
Temp 0.49 ++ 011 0.62 567.7 0.4] ++ 0.09 0.58 1506.2
C-pH —3.60 *** 0.99 —4.61 *** 0.89
Salinity 0.03 0.04 —0.006 0.03

2 The significance of coefficients is indicated as *** 0.001, ** 0.01, and * 0.1; b C-pH data were treated as reparametrized
C-pH variables.
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Figure 6. Model estimations (filled circle) and observed V. parahaemolyticus concentrations (x) are
superimposed by the calendar day of the year from 2007 to 2016: GLM-G for (a) Model 7.4, (b) Model
8.1, and (c¢) Model 9.1 and GLM-NB for (d) Model 7.4, (e) Model 8.1, and (f) Model 9.1. The dashed
vertical line at day 170 for the hybrid model (b,e) marks the longest day of the year, and the dashed lines
at day 222 + 5 days and at day 221 + 7 days indicate the calculated peak timing of V. parahaemolyticus
concentration for Model 7.1 for (c¢) GLM-G and (f) GLM-NB versions.

Spearman rank correlation analysis of the individual intervals indicates that photoperiod, water
temperature, DO, pH and salinity were significantly correlated with V. parahaemolyticus concentrations
in all time intervals, though the correlation between pH and V. parahaemolyticus varied between intervals
(Figure 7). Inter-variable correlations were observed between water temperature and DO (R = —-0.69,
p < 0.0001), salinity (R = 0.20, p = 0.014), CHL (R = 0.21, p < 0.0001) and rainfall (R = 0.21, p = 0.015). pH
and DO (R = 0.43, p < 0.0001) and pH and salinity (R = 0.37, p < 0.0001) were also correlated. Rainfall
was only significant in the test dataset, while CHL was significant in the entire and training dataset
(2007-2013) intervals but not significant in the test dataset (2014-2016) interval. Significant associations
were observed between photoperiod and V. parahaemolyticus concentrations, water temperature, DO,
salinity, CHL and pH (R = 0.28, p £ 0.001; R = 0.5, p < 0.001; R = -0.36, p < 0.001, R = 0.18, p = 0.04;
R =0.33,p =0.001; R = -0.20, p = 0.02 respectively) (Figure 7). Of the nine variables considered, only
turbidity, TDN and rainfall were not correlated to V. parahaemolyticus concentrations or photoperiod.

Salinity o
pH 0.37 -0.02
DO 0.43 -0.05 -0.03

Rainfall -0.15|-0.08 -0.06 -0.13

Turbidity 0.08 |-0.08 -0.14| 0.2 -0.08
CHL 0.06 |0.03 -0.22 -0.13 0.07 -0.03
Photoperiod 031 013 0.16 -036 0.2 -0.18 -0.14

Temperature | pg 033 004 021 .-u.uz 02 013

Ve 074 028 02 -0.05 0.16 H0.58 0.17 034 0.04 071

0.01

035 0.2

043 004 009

-0.14 -0.12 -0.14 -0.12

0.05 0.01 |-0.09 -0.24 -0.04

0.1 |0.01 -0.28 -0.03|0.08 -0.0Z

03% 005 02 -038 -0.16-0.13 -0.2

053 043 0 02 .UUE 016 -0.3

033 0.3 -0.14 0.03 -0.45 0.33 0.31 -0.26

0.24 -025

051 -0.15 -0.12

-0.16 0.05 0.21 -0.12

0.18 -0.25 -0.1 |-0.01 0.07

0 |0.05 -0.13 -0.38 0.04 -0.23

017 028 009 -031 -03 -023 0.04

0.45 0.19 0.16 |0.24 .-U.Z‘AI 0.3 -0.12

023 004 02 039 . 0.26 0.26 | 0.03

SSFETETES 355858385 §355888%¢%5
5 S = 5 £ 8 3 5 £ 8 3 .
F&UFF TE S FFOUFE TSRS FFOUFE S
5 & o5 & 5 & =8 @ 5 4 =5 T
£ g 5 X o & g 5 X o &g 2 5 & «
&8 & & g &~ &g &
£ K &K &K

(a) (b) ()

Figure 7. Spearman correlation analysis of V. parahaemolyticus concentrations and environmental
variables for three intervals: (a) 2007-2016, (b) 2007-2013 and (c) 2014-2016. Red indicates positive and
blue negative correlations and the degree of significance is highlighted by color intensity.
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3.3. Model Performance Prediction

The hybrid model (Model 9.1) provided the best overall fit for each dataset time interval, with
consistently lower RMSE and higher 12 values compared to the harmonic regression (Model 10.1) and
environmental model (Model 7.4) (Table 5). The fits for all three models were relatively consistent even
though the significance of some variables changed between time intervals. Although the estimations
of precision for the harmonic regression model across training/test datasets were slightly lower than
for other models, it is advantageous because important attributes of the data can be identified. For
example, the V. parahaemolyticus concentrations peaked on 222 + 5 day of the 365.25-day period for all
three intervals. Similarly, the peak timing of water temperature and salinity were stable between the
overall, training and test datasets (212 + 2 day and 251 + 18 day, respectively).

Table 5. The performance of three selected models: environmental model (Model 7.4), hybrid model
(Model 8.1), and harmonic regression model (Model 9.1) for three time periods: full (P1), training (P2),
and testing (P3) intervals.

Time Interval

Model Variable 2
P1 P2 P3
Model 7.4 Coefficient: 0.34 0.37 0.31
Temperature
Salinity 0.10 *** 0.08 ** 0.24 **
C-pH 5.51* 5.12 266.01 ***
Salinity*C-pH —0.53 *** —(0.53 *** —11.01 ***
72 0.54 0.58 0.57
Deviance 0.57 0.58 0.54
RMSE 1.91 1.79 1.96
Model 8.1 Coefficient: Trend 0.0003 *** 0.0003 0.0007
Photoperiod —0.31 *** —0.28 ** —0.48 **
Temperature 0.43 *** 0.45 *** 0.44 ***
C-pH —4.51 *** —4.32 *** -5.10
r2 0.61 0.57 0.61
Deviance 0.58 0.59 0.53
RMSE 1.85 1.81 1.92
Model 9.1 Coefficient: Trend 0.0004 *** 0.0004 * 0.0008
Sin(.) -0.41 -1.88* 1.72%
Cos(.) 0.63 -1.54 4.66 **
Temperature 0.40 *** 0.29 ** 0.74 ***
C-pH —4.30 *** —4.20 *** 1.60
72 0.61 0.55 0.63
Deviance 0.58 0.60 0.54
RMSE 1.81 1.82 1.83

2 The significance of coefficients is indicated as *** 0.001, ** 0.01, and * 0.1.

The environmental (Model 7.4), hybrid (Model 8.1), and harmonic regression (Model 9.1) models
developed with the observations from the training dataset accurately predict the overall trend,
seasonality, and dispersion of the test dataset (Figure 8). The overall fits of all models were high, and
the RMSE values increased in the short test time period. The hybrid model performed equally well in
describing V. parahaemolyticus concentrations in the training dataset and predicting V. parahaemolyticus
concentrations in the test dataset. This model contains a minimum number of environmental variables,
photoperiod and calendar day of the study, and provides a good fit for capturing and predicting the
seasonality, trend and dispersion of V. parahaemolyticus concentration during the study period.
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4. Discussion

The intrinsic link that V. parahaemolyticus has with coastal ecosystems has been well studied and
characterized. Previous studies have provided many useful site- and time-specific descriptive models
for describing V. parahaemolyticus concentration dynamics. However, few of them have been evaluated
for their ability to forecast V. parahaemolyticus dynamics, or to be generalizable and transferable to other
geographic areas or time periods. A wide range of environmental conditions and ecological interactions
have been reported to influence, or at least correlate with, V. parahaemolyticus concentrations including
water temperature, salinity, inorganic and organic nutrients, suspended solids-turbidity, chlorophyll-a
and plankton levels, light availability, and meteorological conditions [4,5,16,17,27,29,36,38,52—62]. The
temporal and spatial data analysis methods vary greatly in these studies, from simple correlation
to more complex models [31]. These have often included the application of multiple regression
analysis to characterize and model the interactions between multiple environmental parameters and
V. parahaemolyticus levels [5,18,28,36,63,64], even though they have not been useful for forecasting
V. parahaemolyticus dynamics and risk conditions. Based on clearly observable aspects of the V.
parahaemolyticus concentration data for this study and some initial analyses, the combination of models
applied here incorporate seasonality, trend and dispersion concepts to characterize V. parahaemolyticus
dynamics and accurately predict V. parahaemolyticus concentrations. Model accuracy is in part a
function of using variables that are known and consistent such as photoperiod or day of the year that
are ecologically interpretable, but stable for effective V. parahaemolyticus forecasting. This approach of
seasonality and trend analysis has the potential to be transferable for developing similar forecasting
models patterns of V. parahaemolyticus dynamics in other locations.

V. parahaemolyticus concentrations in the GBE during this study followed the same pattern each year
as concentrations increased rapidly each springtime as water temperatures increased, and after peak
concentrations during the warmest summer conditions, decreased as water temperatures decreased
in the fall each year. Such seasonality, where regular and predictable changes in environmental and
climatic conditions re-occur every calendar year, tends to become more pronounced with increasing
distance from the equator and is largely due to extreme temperature variation driven by variable
photoperiod [65]. Water temperature accounted for approximately 48.1% of the variation observed
in V. parahaemolyticus concentrations in this study, similar to what has been observed globally and
especially in highly seasonal, temperate water regions [27,28,60]. Thus, seasonality is a significant
aspect of V. parahaemolyticus concentration dynamics in temperate coastal areas like New Hampshire
and the Northeast US.

Photoperiod and harmonic regression models along with correlation analysis showed that V.
parahaemolyticus concentration, water temperature, dissolved oxygen, pH, salinity and chlorophyll-a
are significantly related to variables that mirror seasonal patterns in the GBE. Likewise, these variables
accurately estimate V. parahaemolyticus concentrations in oysters. The synchronized seasonal periodic
oscillation is one probable explanation for why regression modeling favors water temperature
as the most significant model parameter. A complex combination of biological and physical
environmental variables certainly drives V. parahaemolyticus population dynamics. However, many
of these environmental variables are, in turn, driven mainly by seasonal temperature. Therefore,
the variability they contribute to V. parahaemolyticus concentrations is not significantly different than
what is provided by water temperature. For example, dissolved oxygen was negatively correlated
with V. parahaemolyticus concentrations, similar to what has been previously reported [20] and was
the second strongest variable, estimating over 32% of the variability in V. parahaemolyticus over the
course of the study in the GBE. Since V. parahaemolyticus is a facultative anaerobe, this finding has the
potential to elucidate important biological dimensions of the ecology of V. parahaemolyticus. Water
temperature is a dominant driver of dissolved oxygen concentrations so collinearity between these
variables is likely. In addition, because of the constraints of mathematical modeling, well-fit models
are not necessarily mechanistically or ecologically descriptive [66] and, in this case, dissolved oxygen
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was omitted from model development to avoid multicollinearity in favor of water temperature as a
stronger model variable.

Salinity and water temperature are both seasonally variable parameters that, together are the
most commonly cited environmental drivers of V. parahaemolyticus concentration variation [16,31,67].
Salinity was a significant predictive parameter for V. parahaemolyticus concentration in this study,
though the significance of salinity was dependent on the time interval (2007-2013 versus 2014-2016)
of the data and the trend adjustment in the model (Table S2). This type of variability has also been
observed in risk assessment [68,69] and in previous studies where salinity sometimes shows a strong
positive correlation with V. parahaemolyticus [5,6,25,63], whereas for others [28,53,60,70], salinity and V.
parahaemolyticus dynamics do not correlate. Thus, the finding that salinity and other variables reported
to be significant in other V. parahaemolyticus concentration models were not included in this study’s
final model may be, at least in part, a function of both the specific conditions at this study site and time
period and a function of the in-depth statistical approach used.

Though most studies find little to no correlation between pH and V. parahaemolyticus
concentration [20,21,28], non-linear regression and correlation analysis identified pH as an important
parameter for the predictive models in the GBE. Loess smoothing highlighted the marked non-linearity
of the relationship between pH and V. parahaemolyticus concentrations and suggested a biological
optimum/optimal range for pH where V. parahaemolyticus concentrations decreased as pH increased or
decreased relative to pH 7.8. For the purposes of optimal model development, a new pH variable was
constructed by reparametrizing the measurements to create a linear response in V. parahaemolyticus
as pH measurements moved from the optima of 7.8. An optimal pH of 7.8 is near the pH (8.5) of
alkaline peptone water medium used to optimally enrich for Vibrio species [42] and has also been
suggested as an optimal pH by laboratory-based observations [71]. Wong et al., (2015) [72] found that
exposure to more acidic environments tended to reduce cell density and cause stress responses in V.
parahaemolyticus. In this study, we observe that pH measurements in the GBE appeared to become less
variable and more basic in recent years, which was also reported by Lopez-Hernandez et al., (2015) [5].
Thus, going beyond simple linear regression and including the use of non-linear analysis reveals pH as
an important and ecologically linked variable to explain V. parahaemolyticus population dynamics.

In other studies [36,60,63], variables other than salinity and pH were significant for estimating V.
parahaemolyticus concentrations in univariate regression. However, in this study, they provided an
insignificant amount of improvement to a multiple regression model that included water temperature.
For example, chlorophyll-a, considered a proxy measurement for phytoplankton abundance [21,31],
was significantly related to V. parahaemolyticus concentrations in correlation and univariate regression,
but it was not significant in a multiple regression model that included water temperature. Chlorophyll-a
was thus omitted from further model development because it did not contribute additional information
in describing V. parahaemolyticus variation. Many studies have suggested an important ecological
interaction between V. parahaemolyticus and plankton [16,27,57,63,69,73,74], and though chlorophyll-a
was not included in the multiple regression models, we have also conducted a parallel study to
explore the relationship between V. parahaemolyticus and plankton species across several years in
the GBE [75,76] to determine covarying plankton species. These have included phytoplankton that
have been reported to be significantly associated with V. parahaemolyticus elsewhere [77,78] that could
provide more in-depth insight into the importance of phytoplankton and the proxy chlorophyll-a to
the V. parahaemolyticus concentration dynamics observed in the GBE.

Approximately half of the variability of V. parahaemolyticus in the GBE could be predicted using the
contribution of photoperiod (in hours), sine and cosine of the day of the study in harmonic regression,
and the day of the study. Even though the model consisting solely of environmental variables was
potentially more ecologically informative, the trend and seasonality variables of calendar day of the
study, photoperiod, sine and cosine were more stable to estimate and predict the patterns of seasonality
and trend of increasingly high concentrations over time in V. parahaemolyticus than salinity and to a lesser
degree pH and do not require in situ measurements. Additionally, evaluation of the environmental
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model for its forecasting ability highlighted that some evaluation measures were discordant, while the
harmonic regression and photoperiod model goodness-of-fit and forecasting error were in agreement.
This highlights that though multiple evaluation measures can cause complexities in model selection, in
this study the model with conflicting evaluation measures may indicate underlying issues, while the
models where evaluation measurements were in agreement provided stronger prediction accuracy.
Harmonic regression analyses also lead to identification of the day of year for peak V. parahaemolyticus
concentration that occurs in mid-August (day 222 + 5 days) that followed the peak timing of water
temperature (213 + 2), while the longest day of the year is 21 June (day 170). This highlights a loading,
or hysteresis in the system and provides the basis for understanding the ‘fall shoulder’ of elevated
concentrations of V. parahaemolyticus that extend into the late September.

Peak timing was used to assess each environmental variable individually to detect how
environmental variables may contribute to the development of ideal conditions for V. parahaemolyticus.
Data in this study were collected either monthly or biweekly, while V. parahaemolyticus replicates every
eight minutes under ideal conditions. In this instance, the accurate detection of lagged effects on V.
parahaemolyticus would require more frequent sampling and fine-scale temporal resolution. Due to this
level of biological complexity and the irregular temporal intervals of the data in our study, the mean
from 12 h proceeding collection was used for regression with environmental variables and peak timing
was used to assess temporally how each environmental variable may contribute to the development of
ideal conditions for V. parahaemolyticus. Using this approach, we determined that significant predictive
variables peak in advance of V. parahaemolyticus potentially contributing to a hysteresis or loading
of the systems, setting up conditions that are optimal for V. parahaemolyticus. Davis et al., 2019 [79],
recently reported that environmental variables approximately one month proceeding collection were
significant to predicting V. parahaemolyticus concentrations in the Chesapeake Bay suggesting they
might also be observing this type of lagged effect from a loading of the system. The application of
harmonic regression and peak timing here demonstrates how biological complexities and limitations
of sampling frequency can be overcome while also providing the resolution to detect temporal patterns
between dependent and independent variables. The determination of peak timing is also a potentially
important tool for forecasting the commonly observed mid-summer peaks in illnesses in the Northeast
US [80].

A major characteristic of the V. parahaemolyticus concentration data is their wide dispersion. The
comparison between Gaussian and negative binomial GLMs determined that the dispersion of V.
parahaemolyticus concentrations, especially the extreme high concentrations, was best fit by the negative
binomial model, as it can better account for the wide range of V. parahaemolyticus concentrations
(0.3 to 4600 MPN/g) observed annually in the GBE. Effective risk models, with negative binomial
regression as an essential model attribute, developed to predict the increasing and more dispersed V.
parahaemolyticus concentrations will become more important as global warming and other climate and
ecosystem changes will probably cause increased concentrations and persistence of V. parahaemolyticus
in temperate coastal areas [8,81-83] with a likely increase in public health risks.

Model evaluation, estimations, and predictions illustrate how each model provides fit and
prediction ability of the variability in V. parahaemolyticus concentration observed over the course
of the study. Though a forecasting model consisting of environmental variables could be more
appealing because of its ecological interpretability, there are potential limitations to models that rely
solely on environmental predictors. For example, it is unlikely that a well-fit model can contain all
the environmental variables that effect V. parahaemolyticus given its ecological complexity and the
collinearity between seasonal-driven variables that relate to V. parahaemolyticus dynamics. Further,
the strength of environmental variables to predict V. parahaemolyticus over time can change, as was
observed in the interaction between pH and salinity between time intervals. Additionally, salinity
became insignificant when the model was adjusted for a linear trend. The negative binomial harmonic
regression and hybrid models fit the seasonality and trend features, and account well for the dispersion
of V. parahaemolyticus. All models demonstrated good forecasting ability. Importantly, these models
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also enabled the determination of key characteristics of V. parahaemolyticus in the GBE including peak
timing and a seasonal loading contributing to prolonged elevated concentrations that last into fall
months. The hybrid model provides the optimal level of ecological interpretability a reasonable ability
to capture the dynamics of V. parahaemolyticus concentrations in oysters in the GBE, and a stable
platform for forecasting V. parahaemolyticus concentrations in coming seasons. Thus, the use of both
significant environmental variables and stable parameters in the hybrid negative binomial regression
model lead to successful forecasting model development that captures seasonality, temporal trends,
and the high degree of data variability and dispersion.

The increased incidence of illnesses caused by V. parahaemolyticus infections in the Northeast US has
co-occurred with increases in regional surface water temperatures and other environmental parameters,
as shown in this study, suggesting an increase in the presence of pathogenic V. parahaemolyticus
strains and/or population evolution [13,14]. The model approach developed in this study illustrates
how characteristics of V. parahaemolyticus dynamics can be captured as environmental conditions
continue to become more favorable for the pathogen to enable accurate prediction of public health
risk to shellfish consumers and recreational users of coastal waters. This information, coupled with
recent advances [13,14,19] that improve detection methods for endemic and invasive pathogenic V.
parahaemolyticus sequence types (ST) in the Northeast, could be useful for shellfish harvest management
in the Northeast US based on this new improved and integrated capacity to forecast concentration
dynamics of both total and pathogenic V. parahaemolyticus populations and potential disease outbreak
risks. The developed modeling approach also has the potential to inform more in-depth mechanistic
studies in order to gain a better understanding of the ecology of V. parahaemolyticus and other
water-borne pathogens.

5. Conclusions

This study suggests that transferable models can be developed for forecasting public health risks
related to V. parahaemolyticus concentrations in shellfish. Ecological monitoring data and statistical
modeling are necessary to effectively characterize relationships between ecological variables and
V. parahaemolyticus concentrations. From among many ecological variables, easy to measure water
temperature and pH were all that was required when combined with seasonality and trend variables
within hybrid statistical models to capture both long-term increasing trends for V. parahaemolyticus
concentrations and to provide capacity for forecasting V. parahaemolyticus concentrations. The
determination of peak timing is useful for assessing how each environmental variable may contribute
to the development of optimal conditions for V. parahaemolyticus. This approach may be best applied
in temperate, seasonally driven regions like the Northeast, US, as it relies on characteristics of V.
parahaemolyticus ecology that are shared by most temperate regions.
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