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Abstract: In this study, we applied an integrated approach to an ecological risk evaluation of heavy
metal pollution in industrial and mining wastelands in Yangxin County, China. A total of 72 sampling
sites were designated in the study area. The results show that the potential ecological risk levels of
Hg and Cd are higher, and the coefficient of variation of mercury levels is large. Cr, Cu, Zn, Pb, Ni,
and As are all at low potential ecological risk. The land types with relatively high ecological risks are
alum and coal mines. In the soil of alum mines, the risk due to mercury is higher, while in coal mine
soil, the risk due to cadmium is relatively higher.
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1. Introduction

Heavy metals are of great concern because of their toxicity and persistence in the environment [1].
Heavy metals in soil, such as Hg, Pb, As, Cd, and Cr, can directly poison plants growing nearby as well
as the ground and surface water systems, which may also harm human health by enriching agricultural
products and water. Consequently, heavy metals are classified among the most dangerous groups of
anthropogenic environmental pollutants [2]. Mining and industrial processing are among the main
sources of heavy metal contamination in the environment [3]. The ecological risk of heavy metal
pollution in soil exists all over the world. Cd, Fe, Pb, and Zn have been found in different plant species
in a former mining area in La Union, Spain [4]. Mine tailing and lake sediment from a former mining
area in Canakkale, Turkey, were analyzed; the analysis showed that 40%–60% of metals for both mine
tailing and sediment were in the residual fraction, and easy mobilization is not expected under the
environmental conditions [5]. Devanesan and Gandhi found that coastal sediments from Poombuhar
to Karaikal of Tamilnadu are polluted by Ti, V, Cr, Mn, Ca, and Pb due to anthropogenic activities [6].
Sediment samples from the Chodarchay and Gilankesheh rivers, which pass through a mining area in
NW Iran, were found to be contaminated by Cd, As, and Pb [7]. According to the national survey
bulletin on soil pollution in China, among the 775 soil sites in 81 industrial wastelands surveyed,
34.9% of them exceeded the standard. The main pollutants were Zn, Hg, Pb, Cr, As, and polycyclic
aromatic hydrocarbons (PAHs), mainly involving chemical, mining, and metallurgical industries [8].
At present, it is difficult to accurately calculate the total area of industrial and mining wastelands in
China. According to some scholars’ estimations, this figure may reach 2 million hectares, of which only
15% has been or is being reclaimed. [9]. Moreover, the main direction in the ecological restoration and
reclamation of industrial and mining wastelands in China is toward agricultural land, so investigation
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of the heavy metal pollution in the soil and ecological risk assessment are very important. It can be
predicted that soil pollution assessment and ecological restoration in industrial and mining areas will
become increasingly important in China. In this study, we focused on the pollution of heavy metals in
soils in various types of industrial and mining wastelands at a regional scale. Typical heavy metals,
including As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, in the soils of industrial and mining wastelands with an
area of about 2700 km2 in southeastern Hubei Province were sampled and analyzed. On this basis,
potential risks in this area were evaluated with the aim to provide a customized scientific basis for the
selection of measures to restore soil ecology.

2. Materials and Methods

2.1. Study Area

The study area was located in the southeastern part of Hubei Province, China. Its geographical
coordinates are 29◦30′ N~30◦9′ N and 114◦43′ E~115◦30′ E, covering an area of about 2700 square km
within Yangxin County. Yangxin County is located in the polymetallic metallogenic belt in the middle
reaches of the Yangtze River, with abundant reserves of gold, silver, lead, copper, and zinc as well as
coal, limestone, marble, and bentonite. There are 35 proven minerals, comprising 19 metallic minerals
and 16 nonmetallic minerals, and 112 mineral deposits. Based on this characteristic, the mineral mining
and smelting industry developed very early in this area. Therefore, the problem of heavy metals in the
soil of industrial and mining wastelands in this region is representative in the middle reaches of the
Yangtze River.

In this study, 72 surface soil samples were collected from industrial and mining wastelands in the
region. The distribution of sampling points is shown in Figure 1. The land use of before abandonment
of these sampling sites was 32 sand and stone mines, 10 brick and tile factories, 9 metal mines, 7 coal
mines, 5 bauxite mines, and 9 other industrial and mining wastelands, mainly for building material
processing plants.
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2.2. Soil Sampling and Chemical Analysis

We selected a sampling area of 10 × 10 m in each of the 72 reclaimed industrial and mining
wastelands and took five surface soil samples (0–20 cm) with a center point and four diagonal vertices
in each sampling area by the plum blossom point method. Threaded drills were used in the sampling.
The samples were manually cleared of impurities such as leaves, plant roots, and gravel and uniformly
mixed to form a 500 g soil sample representing the sampling area. A total of 72 soil samples were
collected. The surface debris was discarded, and the samples were then packaged in polyethylene
bags and transferred to the laboratory for analytical testing. The samples were air-dried for 24 h at
60 ◦C under a fume hood in the laboratory and crushed through a 2 mm nylon mesh. A 5 g sample
was taken by multipoint sampling from each of these air-dried samples and was further ground with
an agate mortar and passed through a 0.074 mm nylon sieve for use. The soil samples were digested
using a HF–HClO4–HNO3 mixture of 100 mL on an electric heating plate, then diluted to 50 mL using
deionized water (18.2 MΩ·cm, resistivity at 25 ◦C). The pH of the soil samples was determined by the
glass electrode method with a water–soil ratio of 2.5:1. The contents of Cd, Cu, Cr, Ni, Pb, and Zn
were determined by inductively coupled plasma mass spectrometry (ICP-MS, NexION 350, Perkin
Elmer Company, Waltham, MA, USA). The contents of As and Hg were determined using aqua regia
digestion and atomic fluorescence spectrometry. The instrument used was a dual-channel atomic
fluorescence spectrometer (AFS-830, Jitian Instrument Co., Ltd., Beijing, China). The acid used in the
process of analysis and testing was of guaranteed reagent grade (GR), while the other reagents were
of analytical reagent grade (AR). Analytical reagent blanks were applied in the sample preparation
and analytical processes. All measurements were performed in triplicate, and standard deviations
were within ±5% of the mean. The standard reference material was used to control the measurement
errors, with recoveries of 100% ± 10% for 8 heavy metals. All metal quantifications were determined
according to the Chinese environmental quality standard for soils (GB 15618-1995) and soil quality
guidance on sampling techniques (GB/T 36197-2018).

2.3. Indexing Approach

2.3.1. Comprehensive Evaluation of Soil Heavy Metal Pollution

The Nemero comprehensive pollution index was applied in this evaluation. The soil heavy metal
pollution status of the study area was quantified using the comprehensive evaluation index factor (Pc)
approach as follows:

Pc =

√
P2

iavg
+ P2

imax

2
, (1)

Pi =
Ci
Cb

, (2)

where Pc is the comprehensive evaluation index factor of soil pollution; Pi is the contamination factor
of single heavy metal i; Ci is the measured concentration of metal i; Cb is the reference value, here the
geometric mean of soil metal backgrounds of Hubei province was used [10], as shown in Table 1; and
Piavg and Pimax are the average and maximum values of Pi, respectively.

Table 1. Background soil heavy metals in the study area.

Element pH Cr Cu Zn Pb Cd Ni Hg As

Cb (mg/kg) 6.5 79.0 28.2 77.5 25.7 0.1137 38.6 0.0634 10.5

The comprehensive evaluation index factor (Pc) grading table (Table 2) can be used to judge the
pollution degree of heavy metals in soil.
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Table 2. Grading of soil heavy metal pollution.

Pc Pollution Level

Pc ≤ 0.7 Clean
0.7 < Pc ≤ 1.0 Low
1.0 < Pc ≤ 2.0 Moderate
2.0 < Pc ≤ 3.0 High

Pc > 3.0 Severe

2.3.2. Potential Ecological Risk Evaluation

Common methods suitable for potential ecological risk assessment of soil heavy metal pollution
include the geo-accumulation index method, which was proposed by Muller in 1969, and the potential
ecological risk index method, which was proposed by Hakanson in 1980. In this study, we attempted
to use these two methods to evaluate the ecological risk of soil heavy metals in the study area, and we
summarized the results of the two methods to find the general law of the problem.

Geo-Accumulation Index

The geo-accumulation index was proposed by the German scientist Muller in 1969 and developed
in Europe to study the quantitative indicators of heavy metal pollution in sediments and other materials.
When Muller used this method to analyze the degree of contamination of heavy metals, the average
value of global shale was chosen as the geochemical background value of the element. The expression
of the geo-accumulation index is

Igeo = log2
Ci

KCb
, (3)

where Igeo is the geo-accumulation index of metal i; Ci is the measured concentration of i; Cb is the soil
background value of this metal; and K is the variation coefficient of regional differences.

Classification of the geo-accumulation index is determined as shown in Table 3.

Table 3. Classification of the geo-accumulation index.

Classification Igeo Risk Level

0 Igeo < 0 Nonpollution
1 0 ≤ Igeo < 1 Nonpollution to Medium pollution
2 1 ≤ Igeo < 2 Medium pollution
3 2 ≤ Igeo < 3 Medium pollution to Serious pollution
4 3 ≤ Igeo < 4 Serious pollution
5 4 ≤ Igeo < 5 Serious pollution to Extremely serious pollution
6 Igeo ≥ 5 Extremely serious pollution

Potential Ecological Risk Index

The potential ecological risk index is a set of methods for evaluating the potential ecological risk
of heavy metals from a sedimentological point of view and based on the toxicity of heavy metals.
The expression of the potential ecological risk index is

Eri = Tri

Ci
Cb

, (4)

RI =
n∑

i=1

Eri , (5)

where Eri is the potential ecological risk index of metal i; Tri is the toxic response factor of metal i,
demonstrating the metal’s toxic and ecological sensitivity levels (in this study, Tri takes the value
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proposed by Hakanson, Table 4); Ci is the measured concentration of metal i; Cb is the soil background
value of this metal; and RI is the integrated potential ecological risk index, calculated as a sum of the
Eri for all examined heavy metals.

Table 4. Toxic response factors of heavy metals.

Element Cr Cu Zn Pb Cd Ni Hg As

Tr 2 5 1 5 30 5 40 10

The relationships among RI, Eri, and the ecological risk level are shown in Table 5.

Table 5. Classification of the potential ecological risk index and integrated potential ecological risk index.

Scope of Potential
Ecological Risk (Eri)

Risk Level Scope of Integrated Potential
Ecological Risk (RI) Risk Level

Eri < 40 Low RI < 150 Low
40 ≤ Eri < 80 Moderate 150 ≤ RI < 300 Moderate

80 ≤ Eri < 160 Considerable 300 ≤ RI < 600 High
160 ≤ Eri < 320 High RI ≥ 600 Severe

Eri ≥ 320 Significantly high

3. Results and Discussion

3.1. Characteristics of Heavy Metal in Soil

The statistics of soil metal concentrations at the sampling sites are shown in Table 6.

Table 6. Concentration statistics of heavy metals in soil.

Elements Background Cb (mg/kg)
Concentration Ci (mg/kg)

Coefficient of Variation
Range Average

Cr 79 11.60–215.00 67.96 ± 32.86 48.02%
Cu 28.2 17.10–213.00 40.38 ± 27.37 67.17%
Zn 77.5 48.90–199.00 90.71 ± 30.61 33.51%
Pb 25.7 11.60–141.00 32.37 ± 16.14 49.51%
Cd 0.1137 0.062–0.490 0.204 ± 0.105 51.26%
Ni 38.6 9.28–98.30 29.79 ± 15.92 53.08%
Hg 0.0634 0.018–0.810 0.112 ± 0.129 114.67%
As 10.5 0.870–24.800 10.085 ± 6.162 60.62%

According to our results at the 72 sampling points, the concentration of one or more of the metals
exceeded the corresponding reference concentration for most sampling points. After calculations
according to land types, the ones which exceeded were as follows.

As shown in Table 7, the land use that showed the highest exceedance was “coal mining”, with
an average of 75% of the sampled data exceeding the standard, followed by “alum ore mining and
processing”, with an average of 63% of the sampled data exceeding the standard. Nearly 50% of
sampling data of the other land use also exceeded the standard. Therefore, it can be observed that the
accumulation of heavy metal elements in the soil in the study area was widespread, which brings great
challenges to soil restoration work in the future.
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Table 7. The number of sampling points whose concentration exceeds the reference and its land
use type.

Types of Land Use Before Disposal Number of
Sampling Points

Number of Sampling Points Whose Concentration Exceeds the Reference Value

Cr Cu Zn Pb Cd Ni Hg As

Sandstone Ore Mining and Processing 32 7 17 18 18 19 6 18 9
Brick and tile factory 10 1 5 3 8 8 0 10 3

Metal ore mining and processing 9 1 4 9 4 6 0 1 1
Coal mining 7 4 5 4 7 5 3 7 7

Alum ore Mining and Processing 5 3 4 3 4 2 2 5 2
Other Industrial Wasteland 9 2 3 5 7 7 2 4 5

3.2. Comprehensive Evaluation of Soil Heavy Metal Pollution

Comprehensive assessment of the soil heavy metal pollution was performed using the
comprehensive evaluation index factor of soil pollution. The results are shown in Figure 2 and
Table 8.
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Figure 2. Distribution of the contamination factors of soil heavy metals.

Table 8. Results of the comprehensive evaluation of soil heavy metal pollution.

Elements
Contamination Factor Pi Comprehensive Evaluation Index Pc

Range Average Value Pollution Level

Cr 0.15–2.72 0.86 ± 0.42 2.02 High
Cu 0.61–7.55 1.43 ± 0.97 5.44 Severe
Zn 0.63–2.57 1.17 ± 0.4 2.00 Moderate
Pb 0.45–5.49 1.26 ± 0.63 3.98 Severe
Cd 0.55–4.31 1.79 ± 0.93 3.30 Severe
Ni 0.24–2.55 0.77 ± 0.41 1.88 Moderate
Hg 0.28–12.78 1.77 ± 2.04 9.12 Severe
As 0.08–2.36 0.96 ± 0.59 1.80 Moderate

Relevant studies in the same region of China showed that the pollution index values of Cu,
Zn, As, Pb, and Cr in the sediments of Taojiang River in Jiangxi were 3.2, 2.39, 2.17, 1.49, and 0.89,
respectively [11]. The pollution index values of heavy metals in the soil in coal mining areas of Bin
County, Shaanxi, were Cd, 7.07; Pb, 4.04; Cr, 3.47; Zn, 3.29; and Cu, 0.98 [12]. According to the
comprehensive evaluation index factor of soil pollution, the heavy metals examined were present at
different degrees of pollution in the study area. The pollution levels of Hg, Cu, Pb, and Cd reached the
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classification of “severe”. The contamination factor for Hg was extremely high, with a maximum of
12.78, making it the most important heavy metal pollutant within the study area. Cr pollution reached
a high level, while those of Zn, Ni, and As reached moderate levels. According to the levels of the
comprehensive evaluation index factors, if we ranked them from high to low, the severity of soil heavy
metal pollution in the study area was in the order Hg > Cu > Pb > Cd > Cr > Zn > Ni > As.

3.3. Potential Ecological Risk Evaluation of Soil Heavy Metal Pollution

3.3.1. Geo-Accumulation Index Evaluation

The geo-accumulation index (Igeo) of each metal element was calculated according to the
geo-accumulation evaluation proposed by Muller. The values of Cb are shown in Table 1, and the value
of K was 1.5. The range and distribution of the geo-accumulation index values of the eight heavy metals
in the soil samples from the study area are shown in Figure 3. The calculated geo-accumulation indices
with average and standard deviation is show in Table 9. A contour map of the geo-accumulation index
values of each sampling point in the area is shown in Figure 4.
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Elements
Geo-Accumulation Index Igeo

Range Average

Cr −2.77–1.44 −0.38 ± 0.71
Cu −0.72–2.92 0.36 ± 0.61
Zn −0.66–1.36 0.16 ± 0.44
Pb −1.15–2.46 0.23 ± 0.51
Cd −0.87–2.11 0.66 ± 0.74
Ni −2.06–1.35 −0.55 ± 0.73
Hg −1.82–3.68 0.35 ± 1.06
As −3.59–1.24 −0.37 ± 1.02
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As shown in Figure 3 and Table 9, according to the distribution of the geo-accumulation index
values of the eight heavy metals, the mean value was between −0.55 and +0.66. Relative to the various
metal elements, the numbers of sampling points at different ecological risk levels are shown in Table 10.

Table 10. Distribution of sampling points with different risk levels under ecological risk assessment by
the geo-accumulation index.

Elements

Number of Sampling Sites

Nonpollution Nonpollution to
Medium Pollution

Medium
Pollution

Medium Pollution to
Serious Pollution

Serious
Pollution

Cr 54 17 1 0 0
Cu 34 32 5 1 0
Zn 30 38 4 0 0
Pb 25 43 4 1 0
Cd 25 28 18 1 0
Ni 59 12 1 0 0
Hg 27 26 15 2 2
As 45 22 5 0 0

In the study area, the land uses with higher ecological risks were alum and coal mines. Within the
soil samples of these areas, most of the ecological risk level of metals moved towards medium pollution.
In the ore soil, the risk due to Hg levels was higher, while in coal mine soil, the risk due to Cd was
higher. There were 5 soil metal Igeo values between 2.0 and 3.0, which included one alum mining site,
2.11 (Cd); one brick and tile site, 2.66 (Hg); two other sites, 2.34(Hg) and 2.46(Hg); and one sandstone
site, 2.92 (Cu). Two samples were above 3.0, 3.51 (Hg) and 3.68 (Hg), which were located in two
sandstone sites.

Relevant studies in China showed that the pollution risk level of Pb in farmland soils in the typical
lead–zinc mining area of Yueyang City, Hunan Province, was close to the level of medium pollution,
while the risk grades of As, Cd, Cu, Ni, and Zn were at nonpollution levels [13]. The Igeo values of
15 sampling sites were between 0.29 and 1.37 in Yuqiao, Tianjing city [14]. A study in Yong’an coal
mining area showed that the Igeo value of Cr was less than 0, and the Igeo values of Zn, As, Pb, Cu,
and Cd were between 0 and 1 [15].
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3.3.2. Potential Ecological Risk Index Evaluation

According to the potential ecological risk index evaluation proposed by Hakanson, the individual
potential ecological risk coefficients (Eri) and the comprehensive potential ecological risk index (RI)
values were calculated. By combining them with the potential ecological risk grading standard
(Table 5), the potential ecological risk assessment results of heavy metals in reclaimed soil were
obtained, as shown in Figure 5, Figure 6 and Table 11.
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Table 11. Values of the potential ecological risk index (Eri).

Elements
Potential Ecological Risk Index Eri

Range Average

Cr 0.29–5.44 1.72 ± 0.83
Cu 0.00–37.77 5.47 ± 5.22
Zn 0.00–2.57 1.15 ± 0.42
Pb 0.00–27.43 6.21 ± 3.21
Cd 0.00–129.29 43.28 ± 32.83
Ni 1.20–12.73 3.86 ± 2.06
Hg 11.36–511.04 70.61 ± 81.54
As 0.00–23.62 8.54 ± 6.31

The ranking of the average value of the potential ecological risk index (Eri) of the eight heavy
metals in the reclaimed soil was Hg > Cd > As > Pb > Cu > Ni > Cr > Zn. From the overall situation
of the 72 sampling points, Cr, Cu, Zn, Pb, Ni, and As had low potential ecological risks, and there
were no data exceeding this level. Risk levels for Cd were considered as low (37 sites), moderate
(25 sites), and considerable (10 sites). The coefficient of variation of Hg was the largest among the
eight heavy metals, and its spatial variability was the strongest. Therefore, the potential ecological
risk level of Hg varied greatly across low risk (27 sites), moderate risk (27 sites), considerable risk
(15 sites), high risk (2 sites), and significantly high risk (2 sites). According to the land use, these were
mainly distributed in alum and coal mines. A high coefficient of variation of Hg was also found in
areas with high industrialization and urbanization in southern China. He Bo found that the coefficient
of variation of Hg in the topsoil from their study area reached 69.23%, which was the highest among
all metals tested. That soil was considered more likely to be affected by external factors [16].

According to the calculations, the comprehensive potential ecological risk index (RI) values of the
reclaimed soils ranged from 37.64 to 556.06, with an average value of 140.84. Among them, there were
only 47 sampling points at low potential ecological risk, accounting for 65.3% of the total sampling
points; 22 sampling points at moderate risk, accounting for 30.5%; 3 sampling points at high risk,
accounting for 4.2%; and no sampling points at the “severe” risk level. Relevant studies in other regions
of China showed that the RI values of reclaimed soils in a Huangshi abandoned quarry ranged from
112.49 to 363.62 [17]. The RI values of reclaimed soils in Antaibao Open-pit Coal Mine in Pingshuo
ranged from 131.43 to 331.03, with an average of 191.68 [18]. The average RI value of reclaimed soils in
a Shanghai reclaimed industrial site was 385.79 [19]. The average RI of Shunde waterway soil was
73.20 [20]. The average RI of farmland soil around a tungsten mining area in Xianghualing, Hunan
Province was 330.4 [21]. The range of the RI of farmland soil around a smeltery in Hunan Province was
46.4–1627.5 [22]. The variation range of the RI of soil from Hengyang Songjiang Industrial Park was
330.51–17,721.89, with an average of 2374.32 [23]. Compared with other reclaimed soils or other types
of soils in other areas, the potential ecological risk of reclaimed soils in this study was generally at a
relatively moderate level. However, because of the high ecological toxicity of Cd and Hg, the potential
ecological risk of some reclaimed soils was higher, and these areas should be monitored.

3.3.3. A Discussion of the Potential Ecological Risk Evaluation of Soil Heavy Metal. Pollution

Based on the results of the geo-accumulation index evaluation and potential ecological risk index
evaluation, both methods showed that the potential ecological risk of soil heavy metals in the study area
is generally at a low level, and it is feasible to carry out reclamation. Common engineering techniques
for soil ecological restoration include physical improvement, chemical improvement, and biological
improvement. For mildly contaminated soils, the use of chelating agents and super-accumulated plants
for purification can be considered [24]. In the study area, Hg and Cd are the main potential ecological
risk factors in the soil, and it is necessary to pay attention to the fact that the potential ecological risk
value of Hg in gravel ore is extremely high. For soils that are moderately or heavily contaminated with
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heavy metals, a faster method is to replace the soil. Studies have shown that after removing 15 to 30 cm
of soil on the surface and filling in the area with clean soil, the concentration of heavy metals in plants
can be reduced by more than 50% [25]. However, this method is very expensive when used to repair
large areas of contaminated soil. Soil leaching and soil thermal desorption are also feasible methods.
Pociecha and Lestan used electrocoagulation to recover heavy metals from a leaching solution of EDTA
and contaminated soil and found that this method can remove 53% of Pb, 26% of Zn, and 52% of Cd
from contaminated soil [26]. Studies by Kunkel and some others have shown that in situ thermal
desorption can remove 99.8% of Hg from contaminated soils at temperatures below the boiling point
of the soil [27].

4. Conclusions

Both geo-accumulation index evaluation and potential ecological risk index evaluation are useful
tools for heavy metal ecological risk evaluation. They can effectively reflect the outstanding risk issues
of the study area. As a case study, an integrated approach was applied to an ecological risk evaluation
of heavy metal pollution in industrial and mining wastelands of Yangxin County, China. A total of
72 sampling sites and 8 metallic elements, As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, were included in this
potential ecological risk study. Both methods showed that the potential ecological risk of soil heavy
metals in the study area cannot be ignored. This may mean that future reclamation of this land will be
costlier. Among the elements examined, the potential ecological risk levels of Hg and Cd are higher,
and the coefficient of variation of Hg content is large. Cr, Cu, Zn, Pb, Ni, and As are all at low risk.
The land uses with relatively high ecological risks are alum and coal mines. In the soil of alum mines,
the risk of Hg is higher, while in coal mine soil, the risk of Cd is relatively higher. Therefore, Hg and
Cd pollution is generally significant in this study area, which is worthy of future vigilance.
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