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Abstract: This paper studies the hyperstability and the asymptotic hyperstability of a single-input
single-output controlled dynamic system whose feed-forward input-output dynamics is nonlinear
and eventually time-varying consisting of a linear nominal part, a linear incremental perturbed
part and a nonlinear and eventually time-varying one. The nominal linear part is described by a
positive real transfer function while the linear perturbation is defined by a stable transfer function.
The nonlinear and time-varying disturbance is, in general, unstructured but it is upper-bounded by
the combination of three additive absolute terms depending on the input, output and input-output
product, respectively. The non-linear time-varying feedback controller is any member belonging to
a general class which satisfies an integral Popov’s-type inequality. This problem statement allows
the study of the conditions guaranteeing the robust stability properties under a variety of the
controllers designed for the controlled system and controller disturbances. In this way, set of robust
hyperstability and asymptotic hyperstability of the closed-loop system are given based on the fact
that the input-output energy of the feed-forward controlled system is positive and bounded for all
time and any given initial conditions and controls satisfying Popov’s inequality. The importance of
those hyperstability and asymptotic hyperstability properties rely on the fact that they are related
to global closed-loop stability, or respectively, global closed-loop asymptotic stability of the same
uncontrolled feed-forward dynamics subject to a great number of controllers under the only condition
that that they satisfy such a Popov’s-type inequality. It is well-known the relevance of vaccination
and treatment controls for Public Health Management at the levels of prevention and healing.
Therefore, two application examples concerning the linearization of known epidemic models and
their appropriate vaccination and/or treatment controls on the susceptible and infectious, respectively,
are discussed in detail with the main objective in mind of being able of achieving a fast convergence
of the state- trajectory solutions to the disease- free equilibrium points under a wide class of control
laws under deviations of the equilibrium amounts of such populations.

Keywords: Bernouilli; epidemic models; hyperstabily; input-output energy; passivity; positive
realness; vaccination controls; treatment controls

1. Introduction

Studies to design controllers to improve the basic properties of dynamic systems is very important
in theoretical studies and in many industrial applications as well as in the study of biological systems
and epidemic models under appropriate controls. In particular, all those related models have to
be positive in the sense that the solution trajectory cannot take negative values at any time under
non-negative initial conditions. For instance, to control the evolution of species in fisheries or to
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implement feedback vaccination or treatment reasonable techniques on epidemic models which are
used to describe infectious diseases affecting to humans, cattle or plants. See, for instance, [1–3]
and some references therein. It turns out that as models fix better the real dynamics which is
tried to describe, more sophisticated tools need to be invoked, like, for instance, nonlinearities of
several forms: saturations and dead-zones in physical problems (for instance, the description of
combined effects of distinct equilibrium points and the qualitative dynamics of controlled tunnel
diodes), quadratic terms, for instance, when describing the infection transmission in epidemic models,
or when controlling electrical machinery under jointly non-constant current and voltage. This need
of considering nonlinearities overlapped with the basic either linear of linearized dynamics leads to
the use of formal absolute stability results for actuator non-linearities belonging to predefined sectors.
The existing related background literature is abundant. See, for instance, [4] and references therein.
A further step towards a robust controller synthesis is to take into account that the nonlinearities
might be also eventually time-varying and that the closed-loop stabilization should be achieved
under a certain tolerance to parametrical or structural variations of the controller due, for instance,
to ageing of condition changing failures or to construction component dispersion in some relevant
parameters. In this context, it has been formulated the hyperstability/asymptotic hyperstability theory
which guarantee global stabilization and global asymptotic stabilization for a wide class of controllers
provided they satisfy a Popov’s-type integral inequality which is, in fact, a passivity condition of
the class of admissible controllers. See, for instance [5–12] as well as some of the references therein.
It can also be pointed out that a wide class of existing results on non-linear stability and stabilization
synthesis tools, c.f. [13–18], can be described in a unified manner under the hyperstablity and passivity
theories, [19–21], which are more general. See also [22–25] and references therein for further theoretical
and application work of stability, robust stability and hyperstability. It can be pointed out that if a
system is described by a positive real transfer functions then its input–output energy defined as the
time integral of the input-output product is non-negative under zero initial conditions for any time
interval. It can be also pointed out that the theory referred to has not been tried previously for the
design of a wide class of non-linear time varying feedback controls for model-based epidemics analysis.

This paper studies the hyperstability and the asymptotic hyperstability of a single-input
single-output controlled dynamic systems whose feed-forward input-output dynamics is nonlinear
and eventually time-varying consisting of a linear nominal part, a linear incremental perturbed
part and a nonlinear and eventually time-varying one subject to a known upper-bounding growing
structure. The upper- bounding function consists of weighting additive terms of the absolute values
of the measured input, output and input-output product. The nominal linear part is described
by a positive real transfer function while the linear perturbation is defined by a stable transfer
function. The contribution of the non-nominal part and nonlinear disturbances is compensated by
a critical value of the direct input- output interconnection gain. The nonlinear and time-varying
disturbance is, in general, unstructured but it is upper-bounded by the combination of three additive
absolute terms depending on the input, output and input-output product, respectively. The non-linear
time-varying feedback controller is any member belonging to a general class which satisfies an integral
Popov’s-type time-integral inequality. The closed-loop system is guaranteed to be either hyperstable
or asymptotically hyperstable under the above class on controllers which includes a wised class of
members. Section 2 investigates the positivity and the strict positivity for all time of the input-output
energy measure of the feed-forward system irrespective of the control law, if any. The obtained
conditions are based on either the positive realness or on the strict positive realness of the nominal
transfer function provided that the value of the input-output direct interconnection gain exceeds a
certain positive threshold. Such a threshold guarantees that such positivity properties are kept under
the linear and non-linear uncertainties of such a feed-forward block. Section 3 incorporates non-linear
and eventually time-varying control feedback laws which are subject to Popov’s-type inequalities,
that is the controllers belong to a passive class. This fact guarantees that the above positivity of the
input-output energy of the open-loop system is also finitely uniformly bounded for all time. The final
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conclusion is that, for the whole number of admissible controllers within the above class, all the
relevant variables (that is, controls and state and measured variables) are bounded for all time if the
transfer function of the linear part of the feed-forward device is positive real so that the closed-loop
system is hyperstable. It has to be pointed out that the hyperstability property refers to a whole class
of controllers, not just to an individual one, so that any member of the class is valid to achieve the
suitable property. If it is strongly strictly positive real subject to a minimum positive threshold of the
direct-input output-interconnection gain then those signals furthermore converge asymptotically to
zero as time tends to infinity. Section 4 discusses two examples related to linearized epidemic models
around the disease-free equilibrium point subject to feedback vaccination and/or treatment control
laws involving feedback information to the light of the above formalism. The so-called incremental
vaccination control law satisfies a very general Popov’s-type time-integral inequality. Accordingly to
the previous formalism presented and developed in the preceding sections, the vaccination and/ or
treatment controllers belong to wide classes of controllers satisfying Popov’s type inequalities in such a
way that any member of those classes is useful to achieve the asymptotic stabilization of the incremental
dynamics around the disease-free equilibrium point. In this context, the incremental controls and
the incremental state and output variables related to the nominal situation converge asymptotically
to zero as time tends to infinity. This statement allows to accommodate the implementation of the
control laws to the management possibilities like availability, disposal, distribution or costs of the
vaccines. Finally, conclusions end the paper. The main contributions of the paper are basically the
following ones: (1) to extend the classical hyperstability theory to the presence of unmodeled, or not
very precisely parameterized linear and nonlinear contributions to the dynamics, (2) to apply the
obtained results to epidemic models under vaccination and treatment incremental controls under a
wide class of asymptotically hyperstable controllers, (3) to use those control designs to annihilate the
deviations of the steady disease-free equilibrium state due to those kinds of disturbances or unmodeled
dynamics and/or changes in the equilibrium population levels. The above concerns have not been
previously explored in the existing background literature on the subject. The theoretical application to
epidemic models is made basically to the incremental linearized dynamics around the disease- free
equilibrium point. This allows the treatability of the formal problem and to take actions against the
disease propagation earlier enough when the potential disturbances appear. It is foreseen to extend the
results to global asymptotic hyperstability results to the whole nonlinear epidemic models.

Notation

� The superscript T stands for the transposes of vectors and matrices,
� In is the n-th identity matrix,
� ∂(N(s)) is the degree of the polynomial N(s),

� i =
√
−1 is the complex imaginary unit,

� the transfer function G(s) is positive real, denoted by G(s) ∈ {PR}, if Re G(s) ≥ 0 for all Re s > 0,
� the transfer function G(s) is strictly positive real, denoted by G(s) ∈ {SPR}, if for all Re s ≥ 0
� the transfer function G(s) is strongly strictly positive real, denoted by G(s) ∈ {SSPR}, if G(s) ∈

{SPR} and lim
Re s→∞

Re G(s) > 0,

� L2 ≡ L2[0 ,∞), L∞ ≡ L∞[0,∞), C ≡ C[0,∞), C(1)
≡ C(1)[0,∞) and PC ≡ PC[0,∞) are the

sets of square-integrable, bounded, continuous, continuous time-differentiable and piece-wise
continuous real functions on [0, ∞), respectively. If a superscript n ≥ 2 is added to those sets,
say Ln

2 ≡ Ln
2 [0,∞), then the involved functions elements are real n-vector functions,

� f ∈ L∞a, f ∈ Ca and f ∈ PCa if, respectively, ( f − f0) ∈ L∞, ( f − f0) ∈ C and ( f − f0) ∈ PC,
where f0 : R0+ → R0+ is some real function of zero support, RH∞ is the set of rational functions
with finite H∞ norm. For instance, any strictly stable realizable transfer function belongs to RH∞,

� a real n-vector v is nonnegative, referred to as v ∈ Rn
0+ or as v�0, if all its components are

non-negative. It is positive, referred to as v(, 0) ∈ Rn
0+ or as v � 0, if it is non-negative and at
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least one of its components is positive. It is strictly positive, referred to as v ∈ Rn
+ or as v �� 0,

if all its components are positive. Note that v �� 0⇒ v � 0⇒ v�0 . A real n ×m–matrix A is
nonnegative, referred to as A ∈ Rn×m

0+ or as A�0, if all its entries are non-negative. It is positive,
referred to as A(, 0) ∈ Rn×m

0+ or as A � 0, if it is non-negative and at least one of its entries is
positive. It is strictly positive, referred to as A ∈ Rn×m

+ or as A �� 0, if all its entries are positive.
Note that A �� 0⇒ A � 0⇒ A�0 ,

� a dynamic system is non-negative (positive) if all the components of their state and output
trajectory solutions are non-negative (positive) for all time under non-negative initial conditions
and everywhere non-negative controls. A dynamic system is externally non-negative (externally
positive) if all the components of its output trajectory solutions are externally non-negative
(externally positive) for all time under null initial conditions and everywhere non-negative controls,

� Mn×n
E is the set of square real Metzler matrices A =

(
ai j

)
of n-th order; i.e., with all their off-diagonal

entries being non-negative.

2. Positivity of the Input-Output Energy for Unforced and Forced Open-Loop-Controlled Systems

Consider the nonlinear time-varying differential system:

y(t) = G(D)u(t) +η(y(t), u(t))
=

(
G0(D) + d + G̃(D)

)
u(y(t)) + η(y(t), u(y(t)))

(1)

where u(t) and y(t) are the input and the output, respectively, D = d/dt is the time-derivative

operator, the direct input-output interconnection gain is d ≥ 0 and the rational functions G0(D) =
N0(D)
M0(D)

and G(D) =
N(D)
M(D)

have numerator and denominator polynomials N(D) = N0(D) + dM0(D); M(D) =

M0(D) subject to the degree constraints ∂M0(D) > ∂N0(D), ∂M̃(D) > ∂Ñ(D), namely, G0(D) and G̃(D)

are strictly proper, and ∂M(D) = ∂M0(D) = ∂N(D) if d > 0. Then, G(D) =
N(D)
D(D)

=
N0(D)+dD0(D)

D(D)
.

Note that G(s) and G0(s) are the transfer functions which model the linear part, where “s” is the Laplace
transform argument which is formally identical to the time-derivative operator D = d/dt. In particular,
G0(s) and G1(s) are the nominal transfer functions excluding and including the direct input-output
interconnection gain d and excluding the (non-nominal) linear parametrical contributed disturbances
given by G̃(s). Note that the direct input-output interconnection gain d is a scalar and G̃(s) describes
the unmodeled linear dynamics in such a way that the current linear dynamics can be of higher-order
than the nominal one. The associated Fourier transforms, referred to as the corresponding frequency
responses, if they exist are G(iω) and G0(iω), being got are by taking s = iω in the corresponding
transfer functions, where ω = 2π f is the angular frequency (given typically, in rad./sec.) and f is the
oscillation frequency (given typically in Hertz, that is, cycles per second). A state-space realization
of G0(s) is R0 =

(
A0, b0, cT

0

)
, such that of G1(s) = G(s) − G̃(D) = G0(s) + d = cT

0 (sIn −A0)b0 + d,
where A0 ∈ Rn×n, b0, c0 ∈ Rn and d ∈ R are the system matrix, or matrix of dynamics, control and
output matrices, and input-output interconnection gain respectively. A state-space realization of the
transfer function G1(s) in (1) is R =

(
A0, b0, cT

0 , d
)

of state vector x0(t) ∈ Rn0 , n0 being the order of A0

equalizing the degree of D0(s) and D(s) and also equalizing and number of poles of G(s) excluding
possible accounting of zero-pole cancellations, if any. The state and output solution trajectories of the
linear system described by G(s) are solution trajectories, under zero initial conditions Diy0(0) = 0
for i = 0, 1, . . . , n− 1 with D0 = 1, of the linear dynamic system of nth-order (the number of poles of
G0(s)) and state x0(t):

.
x0(t) = A0x(t) + b0u(t); y0(t) = cT

0 x(t) + du(t)

with x0(0) = 0 (corresponding to null initial conditions Diy(0) = 0 for i = 0, 1, . . . , n − 1) with
x0 : [0,∞)→ Rn and y0 : [0,∞)→ R being the state and output trajectory solutions for a control input
u : [0,∞)→ R when the initial conditions are zero which are sometimes referred to as the zero-state
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and zero-output responses. Thus, the state and output solution trajectories of the linearized nominal
Equation (1), associated with the transfer function G1(s), when x0(0) = x00, G̃(s) = 0 and η ≡ 0 are:

x0(t) = eA0tx00 +
∫ t

0 eA0(t−τ)b0u(τ)dτ; y0(t) = cT
0 eA0tx00 +

∫ t
0 cT

0 eA0(t−τ)b0u(τ)dτ+
du(t); ∀t ∈ R0+

Similar considerations can be given for a state-space realization of G0(s). If the contributions of
the eventually non-null linear and nonlinear perturbations are included then the state and output
trajectory solutions are:

x(t) = eAtx0 +

∫ t

0
eA(t−τ)[bu(τ) + η(y(τ), u(y(τ)))]dτ; ∀t ∈ R0+ (2)

y(t) − η(y(t), u(y(t))) = cTeAtx0 +

∫ t

0
cTeA(t−τ)bu(τ)dτ+ du(t); ∀t ∈ R0+

with x(0) = x0, where x(t) ∈ Rn, n > n0 being the total added number of poles of G(s) and G̃(s) without
excluding the accounting of potential zero-pole cancellations, if any, and R = (A, b, c, d) is a state-space
realization of G(s) + G̃(s) = G0(s) + G̃(s) + d. If the system (1) is controlled under a nonlinear output-
feedback control then the nonlinear time-varying control law will be assumed in Section 3 to be of
class Φ0∗:

u(t) = u(y(t), t) = −φ(y(t), t) (3)

where φ ∈ Φ0∗, with Φ0∗ = ∪γ∈R0+Φ0γ being the class of hyperstable controllers, where

Φ0γ =

{
φ : R0+ ×R0+ → R

∣∣∣∣∣∣
∫ t

0
φ(y(τ), τ)y(τ)dτ ≥ −γ > −∞;∀t ∈ R0+

}
; γ ∈ R0+ (4)

Note that if φ ∈ Φ0∗ (that is, φ ∈ Φ0γ for some γ ∈ R0+) then lim in f
t→∞

∫ t
0 φ(y(τ), τ)y(τ)dτ > −∞.

The time-integral defining the set Φ0γ is known as Popov’s inequality. Let the Fourier transforms of
y(t) and u(t) be Y(iω) = F(y(t)) =

∫
∞

−∞
y(t)e−iωtdt and U(iω) = F(u(t)) with i =

√
−1 is the complex

imaginary unit. Let f : R→ R . Therefore, if the input is absolutely integrable then the zero state
output is absolutely integrable as well since G(s) = G0(s) + d is stable since G0(s) ∈ {PR} implies
that G(s) ∈ {PR} where “s” is the Laplace transform argument. Note that for the existence of the
Fourier transform of a real function it suffices that it be absolutely integrable on R. The truncation
of f (τ) in the interval [0, t] is defined for any t ∈ R0+ as ft(τ) = f (τ) for τ ∈ [0, t] and ft(τ) = 0 for
τ ∈ (−∞, 0) ∪ (0, ∞). As a result of the sufficiency of the absolute integrability for the existence of
Fourier transforms, the Fourier transform Ft(iω) of the truncated function ft(τ) on [0, t] always exist
for any finite t since

∫ t
0

∣∣∣ f (τ)∣∣∣dτ = ∫
∞

−∞

∣∣∣ ft(τ)∣∣∣dτ. Thus, the Fourier transforms of the input and output
on any finite time interval always exist since those of the corresponding truncated functions always
exist. The input-output energy in the interval [t1, t2] is defined as E(t1, t2) =

∫ t2

t1
y(τ)u(τ)dτ.

Assumptions

A1.
∣∣∣η(t)∣∣∣ ≤ k1

∣∣∣u(t)∣∣∣+ k2
∣∣∣y(t)∣∣∣+ k3

∣∣∣y(t)u(t)∣∣∣ for some ki ∈ R+ (i = 1, 2, 3)

A2. G0(s) ∈ {PR} and sup
ω∈R0+

∣∣∣∣G̃(iω)
∣∣∣∣ ≤MG̃ < ∞

A3. ∞ > d > max
ω∈R0+

∣∣∣∣G̃(iω)
∣∣∣∣+ k1 − min

ω∈R0+
Re G0(iω) ≥ 0

A4. sup
0≤τ≤t

∣∣∣u(τ)∣∣∣ ≤ 1−k2
k3

; ∀t ∈ R0+ if k3 , 0 and k2 < 1.

The following result relies on the positivity on any positive time interval of non-zero measure
of the input-output energy E(0, t) =

∫ t
0 y(τ)u(τ)dτ of the controlled or uncontrolled system on the



Int. J. Environ. Res. Public Health 2019, 16, 2689 6 of 23

time interval [0, t] under the above assumptions. It is independent of the system being in open-loop
(i.e., uncontrolled with u ≡ 0) or of the used controller if the controlled system is subject to feedback.
Its proof is based on expressing equivalently the input-output energy in the frequency domain for any
finite time-interval by using Parseval’s theorem for the Fourier transform of the truncated input and
output on such a finite interval.

Theorem 1. If Assumptions A1–A4 hold then:

E(0, t) ≥

(
d+ min

ω∈R0+
Re G0(iω)− max

ω∈R0+

∣∣∣∣Re G̃(iω)
∣∣∣∣−k1

) ∫ t
0 u2(τ)dτ(

1+k2+k3 sup
0≤τ≤t
|u(τ)|

) >

> 0

for any given t ∈ R+ under zero initial conditions if u(t) is nonzero on some time interval of finite measure of
[0, t]. If u ≡ 0, or if, more generally, it has a support of zero measure, then E(0, t) ≥ 0; ∀t ∈ R0+.

In particular, if η ≡ 0, then:

E(0, t) ≥
(
d + min

ω∈R0+
Re G0(iω) − max

ω∈R0+

∣∣∣∣Re G̃(iω)
∣∣∣∣) ∫ t

0
u2(τ)dτ > 0

under zero initial conditions if u(t) is nonzero on some time interval of finite measure of [0, t] for a given t > 0.

Proof. The input-output energy under zero initial conditions, i.e., the zero-sate input output- energy,
that is that associated with zero initial conditions x0 = 0 of (1)) is:

E(0, t) = Ez.s.(0, t) =
∫ t

0 y(τ)u(τ)dτ

=
∫ t

0

(
G0(D) + d + G̃(D)

)
u2(τ)dτ+

∫ t
0 η(y(τ), u(y(τ)))u(τ)dτ

=
∫
∞

−∞
yt(τ)ut(τ)dτ =

∫
∞

−∞
yt(τ)u(τ)dτ =

∫
∞

−∞
y(τ)ut(τ)dτ

= 1
2π

∫
∞

−∞

(
G0(iω) + d + G̃(iω)

)
Ut(iω)Ut(−iω)dω

+
∫ t

0 η(y(τ), u(y(τ)))u(τ)dτ

(5)

after using the truncated functions and Parseval’s theorem. From Assumptions A1 and A2 and,
since the hodograph G0(iω) has the symmetry and anti-symmetry properties: Re G0(iω) = Re G0(−iω),
Re G̃(iω) = Re G̃(−iω), Im G0(iω) = −Im G0(−iω) and Im G̃(iω) = Im G̃(−iω); ∀ω ∈ R, one gets:

E(0, t)

≥

∣∣∣ 1
2π

∣∣∣∫ ∞
−∞

(G0(iω) + d)Ut(iω)Ut(−iω)dω
∣∣∣−∣∣∣∣ 1

2π

∫
∞

−∞
G̃(iω)Ut(iω)Ut(−iω)dω

+k1
∫ t

0 u2(τ)dτ+ k2

∣∣∣∣∫ t
0 u(τ)y(τ)dτ

∣∣∣∣+ k3

∣∣∣∣∫ t
0 y(τ)u2(τ)dτ

∣∣∣∣∣∣∣∣
≥

∣∣∣∣∣∣ 1
2π

∣∣∣∣∣∣∫ ∞−∞
(
d

+ min
ω∈R0+

Re G0(iω)
)
Ut(iω)Ut(−iω)dω

∣∣∣∣∣∣−
∣∣∣∣∣∣ 1
2π

∫
∞

−∞
G̃(iω)Ut(iω)Ut(−iω)dω

+k1
∫ t

0 u2(τ)dτ+ k2

∣∣∣∣∫ t
0 u(τ)y(τ)dτ

∣∣∣∣+ k3

∣∣∣∣∫ t
0 y(τ)u2(τ)dτ

∣∣∣∣∣∣∣∣
≥

(
d + min

ω∈R0+
Re G0(iω) − max

ω∈R0+

∣∣∣∣Re G̃(iω)
∣∣∣∣− k1

) ∫ t
0 u2(τ)dτ− k2

∣∣∣∣∫ t
0 u(τ)y(τ)dτ

∣∣∣∣
−k3

∣∣∣∣∫ t
0 y(τ)u(τ)dτ

∣∣∣∣∣∣ sup
0≤τ≤t

∣∣∣u(τ)∣∣∣
=

(
d + min

ω∈R0+
Re G0(iω) − max

ω∈R0+

∣∣∣∣Re G̃(iω)
∣∣∣∣− k1

) ∫ t
0 u2(τ)dτ

−

(
k2 + k3 sup

0≤τ≤t

∣∣∣u(τ)∣∣∣)∣∣∣E(0, t)
∣∣∣

(6)
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since min
ω∈R0+

Re G0(iω) ≥ 0 from Assumption A2. Then, consider two cases for each t ∈ R0+, namely,

Case a: E(0, t) =
∣∣∣E(0, t)

∣∣∣ ≥ 0 for a given t ∈ R+ under any nonzero initial conditions. Then:(
1 + k2 + k3 sup

0≤τ≤t

∣∣∣u(τ)∣∣∣)E(0, t)

≥

(
d + min

ω∈R0+
Re G0(iω) − max

ω∈R0+

∣∣∣∣Re G̃(iω)
∣∣∣∣− k1

) ∫ t
0 u2(τ)dτ

(7)

with E(0, 0) = 0. Thus, by Assumption A3, E(0, t) > 0 for such a t ∈ R+.
Case b: E(0, t) = −

∣∣∣E(0, t)
∣∣∣ < 0 for a given t ∈ R+ if u(t) is everywhere non-negative on R0+ and

non-zero on some time interval of finite measure of [0, t]. Then, instead of (7), one gets from (6):

−

∣∣∣E(0, t)
∣∣∣ ≥ (

d + min
ω∈R0+

Re G0(iω) − max
ω∈R0+

∣∣∣∣G̃(iω)
∣∣∣∣− k1

) ∫ t
0 u2(τ)dτ

−

(
k2 + k3 sup

0≤τ≤t

∣∣∣u(τ)∣∣∣)∣∣∣E(0, t)
∣∣∣

so that: (
k2 + k3 sup

0≤τ≤t

∣∣∣u(τ)∣∣∣− 1
)∣∣∣E(0, t)

∣∣∣
≥

(
d + min

ω∈R0+
Re G0(iω) − max

ω∈R0+

∣∣∣∣G̃(iω)
∣∣∣∣− k1

) ∫ t
0 u2(τ)dτ > 0

(8)

if u(t) is everywhere non-negative on R0+ and non-zero on some time interval of finite measure of
[0, t], Thus, from Assumptions A3 and A4, since

∣∣∣E(0, t)
∣∣∣ ≥ 0 for all t ∈ R0+, the left-hand- side of (8) is

negative so that Equation (8) yields the contradiction 0 < 0. Thus Case b is impossible and E(0, t) > 0,
subject to (7), for all t ∈ R+. On the other hand, if η ≡ 0 then the corresponding particular part of the
proof follows by taking k1 = k2 = k3 = 0. The proof is complete. �

Remark 1. Note that if G0(s) ∈ {PR} then it is analytical in Re s ≥ 0, i.e., stable, that is, with all its poles in
Re s ≤ 0 and of relative degree (i.e., the pole-zero excess number) +1, 0,−1 and any critically stable pole of
G(s) (i.e., such that Re s = 0), if any, is single and with associated positive residue. If G0(s) ∈ {SPR} then it is
analytical in Re s > 0, i.e., strictly stable, that is, with all its poles in Re s < 0.

Remark 2. If G0(s) ∈ {PR} and G−1
0 (s) are both strictly stable (i.e., G0(s) is positive real, it has all its poles

and zeros in Re s < 0) and Assumption A3 holds with sufficiently large d > 0 then G(s) ∈ {SSPR}, and it has
zero relative degree.

Since a transfer function which is strongly strictly positive real is also strictly positive real and
then positive real as a result, the following corollary to Theorem 1 is obvious since if G0(s) ∈ {SPR}
then it is strictly stable:

Corollary 1. Theorem 1 holds, in particular, if Assumptions A1, A3 and A4 hold and, furthermore, the subsequent
assumption also holds:

A5. G0(s) ∈ {SPR} and G̃(s) is strictly stable with sup
ω∈R0+

∣∣∣∣G̃(iω)
∣∣∣∣ ≤MG̃ < ∞.

Remark 3. Note that Assumption A5 is guaranteed under Assumption A6 below:

A6. G0(s) ∈ {SSPR} and G̃(s) is strictly stable with sup
ω∈R0+

∣∣∣∣G̃(iω)
∣∣∣∣ ≤MG̃ < ∞.
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Remark 4. Note that if G0(s) < {PR} but it is still stable, i.e., all its poles are in Re s ≤ 0, then Theorem 1 can
be extended under a modified Assumption A2 and a more restrictive modified Assumption A3 with a larger value
of the input-output interconnection gain d as follows:

Assumptions

A2’. G0(s) and G̃(s) are stable and they have no poles at the origin

A3’. ∞ > d > k1 + max
ω∈R0+

∣∣∣∣Re
(
G0(iω) + G̃(iω)

)∣∣∣∣ ≥ 0

Theorem 2. If Assumptions A1, A2’, A3’ and A4 hold then:

E(0, t) ≥

(
d− max

ω∈R0+

∣∣∣∣Re
(
G0(iω) + G̃(iω)

)∣∣∣∣− k1

) ∫ t
0 u2(τ)dτ(

1 + k2 + k3 sup
0≤τ≤t

∣∣∣u(τ)∣∣∣) > 0

for any given t > 0 under zero initial conditions if u(t) is nonzero on some time interval of finite measure of
[0, t]. If u ≡ 0 for all time then E(0, t) ≥ 0; ∀t ∈ R0+.

Outline of Proof. It is similar to that of Theorem 1 with the proposed changes in the assumptions
which lead to direct modifications in the appropriate equations of the proof by noting that(

1− k2 − k3 sup
0≤τ≤t

∣∣∣u(τ)∣∣∣)E(0, t) ≥
(
d + min

ω∈R0+
Re G0(iω) − max

ω∈R0+

∣∣∣∣ReG̃(iω)
∣∣∣∣− k1

) ∫ t

0
u2(τ)dτ.

�

Remark 5. Note that Assumption A3 requires that
∣∣∣∣G̃(iω)

∣∣∣∣ be small enough and, in particular, its resonance
peak has to satisfy the constraints:

max
(

max
ω∈R0+

∣∣∣∣Re G̃(iω)
∣∣∣∣, min
ω∈R0+

Re G0(iω) − k1

)
≤ max
ω∈R0+

∣∣∣∣G̃(iω)
∣∣∣∣ < d + min

ω∈R0+
Re G0(iω) − k1

Remark 6. Note that if G0(s) ∈ {SPR} then Assumption A2 holds, i.e., G0(s) ∈ {PR} and Theorem 1 still holds
under Assumptions A1–A4 with this more restrictive condition of Assumption A2

Note that Theorem 1 establishes that the zero-state input-output energy on a nonzero finite time
interval [0, t] is positive under Assumption A1–A4 if the input is nonzero on some subinterval of
nonzero measure. The following result relies on weakening Assumption A4 if the input converges to
zero and it is bounded on [0,∞) concluding in the non-negativity of the input-output energy on any
time interval [t1, t2] of nonzero measure.

Theorem 3. If Assumptions A1–A3 hold with k2 < 1, u : R0+ → R is everywhere bounded on its definition
domain, i.e., u ∈ L∞, and u(t)→ 0 as t→∞ then:

Ez.s.(t1, t) ≥

(
d + min

ω∈R0+
Re G0(iω) − max

ω∈R0+

∣∣∣∣Re G̃(iω)
∣∣∣∣− k1

) ∫ t
0 u2(τ)dτ(

1 + k2 + k3 sup
0≤τ≤t

∣∣∣u(τ)∣∣∣) ≥ 0

for any t > t1 for any given t1 ∈ R0+. The result holds also if Assumptions A1–A3 hold with k2 < 1 and
u ∈ PC∩ L2.
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Proof. Assume that the initial conditions are neglected. Then, the zero-state input-output energy on
the time interval of nonzero measure [t1, t] for any given t1 ∈ R0+ is after generalizing (5):

Ez.s.(t1, t) =
∫ t

t1
y(τ)u(τ)dτ =

∫
∞

−∞
y(τ)u[t1,t)(τ)dτ

=
∫ t

t1

(
G0(D) + d + G̃(D)

)
u2(τ)dτ+

∫ t
t1
η(y(τ), u(y(τ)))u(τ)dτ

= 1
2π

∫
∞

−∞

(
G0(iω) + d + G̃(iω)

)
U[t1,t)(iω)U[t1,t)(−iω)dω

+
∫ t

t1
η(y(τ), u(y(τ)))u(τ)dτ

(9)

where the truncation f[t1,t) = f (t); ∀t ∈ [t1, t] and f (t) = 0 for t < [t1, t] and any given t1 ∈ R0+ is used.
Since k2 < 1 and u : R0+ → R is bounded with u(t)→ 0 as t→∞ then there exists a finite t∗ ∈ R0+

such that sup
t∗≤τ<∞

∣∣∣u(τ)∣∣∣ < 1−k2
k3

. Then one gets that:

(
k2 + k3 sup

t∗≤τ≤t

∣∣∣u(τ)∣∣∣− 1
)∣∣∣E(0, t)

∣∣∣
≥

(
d + min

ω∈R0+
Re G0(iω) − max

ω∈R0+

∣∣∣∣Re G̃(iω)
∣∣∣∣− k1

) ∫ t
t∗ u2(τ)dτ > 0

(10)

cannot hold for any t ∈ [t∗,∞) (see Case b in the proof of Theorem 1), and then:(
1 + k2 + k3 sup

t∗≤τ≤t

∣∣∣u(τ)∣∣∣)E(0, t)

≥

(
d + min

ω∈R0+
Re G0(iω) − max

ω∈R0+

∣∣∣∣Re G̃(iω)
∣∣∣∣− k1

) ∫ t
t∗ u2(τ)dτ

(11)

(see Case a in the proof of Theorem 1). On the other hand, note that if u ∈ PC∩ L2 then u ∈ L∞ and
u(t)→ 0 as t→∞ and the result still holds. �

The subsequent results establish that if the linear part of the system is externally positive
then the positivity of the input-output energy through time is kept even under any non-negative
initial conditions.

Corollary 2. If Assumptions A1–A4 hold and, in addition, a state-space realization R = (A, b, c, d) of
G(s) + G̃(s) is externally positive (or, alternatively, a state-space realization of G(s) + G̃(s) − d is externally
positive and d ≥ 0) and η : R0+ ×R0+ × [0, t)→ R0+ , then E(0, t) ≥ 0; ∀t ∈ R+ provided that x0�0 and
u(t) ≥ 0; ∀t ∈ R0+.

Proof. It follows that the input-output energy E(0, t) on [0, t] consists of its jointly unforced contribution
Eu(0, t) and its forced contribution E f (0, t) corresponding to zero initial conditions:

E(0, t) =
∫ t

0
y(τ)u(τ)dτ = Eu(0, t) + E f (0, t); ∀t ∈ R0+ (12)

where:

Eu(0, t) = cT
∫ t

0
eAτx0u(τ)dτ; ∀t ∈ R0+ (13)

E f (0, t) =cT
∫ t

0

∫ τ

0
eA(τ−σ)[bu(σ) + η(y(σ), u(y(σ)))]u(σ)dσdτ+ d

∫ t

0
u2(τ)dτ; ∀t ∈ R0+ (14)

�

Note that Eu(0, t) ≥ 0 and E f (0, t) ≥ 0, ∀t ∈ R0+ from Theorem 1for any nonzero input on
some subinterval of [0, t] of nonzero measure since η : R0+ ×R0+ × [0, t)→ R0+ and the state-space
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realization R = (A, b, c, d) of the transfer function G(s) + G̃(s) is externally positive what implies that
cTeAtb + d � 0; ∀t ∈ R0+.

Corollary 3. If Assumptions A1, A2’, A3’and A4 hold and, in addition, a state-space realization R = (A, b, c, d)
of G(s) + G̃(s) is externally positive (or, alternatively, a state-space realization of G(s) + G̃(s) − d is externally
positive and d ≥ 0) and η : R0+ ×R0+ × [0, t)→ R0+ then the system is externally positive then E(0, t) ≥ 0;
∀t ∈ R+ under any initial output conditions x(0) = x0�0 provided that u(t) ≥ 0; ∀t ∈ R0+.

Remark 7. Note that Assumption A2’ is satisfied in particular if G0(s) and G̃(s)are stable with no poles at the
origin which guarantees that

∣∣∣∣Re
(
G0(iω) + G̃(iω)

)∣∣∣∣ is finite and sup
ω∈R0+

∣∣∣∣G̃(iω)
∣∣∣∣ ≤MG̃ < ∞. However, the key

constraint to ensure the input-output energy positivity is not the stability of the transfer functions but the
absence of poles at the origin of those transfer functions. The following theorem states results on boundedness of
the relevant signals and global stability of the open-loop system; i.e., in the case when the control is not generated
via the feedback of the form (3) and (4):

Theorem 4. The following properties hold:
(i) Assume that sup

∣∣∣u(t)∣∣∣
0≤t<∞

≤ mu < 1−k2
k3

and that G(s) and G̃(s) are stable transfer functions.

If u : R0+ → R is, furthermore, square-integrable, satisfying
∫
∞

0 u2(τ)dτ ≤M2
u < ∞, then y(t) is uniformly

bounded on R0+ for any given initial conditions according to:∣∣∣y(t)∣∣∣ ≤ 1
1−k2−k3mu

×

(
√

K0
(√

K0
∣∣∣cT

0 x00
∣∣∣+ ∣∣∣cT

0 b0
∣∣∣Mu

)
+

√
K̃
(√

K̃
∣∣∣̃cTx̃00

∣∣∣+ ∣∣∣∣̃cTb̃
∣∣∣∣Mu

)
+ (k1 + d)mu

)
;∀t ∈ R0+

where R =
(
cT, A, b, d

)
, R0 =

(
cT

0 , A0, b0, d
)

and R̃ =
(̃
cT, Ã, b̃

)
are state space realizations of G(s), G0(s) and

G̃(s), respectively, and ‖eA0t
‖ ≤ K0e−ρ0t = K0 and ‖eÃt

‖ ≤ K̃e−ρ̃t = K̃ for some real constants K0 ≥ 1, K̃ ≥ 1,
ρ0 = ρ̃ = 0 and; ∀t ∈ R0+ and x00 = x0(0) ∈ Rn0 and x̃00 = x̃0(0) ∈ Rñ0 are the respective initial states of R
and R0.

(ii) Assume that sup
∣∣∣u(t)∣∣∣

0≤t<∞
≤ mu <

1−k2
k3

and that G(s) and G̃(s) are strictly stable transfer functions.

Then, y(t) is uniformly bounded on R0+ for any given finite initial conditions according to:∣∣∣y(t)∣∣∣ ≤ 1
1−k2−k3mu

(∣∣∣cT
0 eA0tx00

∣∣∣+ ∣∣∣∣̃cTeÃtx̃00

∣∣∣∣+ (∣∣∣cT
0 b0

∣∣∣K0
ρ0

+
∣∣∣∣̃cTb̃

∣∣∣∣ K̃
ρ̃
+ (k1 + d)

)
mu

)
≤

1
1−k2−k3mu

(
K0

(∣∣∣cT
0 x00

∣∣∣+ ∣∣∣cT
0 b0

∣∣∣mu
ρ0

)
+ K̃

(∣∣∣̃cTx̃00
∣∣∣+ ∣∣∣∣̃cTb̃

∣∣∣∣mu
ρ̃

)
+ (k1 + d)mu

)
; ∀t ∈ R0+

lim sup
t→∞|y(t)|(|cT

0 b0 |
K0
ρ0

+|̃cT b̃| K̃
ρ̃
+(k1+d)) mu

1−k2−k3mu

(iii) y(t) is uniformly bounded on R0+ for any given finite initial conditions if d = k1 = k3 = 0 and
k2 < 1 for any control u ∈ L2 if G(s) = G0(s) + d and G̃(s) are strictly stable transfer functions satisfying:∣∣∣y(t)∣∣∣ ≤ 1

1−k2

(∣∣∣cT
0 eA0tx00

∣∣∣+ ∣∣∣∣̃cTeÃtx̃00

∣∣∣∣+ (∣∣∣cT
0 b0

∣∣∣K0
ρ0

+
∣∣∣∣̃cTb̃

∣∣∣∣ K̃
ρ̃

)
Mu

)
≤

1
1−k2

(
K0

(∣∣∣cT
0 x00

∣∣∣+ ∣∣∣cT
0 b0

∣∣∣Mu
ρ0

)
+ K̃

(∣∣∣̃cTx̃00
∣∣∣+ ∣∣∣∣̃cTb̃

∣∣∣∣Mu
ρ̃

))
; ∀t ∈ R0+

lim sup
t→∞|y(t)|(|cT

0 b0 |
K0
ρ0

+|̃cT b̃| K̃
ρ̃
) Mu

1−k2
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If the input is jointly uniformly bounded and square-integrable with sup
∣∣∣u(t)∣∣∣

0≤t<∞
≤ mu and

∫
∞

0 u2(τ)dτ ≤

M2
u < +∞ then an asymptotic absolute output upper-bound being irrespective of the initial conditions is:

lim sup
t→∞|y(t)|(|cT

0 b0 |
K0
ρ0

+|̃cT b̃| K̃
ρ̃
) Mu

1−k2

with Mu = max(mu, Mu). If, in addition, k3 , 0 and provided that Mu <
1−k2

k3
then

lim sup
t→∞|y(t)|(|cT

0 b0 |
K0
ρ0

+|̃cT b̃| K̃
ρ̃
) Mu

1−k2−k3Mu

(iv) If Assumption A1 holds, k2 < 1 and u ∈ L2 then
∣∣∣∣∣∣y∣∣∣− ∣∣∣η∣∣∣∣∣∣, y, η,

∣∣∣y− η∣∣∣ ∈ L2 for any finite initial
conditions. If, furthermore, G0(s) and G̃(s) are strictly stable then x ∈ Ln

2 .
(v) If Assumption A1 holds, k2 < 1 and u ∈ L2 and sup

t≥ta

∣∣∣u(t)∣∣∣ < +∞ for some finite ta ∈ R0+ then∣∣∣∣∣∣y∣∣∣− ∣∣∣η∣∣∣∣∣∣, y, η,
∣∣∣y− η∣∣∣, ‖x‖ ∈ L2 for any finite initial conditions and their supreme are bound on a connected time

interval of infinite measure. Explicitly, one has:

‖y∞‖ ≤
mu

(
‖G‖∞ + k1

)
1− k2 − k3mu

+ K1; ‖y2‖ ≤

(
‖G‖∞ + k1

)
1− k2 − k3mu

Mu + K2

for some 0 ≤ Ki = Ki(x0) < +∞; i = 1, 2, where G(s) = G(s) + G̃(s).

Proof. One gets from (1) that:∣∣∣y(t)∣∣∣ = ∣∣∣cTeAtx0
∣∣∣+ ∣∣∣∣cT

∫ t
0 eA(t−τ)bu(τ)dτ

∣∣∣∣+ ∣∣∣η(t)∣∣∣
≤

∣∣∣cTeAtx0
∣∣∣+ ∣∣∣∣cT

∫ t
0 eA(t−τ)bu(τ)dτ

∣∣∣∣+ k1
∣∣∣u(t)∣∣∣+ k2

∣∣∣y(t)∣∣∣
+ k3

∣∣∣y(t)u(t)∣∣∣
≤

∣∣∣cT
0 eA0tx00

∣∣∣+ ∣∣∣∣̃cTeÃtx̃00

∣∣∣∣+ ∣∣∣∣cT
0

∫ t
0 eA0(t−τ)b0u(τ)dτ

∣∣∣∣
+

∣∣∣∣̃cT
∫ t

0 eÃ(t−τ)̃bu(τ)dτ
∣∣∣∣+ (k1 + d)

∣∣∣u(t)∣∣∣+ k2
∣∣∣y(t)∣∣∣+ k3

∣∣∣y(t)u(t)∣∣∣
(15)

Since sup
0≤t<∞

∣∣∣u(t)∣∣∣ ≤ mu <
1−k2

k3
< ∞ and A0 and Ã are critically stable matrices then ‖eA0t

‖ ≤

K0e−ρ0t = K0 and ‖eÃt
‖ ≤ K̃e−ρ̃t = K̃ for some real constants K0 ≥ 1, K̃ ≥ 1, ρ0 = ρ̃ = 0 and;

∀t ∈ R0+, and since k2 + muk3 < 1, one gets the result after using twice in the above expression
(15) the Cauchy-Schwarz inequality for integration of a product of real square-integrable functions∫ t

0 f (τ)g(τ)dτ ≤
(∫ t

0 f 2(τ)dτ
)1/2(∫ t

0 g2(τ)dτ
)1/2

. Then, Property (i) follows directly. On the other

hand, if G(s) and G̃(s) are stable transfer functions then A0 and Ã are stability matrices, so that
‖eA0t
‖ ≤ K0e−ρ0t and ‖eÃt

‖ ≤ K̃e−ρ̃t for some real constants K0 ≥ 1, K̃ ≥ 1, ρ0 > 0 and ρ̃ > 0; ∀t ∈ R0+. If,
furthermore, the control input is uniformly bounded, but not necessarily square-integrable, subject
to sup

∣∣∣u(t)∣∣∣
0≤t<∞

≤ mu <
1−k2

k3
, one gets Property (ii) from (15). Also, if d = k1 = k3 = 0, k2 < 1 and u ∈ L2

with
∫
∞

0 u2(τ)dτ ≤ M2
u < ∞, one gets the first part of Property (iii) by using the Cauchy-Schwartz

inequality in the integrals of (15). Its last part follows directly by inspecting the limit superior when
the input is jointly uniformly bounded and square-integrable. Finally, we have to prove Properties
(iv)–(v). Note that if u ∈ L2 then

∣∣∣∣∣∣y∣∣∣− ∣∣∣η∣∣∣∣∣∣ ∈ L2 from (2). Several cases can arise “a priori” for the
square-integrability or not of y and η, namely, Case 1: η ∈ L2, y ∈ L2. The claim is proved. Case 2: η < L2

then y < L2, since otherwise
∣∣∣∣∣∣y∣∣∣− ∣∣∣η∣∣∣∣∣∣ < L2. Case 3: y < L2, then η < L2, since otherwise

∣∣∣∣∣∣y∣∣∣− ∣∣∣η∣∣∣∣∣∣ < L2.
Cases 2 and 3 are similar in the sense that both η, y < L2 if both η, y ∈ L2. On the other hand, since u ∈ L2
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either u(t)→ 0 as t→∞ except, at most, on a finite or infinite set of isolated time instants of finite
jump discontinuities t j ∈ {tk}k∈Z0+

or u(t)→ 0 as t→∞ except, at most, on a finite set of isolated time
instants of Dirac jump discontinuities or a combination of both situations can arise. We now discuss
the rebuttal of the above Case 2 by using contradiction arguments. It follows from (2) and Assumption
A1 that: ∣∣∣∣∣∣y(t)∣∣∣− ∣∣∣η(t)∣∣∣∣∣∣ ≥ (

1− k2 − k3
∣∣∣u(t)∣∣∣)∣∣∣y(t)∣∣∣− k1

∣∣∣u(t)∣∣∣
Then, there is a sequence of ordered time instants {tk}k∈Z0+

such that tk+1− tk ≥ T > 0; ∀k ∈ Z0+ such
that u(tk + τ)→ 0 as k→∞ , and 1− k2 − k3

∣∣∣u(t)∣∣∣ ≥ 1− k2 − k3εk > 0; for some {εk}k∈Z0+
(⊂ R0+)→ 0

such that
∣∣∣u(t)∣∣∣ ≤ εk = ε(tk); ∀t ∈

{
(tk, tk+1)

}
k∈Z0+

, and:

∣∣∣y(t)∣∣∣ ≤ ∣∣∣∣∣∣y(t)∣∣∣− ∣∣∣η(t)∣∣∣∣∣∣+ k1
∣∣∣u(t)∣∣∣

1− k2 − k3
∣∣∣u(t)∣∣∣ ;∀t ∈

{
(tk, tk+1)

}
k∈Z0+

In particular:

∣∣∣y(t)∣∣∣ ≤ ∣∣∣∣∣∣y(t)∣∣∣− ∣∣∣η(t)∣∣∣∣∣∣+ k1
∣∣∣u(t)∣∣∣

1− k2 − k3
∣∣∣u(t)∣∣∣ ; ∀t ∈ [tk, tk+1), ∀k ∈ Z0+

and, since u(tk + τ)→ 0 and
∣∣∣∣∣∣y(tk + τ)

∣∣∣− ∣∣∣η(tk + τ)
∣∣∣∣∣∣+ k1

∣∣∣u(tk + τ)
∣∣∣→ 0 for τ ∈ (tk, tk+1) as k→∞ ,

one has:

lim sup
τ∈(tk,tk+1), k→∞

∣∣∣y(tk + τ)
∣∣∣− ∣∣∣∣∣∣y(tk + τ)

∣∣∣− ∣∣∣η(tk + τ)
∣∣∣∣∣∣+ k1

∣∣∣u(tk + τ)
∣∣∣

1− k2 − k3
∣∣∣u(tk + τ)

∣∣∣
 = lim sup
τ∈(tk,tk+1),k→∞(|y(tk+τ)|)

(16)

so that there exists lim
τ∈(tk,tk+1),k→∞

y(tk + τ) = 0, and:

∫
∞

0 y2(τ)dτ ≤ 2
(∫
∞

0
||y(τ)|−|η(τ)||

2

(1−k2−k3|u(τ)|)
2 dτ+ k2

1

∫
∞

0
u2(τ)

(1−k2−k3|u(τ)|)
2 dτ

)
≤ 2

(∫ t0

0
||y(τ)|−|η(τ)||

2

(1−k2−k3|u(τ)|)
2 dτ+ k2

1

∫
∞

0
u2(τ)

(1−k2−k3|u(τ)|)
2 dτ

)
+ 2

(1−k2−k3ε0)
2

(∫
∞

t0

∣∣∣∣∣∣y(τ)∣∣∣− ∣∣∣η(τ)∣∣∣∣∣∣2dτ+ k2
1

∫
∞

0 u2(τ)dτ
)

≤ 2M + 2(M1 + M2) = 2
[
M + M1 +

k2
1M2

u

(1−k2−k3ε0)
2

]
< +∞

(17)

Since t0 is finite,
∣∣∣∣∣∣y∣∣∣− ∣∣∣η∣∣∣∣∣∣ ∈ L2 and u ∈ L2. Then, y, η ∈ L2 which contradicts the assumption

y, η < L2 (Case 2). Thus, Case 2 (and thus Case 3) is impossible. Since G(s) is strictly stable and
u ∈ L2 then ‖x‖ ∈ L2 for any finite x0. Property (iv) has been proved. Now, if u ∈ L∞ ∩ L2 with
‖u∞‖ = sup

∣∣∣u(t)∣∣∣
0≤t<∞

≤ mu <
1−k2

k3
then

∣∣∣∣∣∣y∣∣∣− ∣∣∣η∣∣∣∣∣∣ ∈ L∞ ∩ L2 from (2). The fact that
∣∣∣y∣∣∣, ∣∣∣η∣∣∣ ∈ L2 has been

already proved in the proof of Property (iv) since u ∈ L2 and
∣∣∣y∣∣∣, ∣∣∣η∣∣∣ ∈ L2. It has been also proved

that lim
τ∈(tk,tk+1),k→∞

y(tk + τ) = 0. Thus, y(t) is bounded for t ∈ ∪k∈Z0+(tk, tk+1). It can be unbounded at

time instants in [0, ∞) if there are impulsive controls and d > 0 but, since u ∈ L2, there is a connected
time interval of infinite finite measure [ta,∞) ⊂ ∪k∈Z0+(tk, tk+1) such that

∣∣∣y(t)∣∣∣ < +∞ for t ∈ [ta,∞),
otherwise, u < L2. From (2), u ∈ L∞ and G ∈ RH∞, where G = G + G̃ = G0 + G̃ + d, one gets also that
‖x(t)‖ < +∞ for t ∈ [ta,∞).

Now, use the relationships ‖G f ‖2 ≤ ‖G‖∞‖ f ‖2 if f ∈ L2 and ‖G f ‖∞ ≤ ‖G‖∞‖ f ‖∞ if f ∈ L∞, [23].
Thus, one has that η ∈ L2 and y ∈ L2 if u ∈ L∞ ∩L2 with ‖u‖∞ = sup

0≤t<+∞

∣∣∣u(t)∣∣∣ ≤ mu <
1−k2

k3
and ‖u‖2 ≤Mu
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since u ∈ L2 so that ‖y‖∞ ≤
mu(‖G‖∞+k1)

1−k2−k3mu
+K1; ‖y‖2 ≤

(‖G‖∞+k1)
1−k2−k3mu

Mu +K2 for some 0 ≤ Ki = Ki(x0) < +∞;
i = 1, 2.

Note that, if y ∈ L∞, u ∈ L2 and k2 < 1 so that η ∈ L2 and y ∈ L2 from Theorem 4(iv),

one has following the proof guidelines of Theorem 4(v) that ‖y‖2 ≤
(‖G‖∞+k1+k3‖y‖∞)

1−k2
Mu + K3 for some

0 ≤ K3 = K3(x0) < +∞. �

It is of interest to consider Theorem 4 jointly with the relevant previous non-negativity results of
the input-output energy to get new combined results concerning the simultaneous non-negativity and
boundedness of the input-output energy for certain time intervals of nonzero-measure. In this context,
one has the following further results:

Theorem 5. Let Assumptions A1, A3 and A5 hold. In addition, assume that one of the subsequent
constraints hold:

(1) Assumption A4 holds.
(2) k2 ≤ 1 and, furthermore, u ∈ L∞ with u(t)→ 0 as t→∞ .

Then, 0 ≤ E f (t0, t) < +∞; ∀t(≥ t0) ∈ R0+ and any t0 ∈ R0+. If t1(> t0) ∈ R+ and u(t) is nonzero for
some time subinterval of [t0, t1] of nonzero measure then 0 < E f (t1, t) < +∞; ∀t ∈ [t1,∞).

Proof. It follows directly from Corollary 1, Theorem 3 and Theorem 4(ii). �

Note that assumption A6 guarantees that Assumption A5 holds and that u ∈ PC∩ L2 implies that
u ∈ L∞ with u(t)→ 0 as t→∞ . The whole input-output energy is non-negative and bounded for any
time interval under Theorem 4 provided that the system is externally positive.

Corollary 4. Assume that the assumptions of Theorem 5 hold and, in addition, a state-space realization R =

(A, b, c, d) of G(s) + G̃(s) is externally positive (or, alternatively, a state-space realization of G(s) + G̃(s)− d is
externally positive and d ≥ 0), and η : R0+ ×R0+ × [0, t)→ R0+ subject to a control input u : R0+ → R0+

and a initial state x0�0. Then, 0 ≤ E(t0, t) < +∞; ∀t0, t(≥ t0) ∈ R0+ and any t0 ∈ R0+.

Proof. It follows directly from Theorem 5 and Corollary 2 and Theorem 4(ii) since 0 ≤ Eu(t0, t) < +∞

and 0 ≤ E f (t0, t) < +∞; ∀t0,t(≥ t0) ∈ R0+. �

Remark 8. Note that the non-negativity or, respectively, positivity results of the input-output energy of
this section within positive time intervals are got based on the non-negativity or positivity of the integrands
defining such an energy measure. Therefore, the input-output energy per time unity, that is the supplied power,
is also non-negative or, respectively, positive in the corresponding results. If such an input-output energy
(or, equivalently, the instantaneous supplied power) is non-negative for all time then the system is said to be
hyperstable. In the most general case that such amounts are larger than some finite negative real constant
independent of time, then the system is said to be passive [9–12]. Note from the above concepts that a hypestable
system is also a passive system.

3. Hyperstability and Asymptotic Hyperstability of the Closed-Loop System

The non-negativity positivity property of the input-output energy measure is now re-addressed
under a feedback law of the form (3)–(4). If the jointly non-negativity/passivity is kept for the whole
controllers satisfying (3)–(4) the closed-loop system, is said to be hyperstable. Consider the nonlinear
time-varying differential system (1) under any controller (3)–(4) belonging to the class Φ0∗. We will
follow a classical nomenclature based in that used in [9] as follows:
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(a) If Ez.s(0, t) ≥ 0; ∀t ∈ R0+ (i.e., the input-output energy measure of the uncontrolled system is
non-negative for all time) then the feed-forward part of the system is said to be hyperstable. See,
for example, Theorem 1. Note that such a condition Ez.s.(0, t) ≥ 0; ∀t ∈ R0+ which is guaranteed
under several of the given results in Section 2, is a passivity condition of the feed-forward device
of the control system if u ∈ L2, [9–11]. This condition holds, in particular, if the feed-forward
system is linear (i.e., if η ≡ 0) and G(s) = G0(s) + G̃(s) + d is {PR} what implies, furthermore,
that it is stable as a result. It suffices that G0(s) ∈ {PR} and that G̃(s) be strictly stable (which
can be relaxed to G̃(s) to be non-strictly stable with only a single critical pole with associated
positive residual if G0(s) is strictly stable) with sufficiently small resonance peak related to the
input-output interconnection gain d > 0.

(b) If, in addition, Ez.s.(0, t) > 0; ∀t ∈ R+ (i.e., the input-output energy measure of the uncontrolled
system is positive for all positive time) then the feed-forward part of the system is said to be
asymptotically hyperstable. Such a conditions holds, in particular, if the feed-forward system is
linear (i.e., if η ≡ 0) and G(s) = G0(s) + G̃(s) + d is {SSPR} what implies, furthermore, that it is
strictly stable.

(c) The set of all the controllers (3)–(4) of class Φ0∗ =
{
Φ0γ : γ ∈ R0+

}
is said to be a hyperstable class

of controllers, each individual one being passive since its input-output measure satisfies the
Popov’s inequality

∫ t
0 φ(y(τ), τ)y(τ)dτ ≥ −γ > −∞;∀t ∈ R0+ since φ ∈ Φ0∗. Consider instead the

class of asymptotically hyperstable controllers Φ+∗ =
{
Φ+γ : γ ∈ R+

}
, each one being (strictly)

passive [10]. Note that if u ∈ Φ0∗ then u ∈ Φ+∗. Therefore, Φ0∗ ⊇ Φ+∗. That is, the class
of the hyperstable controllers includes that of the asymptotically hyperstable ones. However,
the converse is not true. That is, Φ0∗ ⊂ Φ+∗ does not hold with proper set inclusion.

(d) Hyperstability (respectively, asymptotic hyperstability) of a closed-loop dynamic system are
properties of global (respectively, global asymptotic) stability under any member φ ∈ Φ0∗ of the
hyperstable (respectively, asymptotically hyperstable φ ∈ Φ+∗) class of controllers, [5,6,10,20].

Note that if k3 , 0 then the control effort has to be saturated according to Assumption A4 for the
validity of many of the given results. This fact needs to re-formulate the Popov’s inequality (3) [19]
with another further constraint, which can in fact to be given equivalently in terms on a bounding
inequality of the input-output energy of the feed-forward block, by taking into account the negative
feedback action in the control effort. In this context, the following simple considerations are useful:

Remarks 9. 1. If k3 = 0 then (4) implies that Φ0∗ = ∪γ∈R0+Φ0γ, where:

Φ0γ =

{
φ : R0+ ×R0+ → R

∣∣∣∣∣∣
∫ t

0
u(τ)y(τ)dτ ≤ γ < ∞;∀t ∈ R0+

}
; γ ∈ R0+ (18)

In the same way, Φ+∗ = ∪γ∈R+Φ+γ, where:

Φ+γ =

{
φ : R0+ ×R0+ → R

∣∣∣∣∣∣
∫ t

0
u(τ)y(τ)dτ ≤ γ < ∞;∀t ∈ R0+

}
; γ ∈ R+ (19)

2. On the other hand, if k3 , 0 and Assumption A4 is requested to hold then Φ0∗ and Φ+∗ are,
respectively, restricted to Φr0∗ ⊂ Φ0∗ ∩ L∞ and Φr+∗ ⊂ Φ+∗ ∩ L∞, where Φr0∗ = ∪γ∈R0+Φr0γ and Φr+∗ =

∪γ∈R+Φr+γ with:

Φr0γ =

{
φ : R0+ ×R0+ → R

∣∣∣∣∣∣
[(∫ t

0 u(τ)y(τ)dτ ≤ γ < ∞
)
∧

(
sup

0≤τ≤t

∣∣∣u(τ)∣∣∣ ≤ 1−k2
k3

)
;∀t ∈ R0+

]}
; γ ∈ R0+ (20)

Φr+γ =

{
φ : R0+ ×R0+ → R

∣∣∣∣∣∣
[(∫ t

0 u(τ)y(τ)dτ ≤ γ < ∞
)
∧

(
sup

0≤τ≤t

∣∣∣u(τ)∣∣∣ ≤ 1−k2
k3

)
;∀t ∈ R0+

]}
; γ ∈ R+ (21)
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3. For getting conditions of asymptotic convergence to zero of the various control, output and state signals
describing the dynamic system, the basic condition on the input square-integrability, and its eventual finite
saturation, can require extra supporting constraints on its bounded time-derivative or its everywhere piece-wise
continuity as addressed in the subsequent result.

4. Note that Assumption A5 is stronger than Assumption A2 while Assumption A5 guarantees
Assumption A2.

Theorem 6. The following properties hold:

(i) If Assumptions A1–A4 hold and φ ∈ Φ0∗ then 0 ≤ E f (0, t) ≤ γ < +∞; ∀t ∈ R0+.

(ii) If Assumptions A1–A3 hold, k3 = 0 (so that Assumption A4 is superfluous) and φ ∈ Φ0∗ then u(t) is
everywhere zero except possibly on a subinterval of R0+ of zero measure. Also, u ∈ L2, esssup

0≤t<∞

∣∣∣u(t)∣∣∣ < +∞,

sup
t0≤t<∞

∣∣∣u(t)∣∣∣ < +∞ for some finite t0 ∈ R0+, u(t)→ 0 as t→∞ except possibly on a set of zero measure

of isolated bounded jump discontinuities, x ∈ L∞ and y : [t0,∞) for any finite initial sate x0 ∈ Rn so that
the closed-loop system is hyperstable for the class Φ0∗ of controllers. If k3 , 0 and Assumption A4 holds
then x ∈ L∞ and y ∈ L∞ if k2 + k3Mu < 1 where Mu = (max sup

∣∣∣u(t)∣∣∣
0≤t<∞

, Mu).

(iii) If, Assumptions A1, A3 hold, Assumption A2 is modified to its stronger version of Assumption A5 and
φ ∈ Φ+∗ holds then 0 < E f (0, t) ≤ γ < +∞; ∀t ∈ R+, u ∈ L2, esssup

0≤t<∞

∣∣∣u(t)∣∣∣ < +∞, sup
t0≤t<∞

∣∣∣u(t)∣∣∣ < +∞

for some finite t0 ∈ R0+, u(t)→ 0 as t→∞ , except possibly on a set of zero measure of isolated bounded
jump discontinuities, x ∈ Ln

2 ∩ Ln
∞ and y, η, (y− η) ∈ L2 ∩ L∞, x(t)→ 0 as t→∞ , and y(t)→ 0

as t→∞ and η(t)→ 0 as t→∞ , except possibly on a set of zero measure of isolated bounded jump
discontinuities, for any given finite initial sate x0 ∈ Rn. As a result, the closed-loop system is asymptotically
hyperstable for the class of controllers Φ+∗.

(iv) If Assumptions A1–A4 hold andφ ∈ Φr0∗∩L∞a with k3 , 0 then u ∈ L2∩L∞a, sup
0≤t<∞

∣∣∣u(t)∣∣∣ ≤ 1−k2
k3

< +∞,

u(t)→ 0 as t→∞ , x ∈ Ln
∞ and y ∈ L∞ for any finite initial sate x0 ∈ Rn so that the closed-loop system

is hyperstable for the class Φr0∗ ∩ L∞a of controllers.
(v) If Assumptions A1, A3, A4 and A5 hold and φ ∈ Φr+∗ ∩ L∞a then 0 < E f (0, t) ≤ γ < +∞; ∀t ∈ R+,

sup
0≤t<∞

∣∣∣u(t)∣∣∣ ≤ 1−k2
k3

< +∞, u(t)→ 0 as t→∞ , x ∈ Ln
2 ∩ Ln

∞ and Ln
∞, x(t)→ 0 as t→∞ and

y(t)→ 0 as t→∞ and η(t)→ 0 as t→∞ , for any given finite initial sate x0 ∈ Rn so that the
closed-loop system is asymptotically hyperstable for the class Φr+∗ ∩ L∞a of controllers.

Proof. Property (i) is direct from the negative feedback control (3)-(4), Theorem 1 and Remark 9.1.
From Property (i), 0 ≤ E f (0, t) ≤ γ < +∞ and from Theorem 1, u ∈ L2 if φ ∈ Φ0∗. Since

∫ t
0 u2(τ)dτ ≤

Mu < +∞ and u(t) is bounded except possibly on a set Szm ⊂ R0+ of zero measure. Two cases can
arise if this assertion in untrue, namely: Case a) there is at least one finite escape time [t0, t0 + ε0)

for some t0 ∈ R0+ and ε0 ∈ R+ so that
∣∣∣u(t)∣∣∣ ≥ m0u; ∀t ∈ [t0, t0 + ε0) and mu being arbitrarily large.

Thus, εm2
0u ≤

∫ t
0 u2(τ)dτ ≤ M2

u < +∞ so that m0u ≤
Mu√
ε
< +∞, a contradiction and a finite escape

time cannot occur on an interval of nonzero measure. Case b) u(t) has infinitely many impulses
(i.e., jumps of infinity amplitudes at certain time instants) at an infinite sequence of time instants
{ti}i∈Z0+

⊂ R0+ of amplitudes Kiδ(t− ti), Ki ∈ R\{0} and δ(t) denoting the Dirac distribution. It follows

that +∞ = lim
n→∞

∑n
i=0 K2

i ≤ lim sup
t→∞

∫ t
0 u2(τ)dτ ≤M2

u < +∞, a contradiction, so the left-hand side should

have necessarily a finite number of additive terms. Then, there is some finite t0 ∈ R0+ such that u(t)
is impulse -free for t ≥ t0. As a consequent result to these two impossible cases, one concludes that
esssup
0≤t<∞

∣∣∣u(t)∣∣∣ < +∞, sup
t0≤t<∞

∣∣∣u(t)∣∣∣ < +∞ for some finite t0 ∈ R0+. Note that a third possible Case c related

to u(t) having finitely many or infinitely many finite discontinuity jumps on a set of isolated time
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instants (i.e., a set zero measure) is compatible with its proved boundedness properties. Another
consequence of the above discussion is that, u(t)→ 0 as t→∞ , except possibly on a set of isolated time
instants, since esssup

0≤t<∞

∣∣∣u(t)∣∣∣ < +∞, sup
t0≤t<∞

∣∣∣u(t)∣∣∣ < +∞ and the input can posses only finite discontinuity

jumps on isolated time instants (Case c). The facts that:

(1) x ∈ L∞ (since eventual input Dirac impulses at isolated time instants generate jump unbounded
discontinuities in

.
x(.) but translate in bounded discontinuities in x(.)) and,

(2) y : [t0,∞) is bounded (since d sup
t0≤t<∞

∣∣∣u(t)∣∣∣ < +∞) for any finite initial sate x0 ∈ Rn follow directly

from the fact that G0(s) + G̃(s) + d is a stable transfer function. If, in addition, k3 , 0 and
Assumption A4 holds then the control input is uniformly bounded so that x ∈ L∞ and y ∈ L∞ if
k2 + k3Mu < 1 where Mu = (max sup

∣∣∣u(t)∣∣∣
0≤t<∞

, Mu) (see Theorem 4(iii)). Property (ii) has been proved.

To prove Property (ii), note under the given Assumptions A1, A3 and A5, one gets from Corollary
1 and each control function φ ∈ Φ+∗ that:

0 < E f (0, t) ≤ γ < +∞; ∀t ∈ R+ (22)

for some γ ∈ R+, eventually depending on φ ∈ Φγ, for any used φ ∈ Φ+∗. From Assumption A5,
G(s) = G(s) + d = G0(s) + G̃(s) + d is strictly stable since it is strictly positive real and it is also
strongly strictly positive real with zero relative degree since the input-output interconnection gain
of the feed-forward linear block d is positive according to Assumption A3. Thus, min

ω∈R0+
Re

(
G(iω)

)
=

min
ω∈R

Re
(
G0(iω) + G̃(iω) + d

)
> 0. From Corollary 1 and Theorem 1, one has that u ∈ L2 implying also

that u(t)→ 0 almost everywhere as t→∞ (it can have finite jump discontinuities on a set of zero
measure and a finite number of Dirac impulsive discontinuities on a finite time interval [0, t0) of R0+).
Thus, esssup

0≤t<∞

∣∣∣u(t)∣∣∣ < +∞, sup
t0≤t<∞

∣∣∣u(t)∣∣∣ < +∞x ∈ Ln
2 ∩ Ln

∞ (note that G ∈ RH∞ since it is in {SPR}) and

y, η, (y− η) ∈ L2 ∩ L∞, x(t)→ 0 as t→∞ , and y(t)→ 0 as t→∞ and η(t)→ 0 as t→∞ , except
possibly on a set of zero measure of isolated bounded jump discontinuities, for any given finite initial
sate x0 ∈ Rn. Property (iii) has been proved.

Property (iv) can be proved under close arguments as those used for the proof of Property (iii).
However, the asymptotic properties of square-integrability and convergence to zero of the state and
output signals are not guaranteed for any finite initial conditions, since G < RH∞ while it is only
guaranteed to be critically stable and positive real. Note that Assumption A4 implies a boundedness
condition on the input only if k3 , 0. However, it does not imply such a boundedness if k3 = 0.
Since k2 ≤ 1, if k3 > 0, then u ∈ L2 ∩ L∞ (subject to the supremum constrained from Assumption A4)
and if k3 = 0 then u ∈ L2. The proof of Property (v) is similar to that of Property (iii). Since the input is
everywhere bounded for all time from Assumption A4, the boundedness and asymptotic convergence
to zero of the state and output signals hold without excluding eventually sets of zero measure of time
instants. �

A direct weaker result than Theorem 5(iv) due to restriction on the admissible functions in the
Popov’s inequality to be satisfied by the controller is the following one:

Corollary 5. If Assumptions A1, A3 and A5 hold and φ ∈ Φ+∗ ∩
(
PCa ∪

(
C∩

( .
φ ∈ L∞

)))
then, 0 < E f (0, t) ≤

γ < +∞; ∀t ∈ R+, u ∈ L2, sup
0≤t<∞

∣∣∣u(t)∣∣∣ < +∞, sup
0≤t<∞

∣∣∣u(t)∣∣∣ < +∞, u(t)→ 0 as t→∞ , x ∈ Ln
2 ∩ Ln

∞,

y ∈ L2 ∩ L∞, x(t)→ 0 as t→∞ and y(t)→ 0 as t→∞ for any given finite initial sate x0 ∈ Rn so that the
closed-loop system is asymptotically hyperstable for the class Φ+∗ ∩

(
PCa ∪

(
C∩

( .
φ ∈ L∞

)))
of controllers, [20].
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Outline of Proof. It is based on the property that if φ ∈ Φ+∗ and u ∈ L2 (following Theorem 6 (iii))
then u(t)→ 0 as t→∞ provided that φ is piece-wise continuous except on a set of zero measure of
bounded discontinuities (so that it can not be unbounded since it is square-integrable and has to vanish
asymptotically since it is in L2) or provided that φ is continuous and everywhere time-differentiable
with time-derivative possibly subject to bounded discontinuities. �

4. Examples on Epidemic Models Subject to Vaccination and Treatment Controls

Epidemic modelling has been shown to be a relevant tool in Public Health prevention and infectious
diseases treatment. The existing background literature is abundant not only at a mathematical modelling
level but at the related application studies and practical cases as well. An important investigation tool
for that is the design of vaccination and treatment controls. See, for instance, [26–31] and references
therein. It is well- known that vaccination has made a very relevant contribution to global health [32–35].
In particular, two major infectious diseases, namely, polio and rinderpest have been eradicated, [35].
On the other hand, the global coverage of vaccination against certain infectious diseases, like measles or
polio, has led to them to be targeted for eradication or almost eradicated, respectively. It is pointed out
in [34] that the focus has to be addressed towards the following objectives: (a) the support to the design
and more efficiently delivery of new vaccines; (b) the acceleration of the practical implementation of
designed vaccines; and (c) the implementation of policies and mechanisms to make the vaccination
achievable to those who need them, [34]. Our objective in those applications examples is linked to
the third above goal in the sense that we give analytical design tools for vaccination controls which
are based on feedback information on the subpopulations of the epidemic models. It is not the main
interest the biological nature or such vaccines but really how to implement then on the susceptible
population. It turns out that the vaccination control might be only effective when applied to susceptible
(i.e., not yet infected) population. In parallel, there are also (for instance, either antibacterial or antiviral)
potential treatment controls which can be effective when applied on the already infected population.
The design of mechanism to regulate the administration of such controls is of interest in epidemic
models to the light of the above theoretical development. Note that the asymptotic hyperstability of
the incremental linearized system around the disease-free equilibrium point allows the stabilization
of disturbances of the solution trajectory caused by infection escaping from the equilibrium point
under a very wide class of vaccination/treatment controls. This arises from the very essential property
of the hyperstability consisting of global stability under a very wide class of nonlinear feedback
controllers. The hyperstability concept relies on the stabilization with any member of a very wide
class of controllers satisfying a Popov’s inequality, not just with some particular controller. Therefore,
the controller gains are not necessarily constant but time-varying and, in general, non-linear. This fact
is emphasized for the designed clases of controllers of the examples. See, for instance, Assumptions
A7 to A9 of the Example 1 displayed below.

Two related application examples are now given to illustrate the results of the above sections:

Example 1. Consider the subsequent SIR epidemic model subject to vaccination and treatment controls:

.
S(t) = −βS(t)I(t) − uV(t)

.
I(t) = βS(t)I(t) − γI(t) − ua(t) (23)

.
R(t) = γI(t) + λV(t)uV(t) + λa(t)ua(t)

subject to initial non-negative conditions, that is, min(S(0), I(0), R(0)) ≥ 0, where S(t), I(t) and R(t) are
the susceptible, infective and immune (or recovered) subpopulations, respectively, and uV(t) and ua(t) are the
vaccination and treatment controls on the susceptible and infective, respectively. In the above model, β is the
infective parameter and γ is the removal parameter giving the rates at which the infective individuals become
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immune. Finally, λV(t) ∈ [0, 1] and λa(t) ∈ [0, 1] are the functions characterizing lost of efficiency of the
respective controls if they are less than unity. The interpretation can be that they are due to abrupt allergic
reaction causing slight mortality if they are close to unity or in other situations if simply the imperfect vaccination
and treatment could generate another subpopulation in the model but the particular concerns are not of interest
for our study objectives in this paper. By analysis convenience, define the following auxiliary function which
includes the quadratic nonlinear term:

V(t) = −βS(t)I(t) − uV(t) (24)

then the model can be, equivalently, rewritten as follows:

.
S(t) = −V(t)

.
I(t) = −γI(t) −V(t) − uV(t) − ua(t) (25)

.
R(t) = γI(t) + λV(t)uV(t) + λa(t)ua(t)

Now, define proportionality gains ρV(t), ρuV (t) and ρua(t) to link V(t), and the vaccination and treatment
controls uV(t) and ua(t) to a primary scalar control u(t) as follows:

V(t) = ρV(t)u(t); uV(t) = ρuv(t)u(t); ua(t) = ρua(t)u(t) (26)

The above constraints lead to:

ρV(t)u(t) = −βS(t)I(t) − ρuv(t)u(t) (27)

so that:
−(V(t) + uV(t) + ua(t)) = −ρI(t)u(t); λV(t)uV(t) + λa(t)ua(t) = ρR(t)u(t) (28)

where:
ρI(t) = −(ρV(t) + ρuv(t) + ρua(t)); ρR(t) = λV(t)ρuv(t) + λa(t)ρua(t) (29)

u(t) = −
βS(t)I(t)

ρV(t) + ρuv(t)
(30)

Thus, the model driven by the primary control u(t) becomes equivalently:

.
S(t) = −ρV(t)u(t)

.
I(t) = −γI(t) − ρI(t)u(t) (31)
.
R(t) = γI(t) + ρR(t)u(t)

Define the state vector as x(t) = (S(t), I(t), R(t))T, the scalar measurable output y(t) is defined later on
for different situations and consider the following further assumptions:

Assumptions

A7. The efficiency controls lost λV(t) = λV and λa(t) = λa and the proportionality gains ρV(t) = ρV,
ρI(t) = ρI and ρR(t) = ρR; ∀t ∈ R0+ are constant.
A8. ρuv(t) ≤ −ρV and ρua(t) ≤ −ρI; ∀t ∈ R0+ implying that ρuv(t) = −(ρI + ρV + ρua(t)) < −ρV;
∀t ∈ R0+.
A9. The primary control is generated via nonlinear/time-varying feedback as u(t) = −φ(y(t), t) ≤ γ0(t)/y(t),
with φ ∈ Φ+∗ is generated by output feedback satisfies a Popov’s-type inequality such that 0 < γ(t) =
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∫ t
0 γ0(τ)dτ ≤ γ < +∞; ∀t ∈ R+ for some integrable γ0 : R0+ → R implying that

∫ t
0 y(τ)u(t)dτ ≤ γ;

∀t ∈ R+, and 0 > ρV + ρuv(t) ≥ −
βS(t)I(t)y(t)

γ0(t)
; ∀t ∈ R0+, equivalently,

γ0(t) ≥
βS(t)I(t)∣∣∣ρV + ρuv(t)

∣∣∣ (32)

and γ0(t) is integrable on [0, ∞) so that S(t)I(t) is also integrable on [0, ∞).

Then, the closed-loop system becomes:

.
x(t) = Ax(t) + bu(t) (33)

under non-negative initial components, with:

A =


0 0 0
0 −γ 0
0 γ 0

; b =


−ρV

−ρI

ρR

 (34)

Case 1: Assume that the measurable output y(t) is the susceptible subpopulation S(t) so that c = e1 =

(1, 0, 0)T. Then,

eT
1 (sI −A)−1b = (1, 0, 0)


s 0 0
0 s + γ 0
0 −γ s


−1
−ρV

−ρI

ρR

 = 1
s2(s + γ)

[s(s + γ) , 0, 0]


−ρV

−ρI

ρR

 = −ρV

s

Case 2: Assume that the measurable output y(t) is the infective subpopulation I(t) so that c = e2 =

(0, 1, 0)T. Then,

eT
2 (sI −A)−1b = (0, 1, 0)


s 0 0
0 s + γ 0
0 −γ s


−1
−ρV

−ρI

ρR

 = 1
s2(s + γ)

[
0, s2, 0

]
−ρV

−ρI

ρR

 = − ρI

s + γ

Case 3: Assume that the measurable output y(t) is the recovered subpopulation R(t) so that c = e3 =

(0, 0, 1)T. Then,

eT
3 (sI −A)−1b = (0, 0, 1)


s 0 0
0 s + γ 0
0 −γ s


−1
−ρV

−ρI

ρR

 = 1
s2(s + γ)

[0, 0, s(s + γ)]


−ρV

−ρI

ρR

 = ρR

s

Note that the transfer function of Case 1 (y(t) = S(t)) is positive real if ρV < 0, that of Case 2 (y(t) = S(t))
is positive real if ρI < 0 and that of Case 3 is positive real if ρR > 0. None of the three transfer functions is
strictly positive real under a primary control satisfying Assumption A9. If the output is taken as any linear
combination of the three subpopulations the resulting transfer function of the linear feed-forwards part is not
strictly positive real either. Thus, global asymptotic stability (i.e., asymptotic hyperstability) cannot be concluded
for controls φ ∈ Φ+∗ under Assumption A9 but only hyperstability.

Example 2. Let us now consider instead the following linearized epidemic model of dimension two whose

incremental state is x̃(t) =
(
S̃(t), R̃(t)

)T
, related to the disease-free equilibrium point xe = (Se, Re)

T,
which includes linear proportional to the susceptible vaccination efforts reinforced by a nonlinear eventually
time-varying incremental term ũ = −φ, φ ∈ Φ+∗, which uses feedback information from the defined incremental
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output y(t) which could be the incremental susceptible or the incremental immune or a linear combination
of them:

.

S̃(t) = −(µ+ β+ k1)S̃(t) − ũ(t) = (µ+ β)S̃(t) −
(
k1S̃(t) + ũ(t)

)
(35)

.
R̂(t) = (1− α)βS̃(t) − µR̃(t) +

(
k1S̃(t) + ũ(t)

)
(36)

under finite non-negative initial given conditions. In this linearized incremental model, the infection is assumed
to be instantaneous, µ is the natural mortality, β is the infection rate per individual per unity of time, 0 ≤ α ≤ 1
is the infected mortality, and its complementary fraction (1− α) characterizes the rates or infected survivors
which are transferred directly from the susceptible subpopulation to the recovered one. The parameter k1 is
the rate of susceptible in individuals which are vaccinated by proportional feedback linear control, so they are
removed from the susceptible dynamics and transferred to the recovered one, and ũ(t) = −φ(t); ∀t ∈ R+ with
φ ∈ Φ+∗ is a complementary term added to the above vaccination effort. In this way, the whole incremental
feedback vaccination control in (35) and (36) is given by Ṽ(t) = k1S̃(t) + ũ(t); ∀t ∈ R+. The particular case
of the above model for the incremental vaccination-free case, i.e., Ṽ(t) ≡ 0 is described in [26] following the
pioneering infection transmission models proposed by Daniel Bernouilli (1700–1782) following a smallpox
disease which widespread along Europe while affecting a large proportion of the population and causing around
10% of the mortality of minors. The survivors were found to be immune to further attack but left scarred
for life. The estimations of Bernoulli’s studies are described in detail in [26], were it is also pointed out that,
in 1760, Bernouilli read his paper “Essai d´une nouvelle analyse de la mortalité causée par la petite vérole et des
advantages de l´inoculation pour la prévenir” to the French Royal Academy of Sciences in Paris. Note that the
idea of “inoculation” is simply to inject attenuated live virus obtained from patients with mild case of smallpox
(“variolation” [26]). The above model is inspired in that proposed by Bernouilli for cohorts of individuals born in
a particular year and with an age-specific per capita death rate. The state equation can be compactly written
as follows:

.
x̃(t) = Ax̃(t) + bũ(t) =

[
−(µ+ β+ k1) 0
(1− α)β+ k1 −µ

]
x̃(t) +

[
−1
1

]
ũ(t) (37)

Note that the matrix of dynamics is a stability matrix with eigenvalues −(µ+ β+ k1) and −µ. Then:

(sI −A)−1b = 1
(s+µ)(s+µ+β+k1)

[
s + µ 0

−((1− α)β+ k1) s + µ+ β+ k1

][
−1
1

]
=

 −
1

s+µ+β+k1
1

s+µ +
(1−α)β+k1

(s+µ)(s+µ+β+k1)

 (38)

Several cases are of interest, namely:

(a) if ũ ≡ 0 then x̃(t)→ 0 exponentially as t→∞ since A is a stability matrix.
(b) Assume that ỹ(t) = S̃(t) + dũ(t). Then the transfer function from ũ(t) to ỹ(t) is GS̃(s) =

d − 1
s+µ+β+k1

= d s+(µ+β+k1)−1/d
s+µ+β+k1

. It is strongly strictly positive real if d > dc = 1/(µ+ β+ k1).
Note that the critical interconnection gain dc = dc(k1) is strictly decreasing with k1 for given constant
β and µ and dc = dc(β) is strictly decreasing with β for given constants µ and k1. It follows that
u(t) = −φ(ỹ(t))→ 0 as t→∞ for any real function φ : R0+ → R0+ which satisfies Popov’s inequality.
In particular, one can choose an incremental control generated by a functional φ(ỹ(t)) which satisfies

ũ(t) = −φ(ỹ(t)) ≤ γ0(t)
S̃(t)+ũ(t)

such that γ0 : R0+ → R0+ is any integrable function on [0,∞), in particular,

any non-negative function of exponential negative order so exponentially vanishing. Defining the
convex parabola P(ũ(t)) = ũ2(t) + S̃(t)ũ(t) − γ0(t), the admissible controls leading to asymptotic
hyperstability are those which fulfil ũ(t) ∈ [ũ1(t), ũ2(t)] with:

ũ1(t) =
−S̃(t) −

√
S̃2(t) + 4γ0(t)

2
; ũ2(t) =

−S̃(t) +
√

S̃2(t) + 4γ0(t)

2
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As a result, the total incremental vaccination effort takes the form Ṽ(t) ∈
[
Ṽ1(t), Ṽ2(t)

]
with:

Ṽ1(t) = (k1 − 1/2)S̃(t) −

√
S̃2(t) + 4γ0(t)

2
; Ṽ2(t) = (k1 − 1/2)S̃(t) +

√
S̃2(t) + 4γ0(t)

2

It follows that the incremental control, output and state variables related to the disease-free
equilibrium point exponentially vanish, i.e., ũ(t)→ 0 , x̃(t)→ 0 , ỹ(t)→ 0 as t→∞ . Note that
along the transient and because of the structure (37) and the positivity of the product ỹ(t)ũ(t),
one concludes that if ũ(t) > 0 (in practice, close to the upper-bound ũ2(t)), then ỹ(t) = S̃(t) + dũ(t) ≥ 0,
then S̃(t) ≥ −dũ(t) ≥ −dũ2(t), so the incremental susceptible subpopulation could be negative along
the transient which can be of interest to reduce the incremental susceptibility. However, if ũ(t) < 0 then
ỹ(t) = S̃(t) − d

∣∣∣ũ(t)∣∣∣ ≤ 0 so that S̃(t) ≥ d
∣∣∣ũ(t)∣∣∣ concluding the incremental susceptibility is increased

along the transient. As a result, it seems of interest to choose the incremental control with positive
values being close to its admissible upper- bound. The incremental recovered subpopulation is positive
along the transient in both cases in view of (37).

(c) Assume that ỹ(t) = R̃(t) + dũ(t). Then the transfer function from ũ(t) to ỹ(t) is GR(s) =

d+ 1
s+µ +

(1−α)β+k1
(s+µ)(s+µ+β+k1)

= d+ s+µ+β+k1+(1−α)β+k1
(s+µ)(s+µ+β+k1)

, which strongly strictly positive real if d > 0. Thus,

the appropriate incremental control which guarantees asymptotic hyperstability is ũ(t) = −φ(ỹ(t)) ≤
γ0(t)

R̃(t)+ũ(t)
with γ0(t) being non-negative and integrable on [0, ∞). Following a similar reasoning to

that of the above case, one concludes that ũ(t) ∈ [ũ3(t), ũ4(t)] and that the admissible incremental
vaccination effort is Ṽ(t) ∈

[
Ṽ3(t), Ṽ4(t)

]
with:

ũ3(t) =
−R̃(t) −

√
R̃2(t) + 4γ0(t)

2
; ũ4(t) =

−R̃(t) +
√

R̃2(t) + 4γ0(t)

2

Ṽ3(t) = (k1 − 1/2)R̃(t) −

√
R̃2(t) + 4γ0(t)

2

It is seen from (37) that ũ(t) > 0 is of interest along the transient in order to decrease the incremental
susceptibility and to increase the incremental recovered subpopulation.

5. Conclusions

This paper has developed a formalism for hyperstability and asymptotic hyperstability of
controlled dynamic systems whose feed-forward part excluding potential controls consist of the
additive contributions of a known linear dynamics, an unknown one and unknown nonlinear
disturbances under wide classes of controllers which satisfy a Popov’s-type inequality. The known
linear part is given by a positive real transfer function, the unknown dynamics is assumed stable but
it is unknown except some “a priori” knowledge of its resonance peak, that is, the maximum gain
in the frequency domain. The nonlinear contribution to the dynamics is not known precisely, but is
known its growing rule depending on input, output and the input-output product through time in
the sense that available upper- bounds of the linear weighting factors for those values are known.
The structure of the controlled systems generalizes the usual one stated as a basis for hyperstable
designs by incorporating linear and nonlinear uncertainties. A robust asymptotic hyperstable property
of the closed-loop system is proved to be achieved under a set of constraints and the design of any
member of classes of controllers satisfying Popov’s-type inequalities. These kinds of controllers are
not very restrictive compared to the usual single ones which achieve global asymptotic Lyapunov’s
hyperstability. In fact, all the classes of asymptotic hyperstable controllers satisfy a certain Lyapunov
function for the whole class. On the other hand, it is emphasized the interest of such designs in the field
of vaccination and treatment feedback controls of epidemic models since it is well-known the relevance
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of those controls in Public Health Management. In particular, those control designs are of a major
interest for the acceleration of the practical implementation of vaccination policies and mechanisms to
make the vaccination achievable to those who really need them. Two classical epidemic models under
those class of controllers have been discussed in the paper. The objective is that the vaccination and
treatment controllers have a designed component which is designed “ad hoc” under hyperstability
tools for the automatic generation of a fast control action against any potential deviation of the
disease-free equilibrium point due to variations in either the equilibrium population numbers (which
indicates a disease regrowth), in the parameterization or in the known modelled dynamics (which
indicates presumably either a change on the disease defining parameters or a dynamics disturbance
contribution, due for instance, to interchange of populations with other neighboring environments).
The contributions of the paper consist of: (1) the extension of the classical hyperstability theory to the
presence of unmodeled, or not very precisely parameterized linear and nonlinear contributions to
the dynamics, (2) the application of the obtained results to epidemic models under vaccination and
treatment controls under a wide class of asymptotically hyperstable controllers, and (3) the use of
those control designs to rapidly fight against the deviations of the steady disease- free equilibrium
point due to those kinds disturbances or unmodeled dynamics and/or changes in the equilibrium
population levels. In the future, it is claimed to extend the results to the hyperstability znd asymptotic
of the whole nonlinear epidemic models rather than to the incremental models around the disease-
free equilibrium points.
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