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Abstract: Several epidemiological studies have shown a close relationship between the mass of
particulate matter (PM) and its effects on human health. This study reports the identification
of inorganic and organic components by attenuated total reflectance-Fourier-transform infrared
spectroscopy (ATR-FTIR) analysis in PM10 and PM2.5 filters collected from three air quality monitoring
stations in the city of Palermo (Sicily, Italy) during non-Saharan dust events and Saharan events. It
also provides information on the abundance and types of water-soluble species. ATR-FTIR analysis
identified sulfate, ammonium, nitrate, and carbonate matter characterized by vibrational frequencies
at 603, 615, 670, and 1100 cm–1 (SO4

2–); at 1414 cm–1 (NH4
+); at 825 and 1356 cm–1 (NO3

–); and at
713, 730, and 877 cm–1 (CO3

2–) in PM10 and PM2.5 filters. Moreover, aliphatic hydrocarbons were
identified in the collected spectra. Stretching frequencies at 2950 cm–1 were assigned to CH3 aliphatic
carbon stretching absorptions, while frequencies at 2924 and 2850 cm–1 indicated CH2 bonds. In
filters collected during Saharan dust events, the analysis also showed the presence of absorbance
peaks typical of clay minerals. The measurement of soluble components confirmed the presence of a
geogenic component (marine spray and local rocks) and secondary particles ((NH4)2SO4, NH4NO3)
in the PM filters. ATR-FTIR characterization of solid surfaces is a powerful analytical technique for
identifying inorganic and organic compounds in samples of particulate matter.

Keywords: particulate matter; PM10 and PM2.5; ATR-FTIR; ionic soluble components; saharan dust
events; sirocco winds

1. Introduction

The urban air people breathe contains several solid and gaseous chemicals that have significant
negative effects on public health [1–3]. Several epidemiological studies have shown a close relationship
between air pollution and various respiratory tract diseases (allergies, asthma, lung emphysema),
lung cancer, and cardiopulmonary mortality, which commonly affect urban populations [4–9]. The
World Health Organization (WHO) [10] and the Directive of the European Parliament [11] established
that daily values in Europe for concentrations of particulate matter with sizes of ≤10 and ≤2.5 µm
(i.e., PM10 and PM2.5) should not exceed 50 µg/m3 and 25 µg/m3, respectively. Particulate matter
with a size ≤10 µm is considered to be particularly detrimental to human health, but the nature of
the PM is equally crucial as particle types have highly variable toxicity levels. Particulate matter
comprises a range of particles such as mineral dust, metals, metalloids, sea salts, ammonium nitrate
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and sulfate, organic compounds, and elemental carbon. The abundance of the various organic and
inorganic components is temporally and spatially variable [12]. Some are directly emitted into the
atmosphere by either natural or anthropogenic sources (primary particles), while others are the result
of homogeneous or heterogeneous nucleation and condensation of gaseous precursors (secondary
particles). The Mediterranean area is often affected by Saharan dust events, which increase PM10 and
PM2.5 concentrations beyond European recommended values, mainly in southern Europe. Saharan
dust is a mixture of mineral particles (quartz, calcite, dolomite, and clay minerals) and organic
matter [13]. Some studies have suggested that Saharan dust has a significantly negative impact on
air quality, visibility, and human health [14–16]. Several authors described increased asthma, rhinitis,
cardiovascular disease, and mortality [17,18]. Other authors found no association between dust
events and hospitalizations [19–23], increased mortality, or increased potential oxidative water-soluble
fractions in PM10 and PM2.5 [24] compared to anthropogenic dust.

Water-soluble components (WSCs) are among the main components of total particulate
matter [25,26], typically contributing about 50%–70% of the weight. WSCs are associated with
degraded atmospheric visibility and adverse effects on human health [27–29]—they also contribute to
the formation of acid rain, which promotes the faster decay of buildings. The main analytical
technique used to determine water-soluble components is ion chromatography (IC). In recent
years, Fourier-transform-infrared spectroscopy (FTIR) has become important in identifying aerosol
composition and quantifying the mass of organic and inorganic compounds in particulate matter [30–33].
FTIR coupled with accessories like attenuated total reflectance (ATR) allows the analysis of a wide
range of solid and liquid components [34].

In this study, we present data on the chemical composition of water-soluble components in PM10

and PM2.5 samples collected in an urban area of southern Italy. The city of Palermo, chosen for our
case study, is affected by urban pollution and natural particulate matter from a range of sources. The
principal sources in the study area are gasoline- and diesel-powered vehicles, an active commercial
and tourist harbor, domestic heating, and a geogenic component that includes soil erosion, marine
aerosol, and sporadic Saharan dust events. The aim of this paper is to identify the principal functional
groups of inorganic and organic components in atmospheric aerosols by ATR-FTIR analysis. Moreover,
we report the results of FTIR analysis carried out on samples of PM10 and PM2.5 filters taken during
Saharan dust events that affected the Mediterranean area.

2. Materials and Methods

2.1. Site Details

Palermo is the largest urban area of Sicily, with about 680,000 inhabitants and a metropolitan area
populated by more than 1 million people. The city is situated on the north-western coast of the island,
bordered on the northeast by the Tyrrhenian Sea and surrounded by mountains (Monti di Palermo)
reaching 500–1000 m above sea level (Figure 1).

The study area is entirely covered by sedimentary rocks (limestone, clay, marly-clay, and white
or yellow quaternary biocalcarenite). The climate of Palermo is typically Mediterranean, with hot
summers and temperate winters. Among the stations studied, only Boccadifalco (BF) station records
weather data representative of the entire agglomeration where the other stations of the present study
(Giulio Cesare (GC) and Di Blasi (DB) are located. Figure 2 shows the wind rose of the sampling
period (November 2008–February 2009). From the monthly wind roses during the winter months, the
prevailing wind direction is from the WNW and WSW sectors. In the same period, close to 5% wind
direction from the S and SSE sectors (Sirocco winds) has been registered. During autumn and spring in
the city, there are frequent warm winds coming from south-east (Sirocco winds) carrying dust raised
from the Sahara Desert region throughout the Mediterranean basin. Over the sampling period, the
weather monitoring station located in the peripheral area of Palermo (BF station) registered six periods
of 1–2 days of Saharan dust intrusions.
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2.2. Sampling Sites

A total of 348 daily samples, 308 PM10 and 40 PM2.5, were collected from November 2008 to
February 2009. To meet the requirements of Directive 1999/30/EC (EU Commission, 1999), PM10

sampling was performed according to European Standard EN12341 (CEN, 1998), with a low-volume
system equipped with a sampling inlet head (Zambelli Explorer Plus Controller 16) operating at a
constant sampling rate (2.3 m3h-1). Particles were collected on standard 47 mm quartz filters (Advantec,
grade QR100). The sampling time was 24 h, from midnight to midnight. PM2.5 sampling was performed
according to European standard EN 14907 (CEN 2005). At Di Blasi (DB) station, simultaneous sampling



Int. J. Environ. Res. Public Health 2019, 16, 2507 4 of 14

of PM10 and PM2.5 was carried out. PM10 mass determination was performed by β-ray attenuation
method, model Environment MP101M.C (CNR–Italy certified). The beta attenuation instrument
is compliant with EN 12341 for PM10 and is approved as federal equivalent method by US the
Environmental Protection Agency for PM10. The detection is done every 2 hours (12 detections in 24
hours). Initial and final weighing of PM10 and PM2.5 filters were carried out in a temperature- and
humidity-controlled room (T = 20 ± 1 ◦C, RH = 50 ± 5%) after the filters had been conditioned for 48 h
before and after sampling. Three air quality monitoring stations belonging to the municipal monitoring
network (RAP-ex AMIA) were chosen for this study (Figure 1).

The Di Blasi (DB) station is located close to a crossroads with traffic lights at pedestrian crossings
and is characterized by high traffic flow, consisting of cars, heavy-duty vehicles, and buses. Giulio
Cesare (GC) station is situated in a large square in front of the railway station, exposed to heavy traffic
composed of cars as well as urban and regional buses. The Boccadifalco (BF) station is a suburban
background station, situated leeward of the sea breeze, without any direct influence of urban activities.
It has lower traffic density than the other stations and was selected as a control site to monitor the
hypothetical background level of pollution. Filters used for analysis were selected based on the
simultaneity of daily sampling between the three monitoring stations. ATR-FTIR spectroscopy was
used to analyze 13 PM10 filters from the suburban background station (BF), 36 PM10 filters from the
urban station (GC), 40 PM2.5 filters from the urban station (DB), and one composite sample of Saharan
dust deposited in Palermo town. A total of 1 g of Saharan dust was taken near GC station using a
plastic brush and tray and stored in plastic bags. The sample was initially sieved through a 63 µm
sieve to remove coarse components. Afterward, screening through a 20 µm mesh sieve was necessary
to obtain a finer fraction for FTIR analysis. The following were analyzed for water-soluble ions: 13
PM10 filters from BF station, 30 PM10 filters from GC station and 30 PM2.5 filters from DB station.

2.3. Analytical Procedures

2.3.1. FTIR Spectra

A Bruker Optics (Tensor 27) IR (Bruker Corporation, Billerica, MA, USA) spectrometer equipped
with a deuterated triglyceride sulfate detector was operated with Opus software from Bruker to obtain
the spectra of ambient air samples. An ATR accessory with a germanium crystal flat plate was coupled
with the spectrometer for data acquisition. Aerosol sample spectra were obtained over wavelengths
between 4000 and 400 cm–1 (mid-infrared region) with 2 cm–1 resolution by averaging 32 scans. Each
aerosol sample was scanned by placing the quartz fiber filter sample-side down on the ATR crystal and
applying the pressure tower. Each IR spectrum was corrected for optical effects with the ATR correction
algorithm in Opus. A blank quartz fiber spectrum was obtained with each set of daily samples to
account for any changes in the absorbance bands due to instrument drift. Between each sample
spectrum acquisition, the ATR crystal was cleaned with ethanol, and an air background spectrum was
obtained. The FTIR operation method is explained in Doyle [35] and Simonescu [36].

2.3.2. Water-Soluble Ions

Water-soluble ions were extracted from filter samples with 20 mL ultra-pure Milli-Q (Merck
Millipore, Burlington, MA, USA) water (18MΩ cm) and shaken for 24h. The extracts were filtered
through a 0.45 µm pore size polytetrafluoroethylene filter (Sartorius) and then stored in sterile 50 mL
polypropylene centrifuge tubes. Each extract was analyzed the day after the extraction procedure for
Ca2+, Mg2+, Na+, K+, Cl–, SO4

2–, and NO3
– ions by ion chromatography (Dionex 100), with precision

better than ± 5%. Cations were measured using a Dionex IonPac CS12A (Thermo Fisher Scientific,
Waltham, MA, USA) column with 20 mM methanesulfonic acid as the eluent. Anions were measured
using a Dionex IonPac AS14 (Thermo Fisher Scientific, Waltham, MA, USA) with 3.5 Mm Na2CO3 and
1.0 mM NaHCO3 as the eluent. The limit of detection was evaluated by solution extracts for three
blank filters in 0.02–0.05 and 0.04–0.05 mg/L for cations and anions, respectively. NH4

+ ions were
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determined spectrophotometrically at λ = 420 nm (Thermo Scientific Evolution 600) using Nessler’s
reagent (0.09 mol/L solution of potassium tetraiodomercurate (II) (K2[HgI4]) in 2.5 mol/L potassium
hydroxide). The ion chromatograph operation method is explained in Michalski [37].

3. Results and Discussion

3.1. Mass Levels of PM10 and PM2.5

Table 1 shows the mass levels of PM10 at the urban and peripheral stations (GC, DB, and BF) and
of PM2.5 at the urban DB station.

Table 1. Characteristics of PM10 and PM2.5 samples at the three monitoring stations during non-Saharan
dust events and Saharan dust events. Mass values expressed in µg/m3. # indicates measurements
carried out simultaneously.

November 2008–February 2009

PM10 PM2.5

BF station GC station DB station # DB station #

N 95 108 105 40
Mean 16 39 42 29

Std.Dev. 7 11 11 6
Median 15 39 43 30

Min 8 16 13 13
Max 44 69 74 40
Q10 10 26 28 22
Q25 12 32 35 25
Q75 17 46 49 33
Q90 27 53 55 37

Saharan Dust Events

N 7 7 8 4
Mean 130 158 133 78
Dev.St 89 81 59 28
Min 67 97 89 59
Max 261 276 220 120

The mean PM2.5 and PM10 concentrations fall within the range reported for European urban
areas [38–40]. The highest mean PM10 value was observed at the urban DB station (42 µg/m3), one
of the most heavily traffic-exposed sites in Palermo, followed by GC station (39 µg/m3) and BF
station (16 µg/m3). The average PM2.5 value observed at DB station is 29 µg/m3. For the 112 days
analyzed (November 2008–February 2009), Saharan dust events influenced mass levels in the Palermo
atmosphere on about 6% of the days. During these events, concentrations of 130–158 µg/m3 and
78 µg/m3 were measured for PM10 and PM2.5, respectively. In Palermo in February 2009, PM2.5

reached a daily concentration of 120 µg/m3 and PM10 reached values between 220 and 276 µg/m3

following a high-intensity Saharan dust event. The value of PM2.5 is comparable to that found by
Remoundaki et al. [41] in Athens in February 2009 (100 µg/m3). During other, less-intense Saharan
dust events, PM2.5 concentrations (average 62 µg/m3) increased by 50% and PM10 (average 86–119
µg/m3) by 65–80%. The values reported are higher than those published in previous studies concerning
southern Italy (Rome: PM2.5, 25.6 µg/m3; PM10, 47.2 µg/m3 [16]; Salento: PM2.5, 36.6 µg/m3; PM10,
137 µg/m3 [24]; Bari: PM2.5, 31–49 µg/m3; PM10, 50–71 µg/m3 [42]), but the higher percentages during
Saharan dust events are comparable [24,43–45]. In general, the contribution of particulate matter is
evidenced in coarse rather than fine fractions [41]. The influence of Saharan dust on the Mediterranean
basin has been estimated to be about 10–20% per year, thus many European countries have exceeded
the PM limits recommended by the European Directive. The PM2.5/PM10 ratio has been widely used in
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environmental studies as an indicator of the contribution from stationary vs. mobile source emissions
to the environment.

The average PM2.5/PM10 ratio measured at DB station is 0.70. This value is typical of urban
environments with high traffic density [26,40,46–49]. During Saharan events, the PM2.5/PM10 ratio
was only 0.58, indicating a greater natural contribution of coarse than fine particles.

3.2. Spectral Analysis

The ATR spectra of PM10 and PM2.5 are shown in Figure 3a–c. The spectra identify different
inorganic and organic molecules (Table 2).Int. J. Environ. Res. Public Health 2019, 16, x 7 of 15 
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Some peaks have no well-defined forms, and the presence of a shoulder indicates that there
are overlapping peaks due to several different types of molecules absorbing IR radiation within the
same range. From comparing the spectra, it is observed that the samples are dominated by inorganic
components common to all stations.

In PM10 and PM2.5 filters, we observed vibrational frequencies typical for sulfate, ammonium,
nitrate, and carbonate ions (603, 615, 670, and 1100 cm–1 (SO4

2–); 1414 cm–1 (NH4
+); 825 and, 1356 cm–1

(NO3
–); and 713, 730, and 877 cm–1 (CO3

2–). The presence of (NH4)2SO4 and NH4NO3 compounds
is supported by spectra shown in Figure 3b,c revealing absorption frequencies at 825 and 1356 cm–1

(group NO3
–), at 615 and 1100 cm–1 (group SO4

2–), and at 1414 cm–1 (NH4+ ion) [30,50]. The inferred
1100 cm–1 peak is a shoulder of the peak observed at 1060 cm–1. The 1100 cm–1 peak is assigned to the
v3 asymmetrical stretching vibration of sulfate ion [51,52].

In all spectra (for coarse and fine particles), absorption frequencies at 1620 cm–1 and in the range
of 3240–3400 cm–1 have been detected that can be attributed to O–H stretching, indicating crystalline
water in gypsum [34,53].

The presence of CaSO4 × 2H2O is more evident in coarse than fine particles. The common
presence of CaSO4 × 2H2O signals supports the widely accepted hypothesis that the sulfation process
is important in urban environments [54]. Varrica et al. [55] observed CaSO4 × 2H2O crust on CaCO3

particles by scanning electron microscopy (SEM) of samples also collected in Palermo. In samples of
“black crust” formed on historical buildings in Palermo, Montana et al. [56] determined δ34S values
ranging from –0.5 to +5.0%� (vs. Vienna Cañon Diablo Troilite (VCDT) scale), which suggests that
most of the sulfur was derived from fossil fuel combustion. Moreover, Cesari et al. [43] observed that
during Saharan dust events, the dominant form of sulfate is calcium sulfate rather than (NH4)2SO4.
The absorption peaks at 713, 730, and 877 cm–1 are typical for the CO3 group [53,57,58], and the FTIR
analysis of pure crystalline calcite and dolomite confirms that these peaks are related to CaCO3. The
peaks of halite between 1000 and 1200 cm–1 are not clearly visible due to the absorption linked with
the quartz filter. In the GC and BF samples, there is also a peak at 1620 cm–1 that can be attributed to
one of the peaks of halite; at 1414 cm–1 the peak of halite is not visible as it is very small and overlaps
with the ammonium ion peak.

Table 2. Typical peaks of inorganic and organic molecules identified in filter samples during non-Saharan
events and Saharan dust events.

Species Frequency (cm–1) in This
Study

Frequency (cm–1) from
Literature

References

Non-Saharan Events
SO4

2- 603; 615; 670; 1100 608; 615; 670; 1100 [30,35,36,51–53]
CO3

2- 713; 730; 877 713; 730; 873; 877 [53,57,58]
NO3

- 825; 1356 825; 1318–1410; 1350 [30,58]
NH4

+ 1414 1414 [50]
C=C 1510–1596 1463–1511–1596 [59,61]
C-H 1460; 2850; 2920; 2950 2850–2920; 2800–3000 [30,31,34,58–60]
Water (OH) 1620; 3200–3400; 3620 1620; 3200–3400; 3620 [34,53,62]
Al-O-Si 540 540 [57,58]
Si-O 1030 1030 [30,62]
C = O 1720 1720; 1722 [34,58]
Saharan Dust Events
O-Si-O 423; 463; 520 426; 468; 525 [63]
SO4

2- 603; 615; 670; 1110 608; 615; 670; 1100 [30,60]
CO3

2- 713; 730; 780; 877;1433 713; 730; 873; 877 [58,62]
Al-O-Si 750 750 [63,64]
Al-Al-OH 912 910 [62,65]
NO3

- 825; 1356 825; 1318–1410; 1350 [30,32,58]
NH4

+ 1414 1414 [50]
C = C 1510–1596 1463–1511–1596 [59,61]
C-H 1460; 2800–3000 1460; 2850–2920; 2800–3000 [30,31,34,58,59]

Water (OH) 688; 1620; 1685; 3260–3400;
3620; 3669; 3695

688; 1620; 3200–3400; 3620,
3669; 3695 [34,62,63,66]

Si-O 1010; 1032 1010; 1030; 1031 [30,62,67]
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Organic compounds are identified in the coarse and fine particle fractions of the urban stations
but are absent from the filters collected at the suburban station. The aliphatic hydrocarbons (2850,
2920, and 2950 cm–1) were clearly identified in the collected spectra (Figure 3b,c) [30,31,34,59–61]. The
stretching frequency at 2950 cm–1 is assigned to CH3 aliphatic carbon stretching absorption, while the
frequencies at 2924 and 2850 cm–1 are due to CH2 bonds. An absorption peak at 1460 cm–1 comprises
contributions from bending of CH3 and CH2 aliphatic carbon bonds [30,59]. Vibration around 1460
cm–1 is a shoulder of the peak at 1414 cm–1. The spectra for PM2.5 filters also show an absorbance peak
at 1596 cm–1, identified as a C = C group [59,61]. The identification of other peaks for C = C aromatic
group (1463–1511–1596 cm–1) is complicated by overlapping peaks due to several different types of
molecules that absorb IR radiation within the same range.

3.3. Spectral Analysis Of Samples Collected During Saharan Dust Episodes

The particulate matter collected during Saharan dust events show peaks belonging to a group of
clay minerals, which were not detected during non-Saharan events. Figure 4 shows the ATR spectra of
the urban area (GC) PM10 filter, the urban area (DB) PM2.5 filter, and the Saharan dust.
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Peaks at wavenumbers of 423, 463, and 520 cm–1 are associated with the O–Si–O bending of
palygorskite and illite (426, 468, and 525 cm–1) [63]. The peak at 750 cm–1 identifies the inner layer
vibration of Al–O–Si groups in illite [63,64]. Previous studies assigned the peak at 912 cm–1 to the
deformation of Al–Al–OH groups in the dioctahedral layer of palygorskite [62,65]. The identification
of kaolinite is characterized by the presence of peaks at 1010, 1032, and 1114 cm–1, representing the
Si–O stretching group [67]. Peaks at 1032 and 1114 cm–1 are not distinct because they simultaneously
characterize various molecules that vibrate in the same IR intervals, creating peak overlaps.

Peaks at 3260, 3400, 3620, 3669, and 3695 cm–1 are all linked to the vibration of –OH groups
belonging to different clay minerals. Peaks at 3260 and 3400 cm–1 are reported to relate to water
stretching in palygorskite [63,65]. The OH groups located between tetrahedral and octahedral sheets
are characterized by absorption near 3620 cm–1 in all clay minerals. They reside at the octahedral
surface of the layers, forming weak hydrogen bonds with the oxygens of the Si–O–Si bonds on the
lower surface of the next layer. A strong band at 3695 cm–1 relates to the in-phase symmetric stretching
vibration. Weak absorptions at 3669 cm–1 are assigned to out-of-plane stretching vibrations [68,69].
In these samples, we found the same organic components as observed in the samples taken during
non-Saharan events.
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3.4. Water-Soluble Ions

Table 3 shows the mean concentrations of soluble components of PM10 and PM2.5 filters. Inorganic
ions represent about 50%–70% of the total mass of PM10 and PM2.5.

Table 3. Soluble ion concentrations. Data expressed in µg/m3. nss, non-sea salt;
∑

TP, total mass of ions;
TPM, total particulate matter (µg/m3).

PM10 PM2.5

BF station GC station DB station

F- 0.15 0.15 0.17
Cl- 1.19 1.70 0.64

NO3
- 2.30 4.13 2.91

SO4
2- 2.69 2.26 2.49

Na+ 1.14 1.47 0.74
K+ 0.23 0.27 0.23

Mg2+ 0.20 0.24 0.09
Ca2+ 0.78 1.60 1.33
NH4

+ 0.96 1.32 1.52
nssSO4

2- 2.44 2.05 2.10
ΣTM 9.64 13.1 10.1
TPM 19.5 37.0 29.3

About 60% and 70% of total ions analyzed in PM10 and PM2.5 filters, respectively, are made up
of NH4

+, NO3
–, and SO4

2–. For urban stations (PM10 and PM2.5) the ammonium and calcium ions
(expressed in neq/m3) are the most abundant cations. Magnesium and potassium are less abundant,
contributing only about 1% to the total content of particulate matter. If the soluble calcium is derived
from the alteration of carbonate rocks, a geogenic contribution of 10–14% of the total mass of the
PM10 fraction from urban and suburban stations is estimated. In the fine PM2.5 fraction, a geogenic
contribution is estimated to account for 9% of the total mass at the urban station.

NO3
– and SO4

2– anions have the highest concentration at all stations. In this study, the contribution
of marine sulfate was calculated to have been around 6–10% in PM10 and 3% in PM2.5 fractions. The
main source of SO4

2– in the atmosphere is from gas-to-particle conversion of SO2. NO3
– ions derive

from the reaction of hydroxyl radicals, formed by photolysis of ozone molecules, with NOx emitted
by fossil fuel combustion. High concentrations of ammonium, sulfate, and nitrate ions demonstrate
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(nssSO4
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These sequences of reactions are strongly influenced by ambient temperature, relative humidity
conditions, incidence of solar radiation, and above all the concentration of primary gases [73]. The
equivalent ratio of NH4

+/nss–SO4
2– in urban PM10 and PM2.5 is more than 1.5, characterizing the

ambient atmosphere as ammonium-rich [74]. Nevertheless, as Figure 5 shows, the concentration of
ammonium ions is insufficient to completely neutralize H2SO4 and HNO3. Total neutralization of
the acid species is linked to the presence of carbonate rocks, abundant in the study area. The highest
chlorine and sodium contents found in coarse samples (GC and BF) range between 1.70 and 1.19 µg/m3

and 1.14 and 1.45 µg/m3, respectively. The main source of Cl– and Na+ in the study area is marine
spray, accounting for 11–15% of the total mass in the PM10 fraction from urban and suburban stations.
For fine PM2.5 fraction, sea salt contribution is estimated to account for 9% of the total mass at DB
station. The average Na/Cl equivalent ratio measured in the PM10 and PM2.5 filters ranges between 1.4
and 1.8. These values are higher than those of seawater (0.85) and halite (1.0), suggesting a loss of
chlorine ions due to chemical reactions that involve NaCl and HNO3 or H2SO4, bringing the formation
of NaNO3 or Na2SO4 and gaseous HCl [66]. Similarly, a deficit of ammonium with respect to the
collective concentration of SO4

2+ and NO3
– (neq/m3) suggests that a proportion of these ions is lost via

formation of NH4Cl or HCl and NH3 [47,51].

4. Conclusions

The main objective of this study was to verify the potential of ATR-FTIR to identify organic
and inorganic groups present in PM10 and PM2.5. The use of ATR-FTIR led to the identification of
absorption bands characteristic of sulfate, ammonium, nitrate, and carbonate by vibrational frequencies
at 603, 615, 670, and 1100 cm–1 for SO4

2—, at 1414 cm–1 for NH4
+, at 825 and 1356 cm–1 for NO3

–,
and at 713, 730, and 877 cm–1 for CO3

2– common to all filter types (PM10 and PM2.5). Vibration
frequencies at 1620 cm–1 and in the range of 3240–3400 cm–1 indicate O–H stretching of crystalline
water in gypsum. The presence of gypsum in the particulate matter of Palermo confirms the hypothesis
that sulfation processes play an important role in urban areas. Moreover, in urban spectra, several
organic compounds were identified, while aliphatic compounds were not detected at the suburban
station. The ATR-FTIR analysis of filters taken during Saharan dust events shows the presence of
absorbance peaks typical for clay minerals. The minerals found were palygorskite, illite, and kaolinite,
which are typical for Saharan desert environments.

The water-soluble components represent about 50%–70% of the total mass of PM10 and PM2.5.
Nitrate and sulfate ions had the highest concentrations at all stations, confirming their involvement in
secondary particulate formation. The results show that ammonium ions are not able to neutralize most
of the nitric and sulfuric acids present in aerosols. The main geogenic sources in the study area are
marine spray and local rocks.

The data of this study shows that ATR-FTIR, used here as a qualitative approach, is a powerful
analytical technique for the identification of inorganic and organic compounds in PM10 and PM2.5 filters.
Moreover, the simplicity of the substrate preparation, the excellent reproducibility of the results, the
non-destruction of the sample, and above all the fast identification of components of particulate matter
confirm the opportunity to use this analytical technique for qualitative analysis, and to characterize
variations in the chemical composition of aerosol particles during intense pollution episodes.
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