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Abstract

:

Electro-oxidation is an effective approach for the removal of 2-chlorophenol from wastewater. The modeling of the electrochemical process plays an important role in improving the efficiency of electrochemical treatment and increasing our understanding of electrochemical treatment without increasing the cost. The backpropagation artificial neural network (BP–ANN) model was applied to predict chemical oxygen demand (COD) removal efficiency and total energy consumption (TEC). Current density, pH, supporting electrolyte concentration, and oxidation–reduction potential (ORP) were used as input parameters in the 2-chlorophenol synthetic wastewater model. Prediction accuracy was increased by using particle swarm optimization coupled with BP–ANN to optimize weight and threshold values. The particle swarm optimization BP–ANN (PSO–BP–ANN) for the efficient prediction of COD removal efficiency and TEC for testing data showed high correlation coefficient of 0.99 and 0.9944 and a mean square error of 0.0015526 and 0.0023456. The weight matrix analysis indicated that the correlation of the five input parameters was a current density of 18.85%, an initial pH 21.11%, an electrolyte concentration 19.69%, an oxidation time of 21.30%, and an ORP of 19.05%. The analysis of removal kinetics indicated that oxidation–reduction potential (ORP) is closely correlated with the chemical oxygen demand (COD) and total energy consumption (TEC) of the electro-oxidation degradation of 2-chlorophenol in wastewater.
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1. Introduction


Wastewater produced by various industrial processes contains large quantities of chlorophenol compounds, which are highly toxic and resistant to biological degradation [1]. The compound 2-chlorophenol is a typical chlorophenol compound that is listed as a priority pollutant by the Environmental Protection Agency, given its carcinogenic properties [2,3]. Electro-oxidation, an effective technology that does not require the use of extra reagents, is commonly used to remove chlorophenol compounds from wastewater because of its high efficiency, rapid reaction rate, and environmental friendliness [4,5]. However, the energy cost of the electro-oxidation process limits its application [6].



The establishment of appropriate models for electro-oxidation is essential given the complexity of this process. Modeling of the electrochemical process plays an important role in improving the efficiency of electrochemical treatment and a further understanding of electrochemical treatment without increasing the cost. Empirical models and semi-empirical models, such as pseudo-first-order kinetics [7], pseudo-second-order kinetics [8], a computational fluid dynamics (CFD) model, and response surface methodology (RSM) model, are usually established for the prediction of electrochemical process behaviors. Bu et al. [9] established the kinetic model of the degradation of oxcarbazepine (OXC) using electrochemically-activated persulfate (EC/PS) based on two assumptions. Conventional mathematical or mechanistic models can be used to predict the final state of the system only under given circumstances [10]. Wang et al. [11] calculated the velocity distribution and turbulence distribution of a new type of tubular plunger flow reactor by CFD. CFD can reveal the mass transfer process and mechanism of an electrochemical reactor, but it is still affected by grid mass, transfer mode, and calculation [12,13]. Song et al. [14] optimized the electrochemical simultaneous removal of the ammonia nitrogen process using RSM, which showed a good prediction. The main disadvantage of RSM is that it cannot effectively improve approximation accuracy, even with an increase in the number of sample points. Electrochemistry is a complex non-linear process, and it is difficult to explain it clearly through traditional empirical and semi-empirical modeling.



In contrast to traditional mathematical models, scholars have done some research on the non-linear prediction model of the electrochemical process. Artificial Neural Networks (ANNs) do not require the modeling of a detailed mathematical formulation of a system and have been used to determine complex relationships between input and output data [15]. Daneshvar et al. [16] established an ANN model for the decolorization process of dyeing wastewater by electroflocculation. This model can predict the color removal rate under different experimental conditions. Researchers pointed out that ANN has good prospects for the prediction of complex systems [17,18]. Belkacem et al. [19] applied a backpropagation artificial neural network (BP–ANN) prediction of oxytetracycline removal in an electro-oxidation system, which chose 14 nodes from the hidden layer, the LM (Levenberg-Marquardt)algorithm, the logsig transfer function of the hidden layer, and the purelin transfer function of the output layer. However, the researchers did not verify the reliability of the network or compare the algorithms and transfer functions on the network. Moreover, BP–ANN easily falls into the local minimum and has a poor global convergence rate [20]. The further optimization of the BP–ANN has also attracted growing attention [21]. Particle swarm optimization (PSO) is an algorithm that simulates the foraging behavior of birds [22]. Khajeh and coworkers [23] integrated PSO in a BP–ANN model for the specification of optimal initial weights and threshold values by updating generations to avoid the local minimum and achieve global convergence quickly and correctly.



Establishing an efficient and reliable ANN model for predicting the behavior of electrochemical oxidation processes can reduce energy cost and is a fundamental step toward their control. The input parameters of ANN network are one of the key factors in establishing an ANN network. Oxidation–reduction potential (ORP) has been employed as an integrated indicator in various fields to describe the redox characteristic of any given chemical reaction system [24]. ORP has a good relationship with the chemical oxygen demand (COD) of electro-oxidation [25]. Wang and coworkers [26] constructed a model of the multiparameter linear relationship between ORP and Qsp (specific electrical charge) and between a COD and Cl−1 concentration to reflect quantitatively the effect of the current density, Cl−1 concentration, pollutant load, and reaction time on the electro-oxidation system. Basha et al. [27] built a BP–ANN model to predict the effect of electro-oxidation on COD removal, but ORP was not considered in the input parameters.



In this study, PSO–BP–ANN models were constructed to predict the COD removal efficiency and total energy consumption (TEC) of electro-oxidation. ORP was used as one of the input parameters. First, BP–ANN and the selection of the number of hidden layers and training algorithm were discussed in detail. Then, the PSO algorithm was used to optimize the weight and threshold of BP–ANN and identify the optimal parameters of the PSO algorithm. Experimental values were compared with output variables predicted by PSO–BP–ANN. The importance of each input variable was determined.




2. Materials and Methods


2.1. Data Set


All electro-oxidation experiments were conducted with a 3 L-capacity laboratory-scale plate cell with a circulating tank. The used datasets were obtained from a previous study [25]. A total of 190 experimental runs (Table A1) were performed in the galvanostatic mode under a current density of 8 mA cm−2 to 25 mA cm−2, an original pH of 3 to 11, an electrolyte concentration of 0.05mol L−1 to 0.12 mol L−1, a reaction time of 0 h to 2 h, and ORP values of −68 mV to 500 mV, as shown in Table 1.



During the Electro-oxidation, an ORP (SX-630, Sanxin, China) and a pH (SX711, Sanxin, China) probe were installed in the electrolysis bath for online monitoring of ORP/pH. COD was determined according to Chinese standard HJ/T 399-2007 with slight modifications. The solution was measured at a wavelength of 440 nm using a UV-visible spectrophotometer (UV-2910, Hitachi, Japan).



A specific electrical charge (Qsp, Ah L−1) was calculated by using the following equation [26]:


Qsp=j⋅A⋅tV



(1)




where j is current density (A cm−2), A is the effective area of the electrode (cm2), V is the effective volume of the plate cell (L), and t is the reaction time during the electro-oxidation process (h).



TEC (kWh m−3) was calculated in a previous study as follows [28]:


TEC=Qsp⋅U



(2)




where Qsp is a specific electrical charge, and U (V) is the cell voltage.




2.2. BP–ANN Coupled with PSO


ANNs have different architectures. The ANN used in this study has three layers: an input layer that receives electro-oxidation information, a hidden layer that processes information, and an output layer that calculates COD removal and TEC results [29]. During BP learning, the actual outputs are compared with the target values to derive error signals, which are propagated backward by layers to adjust the weights in all lower layers [30]. The architecture of a neural network and the BP algorithm is presented in Figure 1.



The flowchart of BP–ANN coupled with PSO is shown in Figure 2. The ANN model was developed using MATLAB R2016a software. A total of 190 runs of the electro-oxidation process data were applied to develop the models for the prediction of COD removal efficiency and TEC. The available data were divided into training, validation, and testing subsets, of which 80% (152) were randomly selected for network training, 10% (19) were used for validation, and 10% (19) were applied to test network accuracy. Current density, original pH, electrolyte concentration, oxidation time, and ORP were used as five input parameters, and COD removal efficiency and TEC were considered as the two output.



Two prediction score metrics, the coefficient of correlation (R2), and mean square error (MSE), were computed using the following equations to evaluate the fitting and prediction accuracy of the constructed models [31]:


R2=∑i=1n(fexp,i−Fexp)(fANN,i−FANN)∑i=1n((fexp,i−Fexp)2(fANN,i−FANN)2)



(3)






MSE=∑i=1n(fexp,i−fANN,i)2n



(4)




where Fexp=1n∑i=1nfexp,i, FANN=1n∑i=1nfANN,i, n is the number of samples used for modeling, fexp is the experimental value, and fANN is the network-predicted value.





3. Results and Discussion


3.1. Removal Kinetics


The apparent reaction rate constants for COD removal were calculated in accordance with Equation (5) [32]:


ln[CODt]=ln[COD0]−Kt



(5)




where COD0 and CODt are the COD values of the initial and final pollutant concentrations (mg L−1), respectively; t is the electrolysis time (min); and K is the apparent reaction rate constant (min−1). The apparent reaction rate constants calculated in accordance with Equation (3) for the current densities of 8, 10, 12, 14, 15, 18, 20, and 25 mA cm−2 were 0.0072, 0.0107, 0.0118, 0.0160, 0.0202, 0.0212, 0.0224, and 0.0232 min−1, respectively. The linear relationship between the logarithmic values of COD and electrolysis time is depicted in Figure 3. Table 2 shows that the correlation coefficient R2 of linear fitting was greater than 0.9989. This result indicates that COD removal satisfies the first-order reaction kinetics equation.



Other parameters, such as temperature (T), pH value, and electricity can be obtained when the influent quality and flow rate are held constant in the electrolytic cell. The kinetic constant K is only related to current density (j) under the conditions of the original pH of 3 and Na2SO4 concentration of 0.10 mol L−1 [11].




K=Mja



(6)





The relationship between K and J can be inferred from Table 2.




K=0.0012j0.9485



(7)





From Equation (5), Equation (7) can be expressed as


ln[CODt]=ln[COD0]−0.0012j0.9485t



(8)




which describes the relationship among COD, current density, and oxidation time.



The optimal electro-oxidation conditions were initially determined by considering the effective factors of current density, original pH value, and electrolyte concentration. A COD removal efficiency of 100% was obtained with the optimal operating parameters of a current density of 15 mA cm−2, an original pH of 3, and a Na2SO4 concentration of 0.10 mol L−1 at 120 min. The dependencies of the values of COD, ORP, TEC, and Qsp under a current density of 15 mA cm−2, an original pH of 3, and a Na2SO4 concentration of 0.10 mol L−1 during electrochemical oxidation are shown in Figure 4. COD removal efficiency, TEC, and Qsp increased with electro-oxidation time. COD removal efficiency, TEC, Qsp, and ORP were 77.9%, 24.2 kWh m−3, 1.375 Ah L−1, and 383 mV, respectively, when oxidation time was 1 h. The ORP value decreased from 494 mV to 190 mV within 5 min of electrolysis and then increased gradually to 500 mV during degradation.



The typical multiple regression equation showing the relationship among ORP, current density, original pH, Na2SO4 concentration, reaction time, and COD removal efficiency was obtained as follows:


COD%=−0.16276+0.00281j+0.01709pH+1.5595[Na2SO4]+0.00495t+9.766624E−4ORP



(9)







The typical multiple regression equation representing the relationship among influential parameters and TEC was obtained and is shown below:


TEC=−39.06431+1.97416j+0.2894pH+66.72156[Na2SO4]+0.46082t+0.00664ORP



(10)







The R2 values for COD removal efficiency and TEC were 0.8878 and 0.93223, respectively. These values reflect a good correlation among COD, TEC, j, pH, t, Na2SO4 concentration, and ORP. ORP values provide a complete indicator of the effect of current density, electrolyte concentration, pH, and reaction time on the performance of the electro-oxidation system. Therefore, the ORP value can be used as an effective controlling factor for the prediction of COD removal efficiency and the TEC of electro-oxidation.




3.2. BP–ANN Prediction of 2-Chlorophenol Removal


The tangent sigmoid was selected as the transfer function for the input layer nodes to the hidden layer, and the purelin was selected as the transfer function for the hidden layer nodes to the output layer. All data were normalized within a range of −1 and 1 before being fed to the networks to increase training speed and facilitate modeling and prediction.



In this study, the numbers of input and output nodes were 5 and 2, respectively, and were equal to the numbers of input and output data. The number of neurons has a considerable effect on network performance. For example, the network cannot achieve the desired error if the number of neurons is too small, or overfitting may occur if the number of neurons is too large. Thus, determining the appropriate number of neurons in the hidden layer is necessary. This number can usually be determined by using the following empirical formula in accordance with Hecht–Nielsen’s theorem [33]:


NH=2Ni+1



(11)




where NH is the number of hidden neurons, and Ni is the number of input variables, which is 5 in the present work. Equation (11) shows that the node number in the hidden layer was approximately 11. Then, BP networks with different hidden neurons from 6–16 were compared on the basis of the maximization of R2 and the minimization of MSE for the testing dataset. Table 3 shows that the BP–ANN that contains 6–16 hidden neurons in the prediction of the electro-oxidation process. The optimal BP–ANN model provided an R2 and MSE of 0.9344 and 0.0137232 for COD removal efficiency, respectively, and an R2 and MSE of 0.9355 and 0.013127 for TEC, respectively when the hidden neurons were 10. Under the optimal network, BP–ANN in the prediction of COD removal efficiency and TEC and the correlations between the experimental and predicted sets are illustrated in Figure 5. The error range of COD was (−0.058, 0.249) and TEC (−0.079, 0.391). The network performance is good, but the error range shows that the deviation of individual points is large.



The training algorithm also affects the performance of BP networks. A wide variety of training functions with 10 neurons used in the hidden layer was studied to select a good BP network. Table 4 presents the data for R2 and MSE under different training functions of BP networks. The Levenberg–Marquardt back propagation (trainlm) training algorithm, which maximized the R2 and minimized the MSE of COD removal efficiency and TEC, was identified as the best training function.




3.3. Optimization of the Weight and Threshold Value of BP–ANN


The PSO–BP–ANN can be optimized for selection purposes by optimizing (1) swarm size, (2) maximum iteration, (3) cognition coefficient C1, and (4) social coefficient C2 (Table A2). Table 5 displayed PSO control parameters, R2, and training MSE for the testing dataset. The PSO–ANN containing a swarm size of 50, a maximum iteration of 200, C1 of 1.5, and C2 of 1.5 was selected as the best model for the electrochemical process of interest. The optimal PSO–BP–ANN models provided R2 of 0.99 and 0.9944 for COD removal efficiency and TEC, and MSE values of 0.0015526 and 0.0023456, respectively, for the testing dataset. The performance of the optimal PSO–BP–ANN in the prediction of COD removal efficiency and TEC and the correlations between the experimental and predicted sets are illustrated in Figure 6. The PSO–BP–ANN selected for the efficient prediction of 2-Chlorophenol removal in an electro-oxidation system was containing 10 hidden neurons, trainlm training algorithm, swarm size of 50, maximum iteration of 200, C1 of 1.5, and C2 of 1.5.




3.4. Assessment of the Importance of Variables


The weight matrix of the neural net can be used to assess the relative importance of various input variables for output variables [31]. The relative importance of input variables on the value of COD removal efficiency and TEC as calculated by particle swarm optimization BP–ANN (PSO–BP–ANN) is shown in Table 6. Sensitivity analysis indicated order of relative importance the operational parameters on the electro-oxidation as: electrolysis time > pH > electrolyte concentration > ORP > current density. The table indicates that all of the variables have strong effects on COD removal efficiency and TEC. Therefore, none of the variables studied in this work should be neglected in the analysis.





4. Conclusions


In this study, the main object is development and construction of novel model that could make efficient prediction of electro-oxidation removal of 2-Chlorophenol on the basis of batch electro-oxidation experiments. The analysis of removal kinetics indicated that ORP was closely correlated with COD removal efficiency and TEC and was one of the important input parameters of PSO–BP–ANN. PSO–BP–ANN was developed through the optimization of the weights and thresholds of BP–ANN. The PSO–BP–ANN that contained 10 hidden neurons, trainlm training algorithm and possessed a swarm size of 50, maximum iteration of 200, C1 of 1.5, and C2 of 1.5 was identified as the best model for predicting 2-chlorophenol degradation through electro-oxidation. The PSO–BP–ANN model provided accurate predictions and R2 of 0.99 and 0.9944 for COD removal efficiency and TEC, and MSE values of 0.0015526 and 0.0023456 respectively for the testing dataset. The weight matrix revealed that the order of relative importance for the operational parameters of the electro-oxidation is: electrolysis time > pH > electrolyte concentration > ORP > current density. For comparative purposes, performance data for the ANN methodology in various electrochemical processes are summarized in Table A3.
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Table A1. The results of the electro-oxidation experiment.






Table A1. The results of the electro-oxidation experiment.





	Number
	Current Density
	pH
	Na2SO4 Concentration
	Time
	ORP
	COD Removal Efficiency
	TEC





	1
	8
	6.5
	0.1
	5
	12
	0.092
	0.940



	2
	10
	6.5
	0.1
	5
	14
	0.112
	1.354



	3
	14
	6.5
	0.1
	5
	71
	0.117
	2.018



	4
	15
	6.5
	0.1
	5
	80
	0.123
	2.250



	5
	16
	6.5
	0.1
	5
	125
	0.120
	2.443



	6
	18
	6.5
	0.1
	5
	130
	0.136
	3.128



	7
	20
	6.5
	0.1
	5
	144
	0.143
	3.133



	8
	25
	6.5
	0.1
	5
	150
	0.160
	3.958



	9
	15
	3
	0.1
	5
	190
	0.206
	2.200



	10
	15
	4
	0.1
	5
	180
	0.183
	2.406



	11
	15
	5
	0.1
	5
	173
	0.163
	2.313



	12
	15
	7
	0.1
	5
	60
	0.151
	2.506



	13
	15
	9
	0.1
	5
	-38
	0.119
	2.525



	14
	15
	11
	0.1
	5
	-68
	0.088
	2.434



	15
	15
	3
	0.05
	5
	162
	0.105
	2.025



	16
	15
	3
	0.08
	5
	183
	0.153
	2.438



	17
	15
	3
	0.1
	5
	190
	0.206
	2.200



	18
	15
	3
	0.12
	5
	180
	0.183
	2.688



	19
	8
	6.5
	0.1
	15
	50
	0.231
	2.820



	20
	10
	6.5
	0.1
	15
	61
	0.271
	4.063



	21
	12
	6.5
	0.1
	15
	73
	0.299
	5.019



	22
	14
	6.5
	0.1
	15
	100
	0.305
	6.055



	23
	15
	6.5
	0.1
	15
	140
	0.322
	6.750



	24
	16
	6.5
	0.1
	15
	190
	0.332
	7.328



	25
	20
	6.5
	0.1
	15
	220
	0.372
	9.400



	26
	25
	6.5
	0.1
	15
	230
	0.423
	11.875



	27
	15
	3
	0.1
	15
	275
	0.372
	6.600



	28
	15
	4
	0.1
	15
	210
	0.345
	7.219



	29
	15
	5
	0.1
	15
	187
	0.302
	6.938



	30
	15
	7
	0.1
	15
	120
	0.287
	7.519



	31
	15
	9
	0.1
	15
	56
	0.248
	7.575



	32
	15
	11
	0.1
	15
	13
	0.195
	7.301



	33
	15
	3
	0.05
	15
	250
	0.269
	6.075



	34
	15
	3
	0.08
	15
	265
	0.324
	7.313



	35
	15
	3
	0.1
	15
	275
	0.372
	6.600



	36
	15
	3
	0.12
	15
	230
	0.360
	8.063



	37
	8
	6.5
	0.1
	25
	60
	0.338
	4.700



	38
	10
	6.5
	0.1
	25
	70
	0.394
	6.771



	39
	12
	6.5
	0.1
	25
	80
	0.438
	8.365



	40
	14
	6.5
	0.1
	25
	112
	0.461
	10.092



	41
	15
	6.5
	0.1
	25
	156
	0.484
	11.250



	42
	16
	6.5
	0.1
	25
	224
	0.499
	12.213



	43
	18
	6.5
	0.1
	25
	256
	0.544
	15.638



	44
	20
	6.5
	0.1
	25
	259
	0.550
	15.667



	45
	25
	6.5
	0.1
	25
	270
	0.623
	19.792



	46
	15
	3
	0.1
	25
	290
	0.484
	11.000



	47
	15
	4
	0.1
	25
	231
	0.450
	12.031



	48
	15
	5
	0.1
	25
	201
	0.396
	11.563



	49
	15
	7
	0.1
	25
	145
	0.377
	12.531



	50
	15
	9
	0.1
	25
	85
	0.349
	12.625



	51
	15
	11
	0.1
	25
	44
	0.291
	12.169



	52
	15
	3
	0.05
	25
	278
	0.384
	10.125



	53
	15
	3
	0.08
	25
	280
	0.456
	12.188



	54
	15
	3
	0.1
	25
	290
	0.484
	11.000



	55
	15
	3
	0.12
	25
	245
	0.493
	13.438



	56
	8
	6.5
	0.1
	35
	73
	0.428
	6.580



	57
	10
	6.5
	0.1
	35
	80
	0.498
	9.479



	58
	12
	6.5
	0.1
	35
	91
	0.556
	11.711



	59
	14
	6.5
	0.1
	35
	125
	0.584
	14.128



	60
	15
	6.5
	0.1
	35
	170
	0.612
	15.750



	61
	16
	6.5
	0.1
	35
	240
	0.637
	17.099



	62
	18
	6.5
	0.1
	35
	260
	0.671
	21.893



	63
	20
	6.5
	0.1
	35
	273
	0.688
	21.933



	64
	25
	6.5
	0.1
	35
	283
	0.752
	27.708



	65
	15
	3
	0.1
	35
	310
	0.592
	15.400



	66
	15
	4
	0.1
	35
	240
	0.550
	16.844



	67
	15
	5
	0.1
	35
	210
	0.472
	16.188



	68
	15
	7
	0.1
	35
	180
	0.458
	17.544



	69
	15
	9
	0.1
	35
	100
	0.424
	17.675



	70
	15
	11
	0.1
	35
	53
	0.363
	17.036



	71
	15
	3
	0.05
	35
	292
	0.477
	14.175



	72
	15
	3
	0.08
	35
	305
	0.566
	17.063



	73
	15
	3
	0.1
	35
	310
	0.592
	15.400



	74
	15
	3
	0.12
	35
	303
	0.588
	18.813



	75
	8
	6.5
	0.1
	45
	85
	0.497
	8.460



	76
	10
	6.5
	0.1
	45
	110
	0.574
	12.188



	77
	12
	6.5
	0.1
	45
	115
	0.640
	15.057



	78
	14
	6.5
	0.1
	45
	153
	0.674
	18.165



	79
	15
	6.5
	0.1
	45
	172
	0.706
	20.250



	80
	16
	6.5
	0.1
	45
	248
	0.736
	21.984



	81
	18
	6.5
	0.1
	45
	270
	0.762
	28.148



	82
	20
	6.5
	0.1
	45
	287
	0.786
	28.200



	83
	25
	6.5
	0.1
	45
	292
	0.836
	35.625



	84
	15
	3
	0.1
	45
	324
	0.690
	19.800



	85
	15
	4
	0.1
	45
	260
	0.640
	21.656



	86
	15
	5
	0.1
	45
	218
	0.546
	20.813



	87
	15
	7
	0.1
	45
	190
	0.543
	22.556



	88
	15
	9
	0.1
	45
	101
	0.487
	22.725



	89
	15
	11
	0.1
	45
	66
	0.428
	21.904



	90
	15
	3
	0.05
	45
	301
	0.569
	18.225



	91
	15
	3
	0.08
	45
	318
	0.656
	21.938



	92
	15
	3
	0.1
	45
	324
	0.690
	19.800



	93
	15
	3
	0.12
	45
	310
	0.700
	24.188



	94
	8
	6.5
	0.1
	55
	90
	0.550
	10.340



	95
	10
	6.5
	0.1
	55
	120
	0.640
	14.896



	96
	12
	6.5
	0.1
	55
	130
	0.704
	18.403



	97
	14
	6.5
	0.1
	55
	170
	0.741
	22.202



	98
	15
	6.5
	0.1
	55
	179
	0.774
	24.750



	99
	16
	6.5
	0.1
	55
	250
	0.804
	26.869



	100
	18
	6.5
	0.1
	55
	276
	0.819
	30.525



	101
	20
	6.5
	0.1
	55
	286
	0.840
	34.467



	102
	25
	6.5
	0.1
	55
	293
	0.884
	43.542



	103
	15
	3
	0.1
	55
	383
	0.779
	24.200



	104
	15
	4
	0.1
	55
	288
	0.718
	26.469



	105
	15
	5
	0.1
	55
	256
	0.614
	25.438



	106
	15
	7
	0.1
	55
	205
	0.621
	27.569



	107
	15
	9
	0.1
	55
	106
	0.545
	27.775



	108
	15
	11
	0.1
	55
	83
	0.475
	26.771



	109
	15
	3
	0.05
	55
	312
	0.651
	22.275



	110
	15
	3
	0.08
	55
	353
	0.734
	26.813



	111
	15
	3
	0.1
	55
	383
	0.779
	24.200



	112
	15
	3
	0.12
	55
	363
	0.765
	29.563



	113
	8
	6.5
	0.1
	70
	97
	0.617
	13.160



	114
	10
	6.5
	0.1
	70
	124
	0.717
	18.958



	115
	12
	6.5
	0.1
	70
	160
	0.782
	23.422



	116
	14
	6.5
	0.1
	70
	186
	0.819
	28.257



	117
	15
	6.5
	0.1
	70
	193
	0.849
	31.500



	118
	16
	6.5
	0.1
	70
	251
	0.869
	34.197



	119
	18
	6.5
	0.1
	70
	282
	0.891
	43.785



	120
	20
	6.5
	0.1
	70
	288
	0.902
	43.867



	121
	25
	6.5
	0.1
	70
	292
	0.925
	55.417



	122
	15
	3
	0.1
	70
	410
	0.857
	30.800



	123
	15
	4
	0.1
	70
	305
	0.804
	33.688



	124
	15
	5
	0.1
	70
	280
	0.712
	32.375



	125
	15
	7
	0.1
	70
	215
	0.728
	35.088



	126
	15
	9
	0.1
	70
	127
	0.635
	35.350



	127
	15
	11
	0.1
	70
	87
	0.557
	34.073



	128
	15
	3
	0.05
	70
	321
	0.721
	28.350



	129
	15
	3
	0.08
	70
	383
	0.824
	34.125



	130
	15
	3
	0.1
	70
	410
	0.857
	30.800



	131
	15
	3
	0.12
	70
	380
	0.826
	37.625



	132
	8
	6.5
	0.1
	90
	105
	0.691
	16.920



	133
	10
	6.5
	0.1
	90
	139
	0.791
	24.375



	134
	12
	6.5
	0.1
	90
	160
	0.863
	30.114



	135
	14
	6.5
	0.1
	90
	198
	0.882
	36.330



	136
	15
	6.5
	0.1
	90
	205
	0.914
	40.500



	137
	16
	6.5
	0.1
	90
	252
	0.924
	43.968



	138
	18
	6.5
	0.1
	90
	282
	0.963
	56.295



	139
	20
	6.5
	0.1
	90
	291
	0.975
	56.400



	140
	25
	6.5
	0.1
	90
	296
	0.981
	71.250



	141
	15
	3
	0.1
	90
	435
	0.931
	39.600



	142
	15
	4
	0.1
	90
	356
	0.89
	43.313



	143
	15
	5
	0.1
	90
	313
	0.834
	41.625



	144
	15
	7
	0.1
	90
	230
	0.813
	45.113



	145
	15
	9
	0.1
	90
	146
	0.729
	45.450



	146
	15
	11
	0.1
	90
	98
	0.663
	43.808



	147
	15
	3
	0.05
	90
	335
	0.792
	36.450



	148
	15
	3
	0.1
	90
	435
	0.931
	39.600



	149
	15
	3
	0.12
	90
	423
	0.893
	48.375



	150
	8
	6.5
	0.1
	110
	121
	0.737
	20.680



	151
	10
	6.5
	0.1
	110
	140
	0.827
	29.792



	152
	12
	6.5
	0.1
	110
	173
	0.894
	36.806



	153
	14
	6.5
	0.1
	110
	193
	0.920
	44.403



	154
	15
	6.5
	0.1
	110
	210
	0.947
	49.500



	155
	16
	6.5
	0.1
	110
	254
	0.951
	53.739



	156
	18
	6.5
	0.1
	110
	285
	0.981
	68.805



	157
	20
	6.5
	0.1
	110
	291
	0.990
	68.933



	158
	25
	6.5
	0.1
	110
	293
	1.000
	87.083



	159
	15
	3
	0.1
	110
	480
	1.000
	48.400



	160
	15
	5
	0.1
	110
	330
	0.931
	50.875



	161
	15
	7
	0.1
	110
	235
	0.900
	55.138



	162
	15
	9
	0.1
	110
	150
	0.809
	55.550



	163
	15
	11
	0.1
	110
	108
	0.740
	53.543



	164
	15
	3
	0.05
	110
	367
	0.846
	44.550



	165
	15
	3
	0.08
	110
	412
	0.933
	53.625



	166
	15
	3
	0.1
	110
	480
	1
	48.400



	167
	15
	3
	0.12
	110
	430
	0.927
	59.125



	168
	8
	6.5
	0.1
	120
	125
	0.76
	22.560



	169
	10
	6.5
	0.1
	120
	143
	0.845
	32.500



	170
	12
	6.5
	0.1
	120
	182
	0.911
	40.152



	171
	14
	6.5
	0.1
	120
	189
	0.933
	48.440



	172
	15
	6.5
	0.1
	120
	215
	0.959
	54.000



	173
	16
	6.5
	0.1
	120
	256
	0.96
	58.624



	174
	18
	6.5
	0.1
	120
	283
	0.99
	75.060



	175
	20
	6.5
	0.1
	120
	291
	1
	75.200



	176
	25
	6.5
	0.1
	120
	292
	1
	95.000



	177
	15
	3
	0.1
	120
	500
	1
	52.800



	178
	15
	4
	0.1
	120
	420
	0.984
	57.750



	179
	15
	5
	0.1
	120
	346
	0.953
	55.500



	180
	15
	7
	0.1
	120
	240
	0.924
	60.150



	181
	15
	9
	0.1
	120
	152
	0.832
	60.600



	182
	15
	11
	0.1
	120
	115
	0.767
	58.410



	183
	15
	3
	0.05
	120
	370
	0.858
	48.600



	184
	15
	3
	0.08
	120
	435
	0.936
	58.500



	185
	15
	3
	0.1
	120
	500
	1.000
	52.800



	186
	15
	3
	0.12
	120
	435
	0.940
	64.500



	187
	12
	6.5
	0.1
	5
	43
	0.118
	1.673



	188
	18
	6.5
	0.1
	15
	200
	0.37
	9.383



	189
	15
	4
	0.1
	110
	380
	0.957
	52.938



	190
	15
	3
	0.08
	90
	400
	0.891
	43.875
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Table A2. Partly of PSO–BP–ANN training function code.
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	Training Function Code





	net = newff(inputn,outputn,hiddennum,{‘logsig’,‘purelin’},‘traingdx’);

c1 = 1.5;

c2 = 1.5;

maxgen = 200;

sizepop = 50;

Vmax = 1;

Vmin = −1;

popmax = 5;

popmin = −5;

for i = 1:sizepop

pop(i,:) = 5 * rands(1,numsum);

V(i,:) = 1 * rands(1,numsum);

fitness(i) = fun(pop(i,:),inputnum,hiddennum,outputnum,net,inputn,outputn);

[bestfitness bestindex] = min(fitness);

zbest = pop(bestindex,:);

gbest = pop;

fitnessgbest = fitness;

fitnesszbest = bestfitness;

for i = 1:maxgen

V(j,:) = w * V(j,:) + c1 * rand * (gbest(j,:) − pop(j,:)) + c2 * rand * (zbest − pop(j,:));

V(j,find(V(j,:) > Vmax)) = Vmax;

V(j,find(V(j,:) < Vmin)) = Vmin;

pop(j,:) = pop(j,:) + 0.2 * V(j,:);

pop(j,find(pop(j,:) > popmax)) = popmax;

pop(j,find(pop(j,:) < popmin)) = popmin;

pos = unidrnd(numsum);

if rand > 0.95

pop(j,pos) = 5 * rands(1,1);

fitness(j) = fun(pop(j,:),inputnum,hiddennum,outputnum,net,inputn,outputn);

for j = 1:sizepop

if fitness(j) < fitnessgbest(j)

gbest(j,:) = pop(j,:);

fitnessgbest(j) = fitness(j);

if fitness(j) < fitnesszbest

zbest = pop(j,:);

fitnesszbest = fitness(j);
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Table A3. ANN models for applications in various electrochemical processes.






Table A3. ANN models for applications in various electrochemical processes.





	Type of Process
	Input Variable
	Output Variable
	Types of the ANN Model
	R2
	References





	electrocoagulation
	Current density, electrolysis time, initial pH and dye concentration, conductivity, retention time of sludge and distance between electrodes
	Color removal efficiency
	BP–ANN
	0.974
	Daneshvar et al. [16]



	electro-oxidation
	Intensity of current, reaction time, pH, nature of electrolyte, concentration of electrolyte
	Degradation rate of oxytetracycline
	BP–ANN
	0.99
	Belkacem et al. [19]



	electrochemically activated persulfate
	Electrolysis time, applied current, persulfate, pH
	Sulfamethoxazoleremoval efficicency
	BP–ANN
	0.9398
	Zhang et al. [10]



	electrocoagulation-flotation
	Initial HA concentration, initial pH, electrical conductivity, current density, number of pulses
	Humica acid
	BP–ANN
	0.966
	Hasani et al. [34]
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Figure 1. Architecture of an artificial neural network (ANN) and feed-forward back-propagation algorithm. 
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Figure 2. Flowchart of a backpropagation artificial neural network (BP–ANN) combined with particle swarm optimization (PSO). 
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Figure 3. Linear relationship between the logarithmic values of chemical oxygen demand (COD) and electrolysis time. 
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Figure 4. COD removal efficiency, ORP, total energy consumption (TEC), and Qsp under a current density of 15 mA cm−2, original pH of 3, and an Na2SO4 concentration of 0.10 mol L−1. 
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Figure 5. Performance of the BP–ANN predicting COD removal efficiency and TEC between experimental and predicted data sets (COD removal efficiency testing set (a), TEC testing set (b)); correlations between experimental and predicted set (COD removal efficiency testing set (c), TEC testing set (d)). 
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Figure 6. Performance of the particle swarm optimization BP–ANN (PSO–BP–ANN) predicting COD removal efficiency and TEC between experimental and predicted data sets (COD removal efficiency testing set (a), TEC testing set (b)); correlations between experimental and predicted set (COD removal efficiency testing set (c), TEC testing set (d)). 
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Table 1. Experimental conditions. ORP, oxidation–reduction potential.
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	Run no.
	Current Density (mA cm−2)
	Na2SO4 Concentration (mol L−1)
	Initial pH
	Electrolysis Time (h)
	ORP
	Flow Mode





	0–190
	8–25
	0.05–0.12
	3–11
	0–2
	−68–500
	continuous
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Table 2. K and correlation coefficient values under various current densities.
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	Current Density j (mA cm−2)
	Regression Line
	K (min−1)
	R2





	8
	Y = 0.00724x + 5.59842
	0.0072
	0.9999



	10
	Y = −0.01074x + 5.59842
	0.0107
	0.9999



	12
	Y = −0.01177x + 5.59842
	0.0118
	0.9998



	14
	Y = −0.01602x + 5.59842
	0.0160
	0.9998



	15
	Y = −0.02023x + 5.59842
	0.0202
	0.9997



	18
	Y = −0.02121x + 5.59842
	0.0212
	0.9995



	20
	Y = −0.02242 + 5.59842
	0.0224
	0.9992



	25
	Y = −0.02322 + 5.59842
	0.0232
	0.9989
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Table 3. Evaluation of the prediction performance of the BP–ANN model for the testing dataset.
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NH

	
COD Removal Efficiency

	
TEC




	
R2

	
MSE

	
R2

	
MSE






	
6

	
0.9151

	
0.0155151

	
0.9277

	
0.014145




	
7

	
0.8741

	
0.0127321

	
0.8896

	
0.013234




	
8

	
0.8781

	
0.0152728

	
0.9025

	
0.016566




	
9

	
0.9292

	
0.0149617

	
0.9148

	
0.003826




	
10

	
0.9344

	
0.0137232

	
0.9355

	
0.013127




	
11

	
0.8998

	
0.0146919

	
0.9051

	
0.016887




	
12

	
0.8447

	
0.0165818

	
0.9077

	
0.014058




	
13

	
0.9032

	
0.0141709

	
0.9185

	
0.013157




	
14

	
0.8231

	
0.0158827

	
0.893

	
0.016551




	
15

	
0.874

	
0.0165818

	
0.8987

	
0.014344




	
16

	
0.8451

	
0.0153163

	
0.9021

	
0.013923
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Table 4. Predictions of backpropagation (BP) models with different training algorithms for the testing dataset.






Table 4. Predictions of backpropagation (BP) models with different training algorithms for the testing dataset.





	
BP–ANN

	
Training Function

	
COD Removal Efficiency

	
TEC




	
R2

	
MSE

	
R2

	
MSE






	
Batch training with weight and bias learning rules

	
trainb

	
0.86209

	
0.0134868

	
0.88977

	
0.0162386




	
BFGS quasi-Newton backpropagation

	
trainbfg

	
0.90721

	
0.0161285

	
0.77684

	
0.0184532




	
Bayesian regularization backpropagation

	
trainbr

	
0.8426

	
0.012

	
0.84645

	
0.0157329




	
Unsupervised batch training with weight and bias learning rules

	
trainbu

	
0.91427

	
0.0143475

	
0.84693

	
0.0159821




	
Cyclical order weight/bias training

	
trainc

	
0.79387

	
0.0183421

	
0.78352

	
0.0173493




	
Powell-Beale conjugate gradient backpropagation

	
traincgb

	
0.84096

	
0.0183258

	
0.81842

	
0.016399




	
Fletcher-Reeves conjugate gradient backpropagation

	
traincgf

	
0.88913

	
0.0159525

	
0.89006

	
0.0144586




	
Polak-Ribi’ere conjugate gradient backpropagation

	
traincgp

	
0.89724

	
0.0153866

	
0.73305

	
0.0191479




	
Batch gradient descent

	
traingd

	
0.91312

	
0.016002

	
0.88845

	
0.0158414




	
Gradient descent with adaptive learning rate back propagation

	
traingda

	
0.91939

	
0.0191324

	
0.88416

	
0.0159636




	
Batch gradient descent with momentum

	
traingdm

	
0.88482

	
0.0163147

	
0.85786

	
0.0184368




	
Variable learning rate backpropagation

	
traingdx

	
0.91799

	
0.0143824

	
0.78431

	
0.0189369




	
Levenberg–Marquardt back-propagation

	
trainlm

	
0.9344

	
0.0137232

	
0.9355

	
0.013127
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Table 5. PSO–ANN with different parameters of the PSO algorithm.
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Number of Neurons

	
Swarm Size

	
Max Iteration

	
Cognition Coefficient (C1)

	
Social Coefficient (C2)

	
COD Removal Efficiency

	
TEC




	
R2

	
MSE

	
R2

	
MSE






	
10

	
10

	
200

	
1.5

	
1.5

	
0.9528

	
0.0024367

	
0.9781

	
0.0024975




	
10

	
30

	
200

	
1.5

	
1.5

	
0.9783

	
0.0034865

	
0.9878

	
0.0022




	
10

	
50

	
200

	
1.5

	
1.5

	
0.99

	
0.0015526

	
0.9944

	
0.0023456




	
10

	
70

	
200

	
1.5

	
1.5

	
0.976

	
0.0015874

	
0.9878

	
0.0038921




	
10

	
100

	
200

	
1.5

	
1.5

	
0.9736

	
0.00173

	
0.9977

	
0.003281




	
10

	
120

	
200

	
1.5

	
1.5

	
0.98

	
0.0019062

	
0.9983

	
0.0031672




	
10

	
50

	
100

	
1.5

	
1.5

	
0.9852

	
0.0011566

	
0.9834

	
0.0012677




	
10

	
50

	
150

	
1.5

	
1.5

	
0.9695

	
0.0021488

	
0.9876

	
0.001835




	
10

	
50

	
250

	
1.5

	
1.5

	
0.9891

	
0.0012508

	
0.9812

	
0.0033047




	
10

	
50

	
200

	
0.5

	
2.5

	
0.9767

	
0.0024646

	
0.9882

	
0.0026686




	
10

	
50

	
200

	
1

	
2

	
0.9888

	
0.00179873

	
0.9891

	
0.0012586




	
10

	
50

	
200

	
2

	
1

	
0.9874

	
0.0023016

	
0.9919

	
0.0034017
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Table 6. Relative importance of input variables on the value of COD removal efficiency and TEC.






Table 6. Relative importance of input variables on the value of COD removal efficiency and TEC.





	Input Variable
	Importance (%)





	current density
	18.85%



	original pH
	21.11%



	electrolyte concentration
	19.69%



	electro-oxidation time
	21.30%



	ORP
	19.05%



	Total
	100%
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