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Abstract: Energy-saving and low-carbon technologies play important roles in reducing environmental
risk and developing green tourism. An energy-saving and low-carbon technology scheme selection
may often involve multiple criteria and sub-criteria as well as multiple stakeholders or decision
makers, and thus can be structured as a hierarchical multi-criteria group decision making problem.
This paper proposes a framework to solve group consensus decision making problems, where decision
makers’ preferences between the alternatives considered with respective to each criterion are elicited
by the paired comparison method, and expressed as triangular fuzzy preference relations (TFPRs).
The paper first simplifies the existing computation formulas used to determine triangular fuzzy
weights of TFPRs. A consistency index is then devised to measure the inconsistency degree of a TFPR
and is used to check acceptable consistency of TFPRs. By introducing a possibility degree formula
of comparing any two triangular fuzzy weights, an index is defined to measure the consensus level
between an individual ranking order and the group ranking order for all alternatives. A consensus
model is developed in detail for solving group decision making problems with TFPRs. A case study
of selecting energy-saving and low-carbon technology schemes in star hotels is provided to illustrate
how to apply the proposed group decision making consensus model in practice.

Keywords: green tourism; energy-saving and low-carbon; group decision making; consistency
index; consensus

1. Introduction

The tourism industry has become one of the advantageous industries for developing the
economy in China. However, this industry usually links a mass of energy consumption and carbon
emissions [1,2], and has caused an increasing stress on the environment [3]. To save energy and
reduce carbon emissions, the Chinese government has strongly promoted the development of the
green economy. Green tourism has been considered an effective solution for energy-saving and
environmental protection [4,5]. Constructing an energy-saving and low-carbon system in a star hotel
is the fundamental way to respond in green tourism development [6,7]. On the other hand, there often
exist different technologies used in constructing energy-saving and low-carbon systems in star hotels.
Therefore, it is necessary to select the best one from multiple energy-saving and low-carbon technology
schemes when a star hotel wishes to associate with green tourism.
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Selection of energy-saving and low-carbon technology schemes in star hotels is frequently based
on multiple assessment criteria and involves multiple experts or decision makers. This implies that
such a selection can be viewed as a multi-criteria decision making (MCDM) problem with a group
of experts.

The paired comparison method is a popular approach to eliciting decision makers’ preferences
or judgments for solving MCDM problems. The judgments in typical paired comparison matrices
are characterized by exact ratios. In order to treat with fuzziness of linguistic term-based preferences,
Van Laarhoven and Pedrycz [8] proposed the concept of triangular fuzzy numbers and introduced
triangular fuzzy preference relations (TFPRs) to model decision makers’ fuzzy judgments. Because
decision input information often involves ambiguity, the TFPR based analytic hierarchy process (AHP)
(also called fuzzy AHP) has become a common MCDM method, and has triggered a large number of
applications in solving real-world decision problems [9].

In group MCDM with paired comparisons, a crucial issue is to check the quality of judgments
provided by decision makers, where consistency and acceptable consistency play key roles. For typical
paired comparison matrices, Saaty [10] proposed a consistency index (CI) to measure inconsistency
degrees and introduced a consistency ratio (CR) to check acceptable consistency. Crawford &
Williams [11] put forward another row-geometric-mean-based CI, which was formulated as a geometric
consistency index (GCI) in [12]. For TFPRs, different consistency models have been developed in the
literature [13–16]. Recently, Wang [16] used basic triangular fuzzy weights to define consistent TFPRs,
and presented computation formulas used to determine triangular fuzzy weights of TFPRs. Some
researchers [13,15,16] have pointed out that it is a challenge to develop an appropriate consistency
index for measuring inconsistency of TFPRs and checking acceptable consistency of TFPRs.

Group consensus decision making with paired comparisons involves three different processes.
The first process is to check acceptable consistency of individual judgments. The second process
called a consensus reaching process is to seek a solution that is sufficiently supported by all decision
makers. The last process is to derive a ranking order of all alternatives considered, or to select the
best alternative(s). In solving group consensus decision making problems, it is important to develop
a consensus model due to the fact that there often exists a large difference among initial judgments
provided by decision makers, and thus different ranking orders may be obtained from individual
judgments. On the other hand, it is hard to implement a unanimous consensus in solving an actual
group decision making problem. A practice method is to use soft consensus measurement [17].
Different soft consensus models have been devised under fuzzy environments [18]. Chiclana et al. [19]
gave a comparative study on similarity-based soft consensus models. For hesitant linguistic group
decision making, Dong et al. [20] developed a minimum adjustment soft consensus model. Xu et al. [21]
proposed a soft consensus model of group decision making with hesitant fuzzy preference relations,
and applied it in water allocation management. Soft consensus models of group decision making
with intuitionistic fuzzy preference relations can be found in [22,23]. Tan et al. [24] put forward
a soft consensus model of group decision making with interval fuzzy preference relations, and
used it to solve cooking method selection problems for decreasing organic pollutants in food of
animal origin. However, there are two main limitations in the aforementioned soft consensus models:
(i) acceptable consistency of individual fuzzy judgments is not enough considered; and (ii) they are
based on similarity between individual judgments and aggregated group preferences, implying that
the similarity between individual and group decision results is not sufficiently taken into account.

In this paper, we simplify the triangular fuzzy weight computation formulas given in [16]. Based
on the simplified expressions, a consistency index is presented to measure the inconsistency degree
of a TFPR, and used to check acceptable consistency of TFPRs. We put forward a possibility degree
formula for comparing and ranking triangular fuzzy weights. A likelihood degree matrix based index
is defined to measure the consensus level between individual and group decision results. Based on the
proposed consistency index and consensus index, the paper develops a consensus model for solving
group decision making problems with TFPRs.
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The remainder of the paper is organized as follows. Section 2 provides the theoretical background,
including triangular fuzzy numbers, consistency and triangular fuzzy weights of TFPRs. In Section 3,
we simplify the triangular fuzzy weight computation formulas and develop a consistency index
for TFPRs. A likelihood degree matrix-based consensus index is defined and a consensus model of
group decision making with TFPRs is proposed in Section 4. Section 5 offers a case study of selecting
energy-saving and low-carbon technology schemes in star hotels to examine the developed fuzzy
group consensus decision making model. Finally, Section 6 draws concluding remarks.

2. Theoretical Background

2.1. Triangular Fuzzy Numbers and Triangular Fuzzy Preference Relations

The fuzzy set theory introduced by Zadeh [25] uses membership functions to represent possibility
distributions of imprecise data. A triangular fuzzy number ã is a fuzzy subset of the real line with the
following membership function:

µã(x) =


x−l
m−l , l ≤ x ≤ m
u−x
u−m , m < x ≤ u

0, Otherwise

(1)

where m is the modal value of ã, and l and u are the lower and upper bounds of the support interval of
ã, respectively.

Obviously, µã(x) is a triangular and piecewise linear function. Thus, the triangular fuzzy number
ã can be characterized by a triplet (l, m, u). If l > 0, then ã is called a positive triangular fuzzy number.
In addition, the reciprocal of ã is often denoted by ãc, that is, ãc = (1/u, 1/m, 1/l).

Triangular fuzzy numbers are an effective tool for modelling semantic values of linguistic
terms. In constructing fuzzy-based decision support systems, we need to assign a set of fuzzy
numbers corresponding to a linguistic term set [26,27]. Different triangular fuzzy assignment
models (also called triangular fuzzy scales) have been proposed in the literature [28–31]. Recently,
Centobelli et al. [32,33] used trapezoidal fuzzy numbers to assign two linguistic term sets respectively
characterizing formalization and sharing degrees of knowledge management tools and knowledge
management practices.

In fuzzy MCDM with pairwise comparison matrices, the linguistic term set used must be bipolar,
and must have a neutral linguistic term, such as “Indifference” or “Equal importance”. This implies
that the set of the codified triangular fuzzy numbers has reciprocity. In other words, for any triangular
fuzzy number ã in the set, its reciprocal ãc is also an element of the set.

Once linguistic term-based triangular fuzzy scales have been established, decision makers can use
them to elicit paired comparison results, and TFPRs can be employed to describe the decision makers’
fuzzy judgments.

Let X = {x1, x2, ..., xn} be a set of considered alternatives. A pairwise comparison matrix
Ã = (ãij)n×n =

(
(lij, mij, uij)

)
n×n is said a TFPR on X× X if

0 < lij ≤ mij ≤ uij, lijuji = mijmji = 1, lii = mii = uii = 1, i, j = 1, 2, ..., n (2)

where ãij = (lij, mij, uij) is a positive triangular fuzzy number, and indicates a ratio-based fuzzy
preference of alternative xi over xj.

Because of efficiency and effectiveness of expressing paired comparison results with vagueness,
TFPRs have been widely used in practice, and promoted the theoretical development of fuzzy
MCDM [9]. Numerous applications of fuzzy MCDM can be found in the current literature. For
instance, Yücenur et al. [34], Lima Junio et al. [35] and Yu et al. [36] used triangular fuzzy MCDM to
solve supplier selection problems in green supply chains of industrial industry. Azadeh and Zadeh [37]
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used a MCDM combined fuzzy analytic hierarchy process to examine maintenance policy selection
problems in green manufacturing (also called environmentally conscious manufacturing). Çelikbilek
and Tüysüz [38] employed an integrated grey based MCDM method to evaluate renewable energy
sources. Grujic et al. [39] applied MCDM in selecting the optimal heat demand in a centralized supply
system. Tong and Wang [40] put forward an intuitionistic fuzzy MCDM method for solving low-carbon
supplier selection problems. An evaluation indicator system was constructed in Cho et al. [41] by
using a fuzzy pairwise comparison-based analytic hierarchy process. Mardani et al. [42] adopted fuzzy
MCDM to evaluate energy-saving technologies in five star hotels.

2.2. Consistency and Fuzzy Weights of Triangular Fuzzy Preference Relations

For a triangular fuzzy weight vector W̃ = (w̃1, w̃2, ..., w̃n)
T with w̃i = (wL

i , wM
i , wU

i ), wL
i > 0

(i = 1, 2, ..., n), let
Ã(W̃) = (ã(w̃)

ij )
n×n

=
(
(l(w̃)

ij , m(w̃)
ij , u(w̃)

ij )
)

n×n
, (3)

where

l(w̃)
ij =

{
1, i = j
wL

i /wU
j , i 6= j , m(w̃)

ij =
wM

i
wM

j
, u(w̃)

ij =

{
1, i = j
wU

i /wL
j , i 6= j

. (4)

It is easy to confirm that Ã(W̃) satisfies (2) and thus, is a TFPR.

A triangular fuzzy weight vector W̃ is said to be modal-value normalized [16] if the following
equation holds true.

n

∏
i=1

wM
i = 1 (5)

A fuzzy weight vector W̃ is called a basic triangular fuzzy weight vector [16] if the following
equation is satisfied.

n

∏
i=1

(
wL

i wU
i

)1/2
= 1 (6)

Wang [16] showed that basic triangular fuzzy weight vectors and modal-value normalized
triangular fuzzy weight vectors can be equivalently converted into each other, and thus used the basic
triangular fuzzy weight vectors to define consistent TFPRs as follows.

Definition 1. [16] A TFPR Ã = (ãij)n×n =
(
(lij, mij, uij)

)
n×n is said to be consistent if there exists a basic

triangular fuzzy weight vector such that Ã(W̃) = Ã.

In [16], some goal programming models were developed to obtain triangular fuzzy weights
denoted by three computation formulas from TFPRs. For any TFPR Ã = (ãij)n×n =

(
(lij, mij, uij)

)
n×n

(n ≥ 3), let

fi =
n

∏
j=1

uij

lij
, i = 1, 2, ..., n (7)

F =
n

∏
i=1

fi =
n

∏
i=1

n

∏
j=1

uij

lij
(8)

φ−i = min

 (F)1/(4(n−1)(n−2))

( fi)
1/(n(n−2))

(
n

∏
j=1

lij

)1/n

,
( fi)

1/(n(n−2))

(F)1/(4(n−1)(n−2))

(
n

∏
j=1

uij

)1/n
, i = 1, 2, ..., n (9)

φ+
i = max

 (F)1/(4(n−1)(n−2))

( fi)
1/(n(n−2))

(
n

∏
j=1

lij

)1/n

,
( fi)

1/(n(n−2))

(F)1/(4(n−1)(n−2))

(
n

∏
j=1

uij

)1/n
, i = 1, 2, ..., n (10)
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ρ1 = max
i

φ−i /

(
n

∏
j=1

mij

)1/n
, ρ2 = min

i

φ+
i /

(
n

∏
j=1

mij

)1/n
 (11)

Then, its triangular fuzzy weight vector W̃H = (w̃1H , w̃2H , ..., w̃nH)
T with w̃iH = (wL

iH , wM
iH , wU

iH)

(i = 1, 2, ..., n) is determined as follows.

wL
iH = ξi

min

 (F)1/(4(n−1)(n−2))

( fi)
1/(n(n−2))

(
n

∏
j=1

lij

)1/n

,
( fi)

1/(n(n−2))

(F)1/(4(n−1)(n−2))

(
n

∏
j=1

uij

)1/n

 (12)

wM
iH = Cm

(
n

∏
j=1

mij

)1/n

(13)

wU
iH = ηi

max

 (F)1/(4(n−1)(n−2))

( fi)
1/(n(n−2))

(
n

∏
j=1

lij

)1/n

,
( fi)

1/(n(n−2))

(F)1/(4(n−1)(n−2))

(
n

∏
j=1

uij

)1/n

 (14)

where

Cm =

{ √
ρ1ρ2, (ρ1 ≤ ρ2 < 1) ∨ (1 < ρ1 ≤ ρ2)

1, Otherwise
(15)

ξi =


(

n
∏
j=1

mij

)1/n

/φ−i , (ρ2 < ρ1) ∧

( n
∏
j=1

mij

)1/n

< φ−i


1, Otherwise

(16)

ηi =


(

n
∏
j=1

mij

)1/n

/φ+
i , (ρ2 < ρ1) ∧

( n
∏
j=1

mij

)1/n

> φ+
i


1, Otherwise

(17)

It has been shown in [16] that if fi ≥ (F)1/(2n−2), ∀i = 1, 2, ..., n., then w̃iH = (wL
iH , wM

iH , wU
iH)

(i = 1, 2, ..., n) defined by (12)–(14) are optimized triangular fuzzy weights derived from Ã. Moreover,
the following important result can be used to judge whether a TFPR is consistent under Definition 1.

Lemma 1. [16] A TFPR Ã = (ãij)n×n =
(
(lij, mij, uij)

)
n×n (n ≥ 3) is consistent if and only if Ã = Ã(W̃H),

where Ã(W̃H) is defined by (3) and (4).

3. Inconsistency Measurement for Triangular Fuzzy Preference Relations

This section first simplifies the three computation Formulas (12)–(14). A consistency index of
TFPRs is then introduced to measure the inconsistency degree of a TFPR.

Let

Φi =
max

{
( fi)

1/(n−2), (F)1/(2(n−1)(n−2))
}

min
{
( fi)

1/(n−2), (F)1/(2(n−1)(n−2))
} , i = 1, 2, ..., n (18)

Obviously, Φi ≥ 1 for all i = 1, 2, ..., n. Then we have following result.

Theorem 1. Let Ã = (ãij)n×n =
(
(lij, mij, uij)

)
n×n(n ≥ 3) be a TFPR, then

φ−i /

(
n

∏
j=1

mij

)1/n

=

 n

∏
j=1

lijuij

(mij)
2

1/(2n)

/(Φi)
1/2, i = 1, 2, ..., n (19)
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φ+
i /

(
n

∏
j=1

mij

)1/n

= (Φi)
1/2

 n

∏
j=1

lijuij

(mij)
2

1/(2n)

, i = 1, 2, ..., n (20)

Proof. If fi ≥ (F)1/(2n−2), it follows from (18) that Φi =
( fi)

1/(n−2)

(F)1/(2(n−1)(n−2)) . As per (9) and (10), one can

obtain φ−i = (F)1/(4(n−1)(n−2))

( fi)
1/(n(n−2))

(
n
∏
j=1

lij

)1/n

and φ+
i = ( fi)

1/(n(n−2))

(F)1/(4(n−1)(n−2))

(
n
∏
j=1

uij

)1/n

. Thus,

φ−i /

(
n
∏
j=1

mij

)1/n

= (F)1/(4(n−1)(n−2))

( fi)
1/(n(n−2))

(
n
∏
j=1

lij
mij

)1/n

= ( fi)
1/(2n)

(Φi)
1/2

(
n
∏
j=1

lij
mij

)1/n

=

(
n
∏
j=1

uij
lij

)1/(2n)

(Φi)
1/2

(
n
∏
j=1

lij
mij

)1/n

=

(
n
∏
j=1

lijuij

(mij)
2

)1/(2n)

/(Φi)
1/2,

φ+
i /

(
n
∏
j=1

mij

)1/n

= ( fi)
1/(n(n−2))

(F)1/(4(n−1)(n−2))

(
n
∏
j=1

uij
mij

)1/n

= (Φi)
1/2

( fi)
1/(2n)

(
n
∏
j=1

uij
mij

)1/n

= (Φi)
1/2(

n
∏
j=1

uij
lij

)1/(2n)

(
n
∏
j=1

uij
mij

)1/n

= (Φi)
1/2

(
n
∏
j=1

lijuij

(mij)
2

)1/(2n)

.

Similarly, (19) and (20) hold true because Φi =
(F)1/(2(n−1)(n−2))

( fi)
1/(n−2) if fi < (F)1/(2n−2). Thus, the proof

of Theorem 1 is completed. �

Based on Theorem 1, (11) can be equivalently expressed as

ρ1 = max
i


 n

∏
j=1

lijuij

(mij)
2

1/(2n)

/(Φi)
1/2

, ρ2 = min
i

(Φi)
1/2

 n

∏
j=1

lijuij

(mij)
2

1/(2n)
. (21)

Let

Θi =


(

n
∏
j=1

lijuij

(mij)
2

)1/n

, (ρ1 > ρ2) ∧

( n
∏
j=1

lijuij

(mij)
2

)1/n

> Φi


Φi, Otherwise

, i = 1, 2, ..., n (22)

θi =


(

n
∏
j=1

(mij)
2

lijuij

)1/n

, (ρ1 > ρ2) ∧

( n
∏
j=1

(mij)
2

lijuij

)1/n

> Φi


Φi, Otherwise

, i = 1, 2, ..., n (23)

Then, we have the following theorem.

Theorem 2. Let Ã = (ãij)n×n =
(
(lij, mij, uij)

)
n×n (n ≥ 3) be a TFPR, then w̃iH = (wL

iH , wM
iH , wU

iH)

(i = 1, 2, ..., n) defined by (12)–(14) can be equivalently expressed as

wL
iH =

( fi)
1/(2n)

(Θi)
1/2

(
n

∏
j=1

lij

)1/n

, wM
iH = Cm

(
n

∏
j=1

mij

)1/n

, wU
iH =

(θi)
1/2

( fi)
1/(2n)

(
n

∏
j=1

uij

)1/n

(24)
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where fi, Cm, Θi and θi are defined by (7), (15), (22) and (23), respectively.

Proof. It is obvious that the second formula in (24) is the same as (13). Next, we prove that (12) and
(14) can be respectively rewritten as the first formula in (24) and the last formula in (24) by considering
the following three cases.

Case 1: (ρ1 ≤ ρ2) ∨

(ρ1 > ρ2) ∧

 1
Φi
≤
(

n
∏
j=1

lijuij

(mij)
2

)1/n

≤ Φi

. In this case, Θi = θi = Φi.

As per (16) and (17), we have ξi = ηi = 1. It follows from (9), (10), (12) and (14) that

wL
iH = ξiφ

−
i = φ−i =

(
n

∏
j=1

mij

)1/n
 n

∏
j=1

lijuij

(mij)
2

1/(2n)

/(Φi)
1/2 =

( fi)
1/(2n)

(Θi)
1/2

(
n

∏
j=1

lij

)1/n

(25)

wU
iH = ηiφ

+
i = φ+

i =

(
n

∏
j=1

mij

)1/n

(Φi)
1/2

 n

∏
j=1

lijuij

(mij)
2

1/(2n)

=
(θi)

1/2

( fi)
1/(2n)

(
n

∏
j=1

uij

)1/n

(26)

where the third equality in (25) is derived from (19), and the third equality in (26) is obtained from (20)
in Theorem 1.

Case 2: (ρ1 > ρ2) ∧

( n
∏
j=1

lijuij

(mij)
2

)1/n

> Φi

. In this case, it directly follows from (22), (23) and

Φi ≥ 1 that Θi =

(
n
∏
j=1

lijuij

(mij)
2

)1/n

and θi = Φi. Thus, we have Θi > Φi.

According to Theorem 1, one gets

φ−i /

(
n
∏
j=1

mij

)1/n

=

( n
∏
j=1

lijuij

(mij)
2

)1/(2n)

/(Φi)
1/2

 >

( n
∏
j=1

lijuij

(mij)
2

)1/(2n)

/(Θi)
1/2

 = 1

⇒ φ−i >

(
n
∏
j=1

mij

)1/n

,

φ+
i /

(
n

∏
j=1

mij

)1/n

≥ φ−i /

(
n

∏
j=1

mij

)1/n

> 1⇒ φ+
i >

(
n

∏
j=1

mij

)1/n

.

As per (16) and (17), we obtain ξi =

(
n
∏
j=1

mij

)1/n

/φ−i and ηi = 1. By (9), (10), (12) and (14),

one has

wL
iH = ξiφ

−
i =

(
n

∏
j=1

mij

)1/n

=
( fi)

1/(2n)(
n
∏
j=1

lijuij

(mij)
2

)1/(2n)

(
n

∏
j=1

lij

)1/n

=
( fi)

1/(2n)

(Θi)
1/2

(
n

∏
j=1

lij

)1/n

, (27)

wU
iH = ηiφ

+
i = φ+

i =

(
n

∏
j=1

mij

)1/n

(Φi)
1/2

 n

∏
j=1

lijuij

(mij)
2

1/(2n)

=
(θi)

1/2

( fi)
1/(2n)

(
n

∏
j=1

uij

)1/n

, (28)

where the last equality in (28) is confirmed by θi = Φi, and the third equality in (28) is obtained
from (20).
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Case 3: (ρ1 > ρ2) ∧

( n
∏
j=1

(mij)
2

lijuij

)1/n

> Φi

. In this case, as per (22), (23) and Φi ≥ 1, we have

Θi = Φi and θi =

(
n
∏
j=1

(mij)
2

lijuij

)1/n

. Therefore, one has θi > Φi

According to (19) and (20), we obtain

φ+
i /

(
n
∏
j=1

mij

)1/n

= (Φi)
1/2

(
n
∏
j=1

lijuij

(mij)
2

)1/(2n)

< (θi)
1/2

(
n
∏
j=1

lijuij

(mij)
2

)1/(2n)

= 1⇒ φ+
i <

(
n
∏
j=1

mij

)1/n

,

φ−i /

(
n

∏
j=1

mij

)1/n

≤ φ+
i /

(
n

∏
j=1

mij

)1/n

< 1.

According to (16) and (17), one gets ξi = 1 and ηi =

(
n
∏
j=1

mij

)1/n

/φ+
i . It follows from (9), (10),

(12) and (14) that

wL
iH = ξiφ

−
i = φ−i =

(
n

∏
j=1

mij

)1/n
 n

∏
j=1

lijuij

(mij)
2

1/(2n)

/(Φi)
1/2 =

( fi)
1/(2n)

(Θi)
1/2

(
n

∏
j=1

lij

)1/n

, (29)

wU
iH = ηiφ

+
i =

(
n
∏
j=1

mij

)1/n

=

( n
∏
j=1

(mij)
2

lijuij

)1/(2n)(
n
∏
j=1

uij

)1/n
/

(
n
∏
j=1

uij
lij

)1/(2n)

= (θi)
1/2

( fi)
1/(2n)

(
n
∏
j=1

uij

)1/n

, (30)

where the last equality in (29) is obtained from Θi = Φi, and the third equality in (29) is derived from
(19) in Theorem 1.

Therefore, we complete the proof of Theorem 2. �

According to (5), it is easy to confirm that if Cm = 1, then the triangular fuzzy weight vector
W̃H = (w̃1H , w̃2H , ..., w̃nH)

T with w̃iH = (wL
iH , wM

iH , wU
iH) (i = 1, 2, ..., n) defined by (24) is modal-value

normalized. If Θi = θi for all i = 1, 2, ..., n, then W̃H is a basic triangular fuzzy weight vector. If Cm = 1
and Θi = θi, ∀i = 1, 2, ..., n, then W̃H is a normalized basic triangular fuzzy weight vector.

Motivated by the geometric inconsistency measurement model for pairwise comparison matrices
presented by Crawford and Williams [11], we define the following consistency index to measure the
inconsistency degree of a TFPR.

Definition 2. Given a TFPR Ã = (ãij)n×n =
(
(lij, mij, uij)

)
n×n, and the triangular fuzzy weight

s w̃iH = (wL
iH , wM

iH , wU
iH) (i = 1, 2, ..., n) obtained by (24), a consistency index (CI) is defined as

[

CI(Ã) =
2

3(n− 1)(n− 2)

n−1

∑
i=1

n

∑
j=i+1


(

ln lij − ln(wL
iH/wU

jH)
)2

+
(

ln mij − ln(wM
iH/wM

jH)
)2

+
(

ln uij − ln(wU
iH/wL

jH)
)2

 (31)

Obviously,

[

CI(Ã) ≥ 0. The first part
(

ln lij − ln(wL
iH/wU

jH)
)2

is the squared distance between
the log of the lower bound of the support interval of the fuzzy judgment ãij and the log of the value
wL

iH/wU
jH . The second part in (31) is squared distance between the log of the modal value of the fuzzy

judgment ãij and the log of the ratio wM
iH/wM

jH . The last part is the squared distance between the
log of the upper bound of the support interval of the fuzzy judgment ãij and the log of the value

wL
iH/wU

jH . This implies that

[

CI(Ã) gives a distance between the two TFPRs Ã and Ã(W̃H), where
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W̃H = (w̃1H , w̃2H , ..., w̃nH)
T and Ã(W̃H) is defined by (3) and (4). As per Lemma 1,

[

CI(Ã) = 0 if Ã is

consistent. The bigger the value

[

CI(Ã), the stronger the inconsistency level of the fuzzy judgments
in Ã.

According to (24) and the reciprocity of lijuji = 1, ∀i, j = 1, 2, ..., n,

[

CI(Ã) can be equivalently
expressed as

[

CI(Ã) = 2
3(n−1)(n−2)

n−1
∑

i=1

n
∑

j=i+1



(
ln lij − 1

n

n
∑

k=1
ln(liklkj) +

1
2 (ln Θi − ln θj)− 1

2n (ln fi − ln f j)

)2

+

(
ln mij − 1

n

n
∑

k=1
ln(mikmkj)

)2

+

(
log uij − 1

n

n
∑

k=1
ln(uikukj) +

1
2 (ln Θj − ln θi)− 1

2n (ln f j − ln fi)

)2


(32)

Definition 3. Given a TFPR Ã = (ãij)n×n =
(
(lij, mij, uij)

)
n×n, and an acceptable consistency threshold

tδ(tδ > 0), then Ã is acceptable if

[

CI(Ã) ≤ tδ.

If a FFPR Ã = (ãij)n×n =
(
(lij, mij, uij)

)
n×n becomes an original comparison matrix [10], that is,

lij = mij = uij for all i, j = 1, 2, ..., n, then by (7), (22) and (23), we have fi = 1, Θi = 1 and θi = 1 for

each i = 1, 2, ..., n. In this case,

[

CI(Ã) = 2
(n−1)(n−2)

n−1
∑

i=1

n
∑

j=i+1

(
ln mij − 1

n

n
∑

k=1
ln(mikmkj)

)2
, which is the

same as the geometric inconsistency index reformulated by Aguaron and Moreno-Jimenez [12]. This
shows that the approximated thresholds given in [12] can be used to check acceptable consistency of
TFPRs. These thresholds are shown in Table 1.

Table 1. Geometric inconsistency approximated thresholds.

Consistency Ratio (CR) 0.01 0.05 0.1 0.15

Threshold value (n = 3) 0.0314 0.1573 0.3147 0.4720
Threshold value (n = 4) 0.0352 0.1763 0.3562 0.5289
Threshold value (n > 4) ~0.037 ~0.185 ~0.370 ~0.555

4. A Group Decision Making Consensus Model Based on Triangular Fuzzy Preference Relations

This section introduces a possibility degree formula to compare any two positive triangular fuzzy
weights. An index is defined to measure the consensus levels of individual TFPRs, and a consensus
model is developed to solve group MCDM problems with TFPRs.

For a group decision making problem with a set of decision makers D = {d1, d2, ..., dm}, each
decision maker dp (p = 1, 2, ..., m) carries out pairwise comparisons on X, and provides a TFPR

Ã(p) = (ãij(p))n×n
=
(
(lij(p), mij(p), uij(p))

)
n×n

to describe his/her fuzzy judgments. As per (3.7),

one can obtain a triangular fuzzy weight vector denoted by W̃(p)
H = (w̃(p)

1H , w̃(p)
2H , ..., w̃(p)

nH)
T

with

w̃(p)
iH = (wL(p)

iH , wM(p)
iH , wU(p)

iH ) (i = 1, 2, ..., n) for each of Ã(p) (p = 1, 2, ..., m).
Assume that the importance weight of the decision maker dp is λp, where 0 < λp < 1 and

n
∑

p=1
λp = 1, then a group TFPR Ã(G) = (ãij(G))n×n

=
(
(lij(G), mij(G), uij(G))

)
n×n

is obtained by using

the following aggregation method.

lij(G) =
m

∏
p=1

(
lij(p)

)λp
, mij(G) =

m

∏
p=1

(
mij(p)

)λp
, uij(G) =

m

∏
p=1

(
uij(p)

)λp
(33)
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According to (24), a group triangular fuzzy weight vector is derived and denoted by

W̃(G)
H = (w̃(G)

1H , w̃(G)
2H , ..., w̃(G)

nH )
T

with w̃(G)
iH = (wL(G)

iH , wM(G)
iH , wU(G)

iH ) (i = 1, 2, ..., n).
In order to compare and rank triangular fuzzy weights obtained from TFPRs by using the

computation Formula (24), a possibility degree formula is introduced as follows.

Definition 4. Given any two triangular fuzzy weights w̃α = (wL
α , wM

α , wU
α )and w̃β = (wL

β , wM
β , wU

β ), the
likelihood degree of w̃α being no less than w̃β is defined as

L(w̃α ≥ w̃β) =
max

{
0,ln wM

α +ln wU
α −ln wL

β−ln wM
β

}
−min

{
0,ln wL

α+ln wM
α −ln wM

β −ln wU
β

}
ln wU

α −ln wL
α+ln wU

β −ln wL
β

(34)

As 0 < wL
α ≤ wM

α ≤ wU
α and 0 < wL

β ≤ wM
β ≤ wU

β , one has 0 ≤ P(w̃α ≥ w̃β) ≤ 1, P(w̃α ≥ w̃α) = 1
and P(w̃α ≥ w̃β) + P(w̃β ≥ w̃α) = 1.

Based on (34) and the obtained triangular fuzzy weights w̃(p)
iH = (wL(p)

iH , wM(p)
iH , wU(p)

iH )

(i = 1, 2, ..., n), a likelihood degree matrix can be established as

Lp =
(

z(p)
ij

)
n×n

=
(

L(w̃(p)
iH ≥ w̃(p)

jH )
)

n×n
(35)

for each p = 1, 2, ..., m.
Similarly, based on the group triangular fuzzy weights w̃(G)

iH = (wL(G)
iH , wM(G)

iH , wU(G)
iH )

(i = 1, 2, ..., n), a group likelihood degree matrix is established as

LG =
(

z(G)
ij

)
n×n

=
(

L(w̃(G)
iH ≥ w̃(G)

jH )
)

n×n
(36)

Based on (35) and (36), an index is introduced to measure the consensus of individual judgments
with respect to and the group result.

Definition 5. Let Lp =
(

z(p)
ij

)
n×n

(p = 1, 2, ..., m) be the likelihood degree matrix defined by (35), and

LG =
(

z(G)
ij

)
n×n

be the group likelihood degree matrix defined by (36), the consensus index of the individual

judgments in Ã(p) with respective to the group result is defined as

CD(Lp) = 1− 2
n(n− 1)

n−1

∑
i=1

n

∑
j=i+1

∣∣∣z(p)
ij − z(G)

ij

∣∣∣ (37)

Obviously, 0 ≤ CD(Lp) ≤ 1 for each p = 1, 2, ..., m. If CD(Lp) = 1, then Lp = LG, implying that
the likelihood of the ranking order of any two alternatives based on Ã(p) is the same as that based on
Ã(G), and the ranking orders of all alternatives obtained from Ã(p) and Ã(G) are fully identical. The
bigger the value of CD(Lp), the stronger the consensus between the individual ranking order with
likelihoods and the group result.

Let cδ(0 < cδ ≤ 1) be an acceptable consensus threshold, if CD(Lp) ≥ cδ for all p = 1, 2, ..., m, then
there is a consensus result among the m decision makers. If CD(Lp) < cδ(p ∈ {1, 2, ..., m}), then there
does not exist a consensus among the m decision makers. In this case, the fuzzy judgments in Ã(p)
should be returned to the decision maker dp for a re-statement.

Based on the aforesaid analysis, we devise an acceptable consistency and acceptable
consensus-based group decision making procedure as follows.

Step 1: Employ the computation Formula (32) to compute the inconsistency index

[

CI(Ã(p)) for
each of the individual TFPRs Ã(p)(p = 1, 2, ..., m).
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Step 2: Check acceptable consistency of Ã(p)(p = 1, 2, ..., m) according to Definition 3. If all
individual TFPRs Ã(p)(p = 1, 2, ..., m) are of acceptable consistency, then go to the next step; otherwise,
return the unacceptable TFPR Ã(q) (q ∈ {1, 2, ..., m}) to the decision maker dq for a revision and go to
step 10.

Step 3: Aggregate individual TFPRs Ã(p) = (ãij(p))n×n
=

(
(lij(p), mij(p), uij(p))

)
n×n

(p = 1, 2, ..., m) into a group TFPR Ã(G) = (ãij(G))n×n
=
(
(lij(G), mij(G), uij(G))

)
n×n

as per (33).

Step 4: Utilize the computation Formula (24) to obtain triangular fuzzy weights
w̃(p)

iH = (wL(p)
iH , wM(p)

iH , wU(p)
iH ) (i = 1, 2, ..., n) from each of the individual TFPRs Ã(p)(p = 1, 2, ..., m), and

to derive the group fuzzy weights w̃(G)
iH = (wL(G)

iH , wM(G)
iH , wU(G)

iH ) (i = 1, 2, ..., n) from Ã(G).

Step 5: Use the Formula (34) to calculate likelihood degrees L(w̃(G)
iH ≥ w̃(G)

jH ) (i, j = 1, 2, ..., n) and

L(w̃(p)
iH ≥ w̃(p)

jH ) (i, j = 1, 2, ..., n, p = 1, 2, ..., m).

Step 6: Establish likelihood degree matrices Lp =
(

z(p)
ij

)
n×n

(p = 1, 2, ..., m) and LG =
(

z(G)
ij

)
n×n

as per (35) and (36).
Step 7: Use (37) to determine the consensus index of the individual judgments in Ã(p) for each

p = 1, 2, ..., m. If CD(Lp) ≥ cδ for all p = 1, 2, ..., m, then go to the next step; otherwise, return the
TFPR Ã(q) having CD(Lq) < cδ (q ∈ {1, 2, ..., m}) to the decision maker dq for a modification and go to
step 10.

Step 8: Sum values in the ith row of the group likelihood degree matrix LG, and obtain ranking

scores si =
n
∑

j=1
z(G)

ij (i = 1, 2, ..., n).

Step 9: Rank the alternatives in X = {x1, x2, ..., xn} according to the decreasing order of the scores
si (i = 1, 2, ..., n).

Step 10: End.

5. A Case Study of Selecting Energy-Saving and Low-Carbon Technology Schemes in Star Hotels

In this section, the proposed group decision making consensus model is applied to examine an
energy-saving and low-carbon technology scheme selection problem for star hotels.

With the development of green tourism, numerous star hotels in China have faced the construction
of a sustainable energy-saving and low-carbon system. An important stage in constructing such a
system is to select the best one from multiple energy-saving and low-carbon technology schemes.
According to the experts’ viewpoints and literature on energy-saving and low-carbon technologies,
key criteria are identified and categorized into three groups as follows:

(1) c1: Energy efficiency. Efficiencies of the considered energy equipment and the overall technical
system are two important factors in selecting energy-saving and low-carbon technology schemes
for star hotels. Energy efficiency has been widely acknowledged as a promising approach for
tackling environmental issues, and thus improving energy efficiency in star hotels is becoming
increasingly significant. Energy efficiency programs offer a development prospect of renewable
energy requirements. The energy efficient equipment in star hotels includes energy saving light
bulbs, boilers and cooling equipment with high efficiency, recovery systems, and so on.

(2) c2: Capacity of energy-saving and carbon emission reduction. This capacity indicates the suitable
performance of a technology scheme. The stronger the capacity, the better the technology scheme.
Moreover, this criterion could be divided to two sub-criteria below.

(i) c21: Energy-saving capacity. This sub-criterion reflects the energy-saving performance and
indicates how much energy is saved from the technology scheme.

(ii) c22: Low-carbon capacity. This sub-criterion reflects the low-carbon performance and
shows how much carbon emission is reduced by the technology scheme.
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(3) c3: Economic effectiveness. To rank energy-saving and low-carbon technology schemes, the
investment cost plays an important role. The main goal of this criterion is lower investment cost
with better performance. Therefore, this criterion is often measured and reflected by investment
payback periods of per unit energy-saving and per unit carbon emission reduction.

After preliminary screening, four technology schemes xi (i = 1, 2, 3, 4) are determined by a star
hotel as the evaluated alternatives. Hence, this MCDM problem can be structured as a hierarchy shown
in Figure 1.

Figure 1. Decision Hierarchical structure.

Assume that three experts e1, e2, and e3 are asked to evaluate the four technology schemes based
on the above criteria and sub-criteria, and their importance weights are 04, 0.3 and 0.3, respectively.
Each expert ep (p = 1, 2, 3) employs the paired comparison method to elicit his/her fuzzy judgments
for the four technology schemes with respect to each of the four criteria or sub-criteria c1, c21, c22 and c3,
and structured these fuzzy judgments as TFPRs ÃΛ

(p) listed in Table (p + 1), where Λ ∈ {c1, c21, c22, c3}.
According to the computation Formula (32), inconsistency indices of the individual TFPRs given

in Tables 2–4 are determined and shown in the second column in Table 5.

Table 2. Triangular fuzzy judgments provided by the expert e1.

TFPR x1 x2 x3 x4

Ãc1
(1)

x1 1 (1/4, 1/3, 1/2) (1/4, 1/3, 1/2) (1/3, 1/2, 1)
x2 (2, 3, 4) 1 (3/2, 3/2, 2) (1, 2, 3)
x3 (2, 3, 4) (1/2, 2/3, 2/3) 1 (1, 2, 3)
x4 (1, 2, 3) (1/3, 1/2, 1) (1/3, 1/2, 1) 1

Ãc21
(1)

x1 1 (2/3, 5/6, 1) (4/7, 5/7, 6/7) (1, 3/2, 2)
x2 (1, 6/5, 3/2) 1 (4/7, 6/7, 1) (1, 2, 5/2)
x3 (7/6, 7/5, 7/4) (1, 7/6, 7/4) 1 (3/2, 7/4, 5/2)
x4 (1/2, 2/3, 1) (2/5, 1/2, 1) (2/5, 4/7, 2/3) 1

Ãc22
(1)

x1 1 (1/3, 1/2, 1) (1/4, 1/3, 1/2) (5/4, 2, 3)
x2 (1, 2, 3) 1 (1/2, 2/3, 1) (3, 4, 5)
x3 (2, 3, 4) (1, 3/2, 2) 1 (5, 6, 7)
x4 (1/3, 1/2, 4/5) (1/5, 1/4, 1/3) (1/7, 1/6, 1/5) 1

Ãc3
(1)

x1 1 (1/5, 1/4, 1/3) (1/5, 1/4, 1/3) (1/6, 1/5, 1/4)
x2 (3, 4, 5) 1 (3/2, 3/2, 2) (1, 2, 3)
x3 (3, 4, 5) (1/2, 2/3, 2/3) 1 (1, 2, 3)
x4 (4, 5, 6) (1/3, 1/2, 1) (1/3, 1/2, 1) 1
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Table 3. Triangular fuzzy judgments provided by the expert e2.

TFPR x1 x2 x3 x4

Ãc1
(2)

x1 1 (1/3, 1/2, 1) (1/3, 2/3, 1) (1, 4/3, 3/2)
x2 (1, 2, 3) 1 (1, 3/2, 2) (2, 3, 7/2)
x3 (1, 3/2, 3) (1/2, 2/3, 1) 1 (1, 2, 3)
x4 (2/3, 3/4, 1) (2/7, 1/3, 1/2) (1/3, 1/2, 1) 1

Ãc21
(2)

x1 1 (1/4, 2/7, 3/7) (1/5, 2/5, 3/5) (1/9, 2/9, 1/3)
x2 (7/3, 7/2, 4) 1 (6/5, 7/5, 8/5) (2/3, 7/9, 8/9)
x3 (5/3, 5/2, 5) (5/8, 5/7, 5/6) 1 (4/9, 2/3, 1)
x4 (3, 9/2, 9) (9/8, 9/7, 3/2) (1, 3/2, 9/4) 1

Ãc22
(2)

x1 1 (5/3, 2, 3) (1/2, 5/8, 2/3) (1, 5/4, 5/3)
x2 (1/3, 1/2, 3/5) 1 (2/7, 1/3, 1/2) (1/2, 3/4, 1)
x3 (3/2, 8/5, 2) (2, 3, 7/2) 1 (1, 2, 3)
x4 (3/5, 4/5, 1) (1, 4/3, 2) (1/3, 1/2, 1) 1

Ãc3
(2)

x1 1 (1/5, 2/7, 3/7) (3/2, 2, 3) (1/4, 1/3, 1/2)
x2 (7/3, 7/2, 5) 1 (6, 7, 8) (1, 3/2, 2)
x3 (1/3, 1/2, 2/3) (1/8, 1/7, 1/6) 1 (1/7, 1/6, 1/5)
x4 (2, 3, 4) (1/2, 2/3, 1) (5, 6, 7) 1

Table 4. Triangular fuzzy judgments provided by the expert e3.

TFPR x1 x2 x3 x4

Ãc1
(3)

x1 1 (1/7, 1/6, 1/5) (1/6, 1/5, 1/4) (1/2, 1, 5/4)
x2 (5, 6, 7) 1 (1/2, 1, 6/5) (5, 6, 7)
x3 (4, 5, 6) (5/6, 1, 2) 1 (4, 5, 6)
x4 (4/5, 1, 2) (1/7, 1/6, 1/5) (1/6, 1/5, 1/4) 1

Ãc21
(3)

x1 1 (1/4, 2/7, 3/7) (1/4, 1/3, 1/2) (1, 6/5, 3/2)
x2 (7/3, 7/2, 4) 1 (1, 7/6, 3/2) (3, 7/2, 4)
x3 (2, 3, 4) (2/3, 6/7, 1) 1 (2, 3, 4)
x4 (2/3, 5/6, 1) (1/4, 2/7, 1) (1/4, 1/3, 1/2) 1

Ãc22
(3)

x1 1 (1/4, 1/3, 1/2) (1/3, 3/7, 1/2) (2/3, 2/3, 4/3)
x2 (2, 3, 4) 1 (1, 8/7, 4/3) (2, 8/3, 4)
x3 (2, 7/3, 3) (3/4, 7/8, 1) 1 (2, 7/3, 7/2)
x4 (3/4, 3/2, 3/2) (1/4, 3/8, 1/2) (2/7, 3/7, 1/2) 1

Ãc3
(3)

x1 1 (2/7, 1/3, 3/5) (1/3, 1/2, 4/5) (2/3, 1, 3/2)
x2 (5/3, 3, 7/2) 1 (3/2, 2, 3) (2, 3, 4)
x3 (5/4, 2, 3) (1/3, 1/2, 2/3) 1 (3/2, 2, 3)
x4 (2/3, 1, 3/2) (1/4, 1/3, 1/2) (1/3, 1/2, 2/3) 1
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Table 5. Inconsistency and consensus indices as well as triangular fuzzy weights.

TFPR Inconsistency Index Consensus Index w̃1H w̃2H w̃3H w̃4H

Ãc1
(1) 0.0507 0.9758 (0.421, 0.485, 0.638) (1.536, 1.730, 1.897) (1.167, 1.410, 1.441) (0.579, 0.841, 1.313)

Ãc21
(1) 0.0079 0.7028 (0.871, 0.972, 1.032) (0.919, 1.198, 1.316) (1.279, 1.300, 1.496) (0.546, 0.661, 0.881)

Ãc22
(1) 0.0049 1.000 (0.578, 0.760, 1.088) (1.178, 1.520, 1.848) (2.036, 2.280, 2.389) (0.358, 0.380, 0.420)

Ãc3
(1) 0.1732 0.9167 (0.331, 0.334, 0.352) (1.592, 1.860, 2.141) (1.210, 1.520, 1.627) (0.817, 1.057, 1.564)

Ãc1
(2) 0.0295 0.8576 (0.630, 0.816, 1.014) (1.339, 1.730, 1.901) (0.885, 1.189, 1.645) (0.586, 0.595, 0.720)

Ãc21
(2) 0.0249 0.7972 (0.273, 0.399, 0.540) (1.259, 1.397, 1.434) (0.884, 1.045, 1.334) (1.452, 1.716, 2.191)

Ãc22
(2) 0.0239 0.6667 (1.097, 1.118, 1.177) (0.507, 0.595, 0.682) (1.409, 1.760, 1.999) (0.685, 0.855, 1.161)

Ãc3
(2) 0.0094 0.7500 (0.534, 0.661, 0.877) (2.077, 2.462, 2.786) (0.314, 0.330, 0.341) (1.609, 1.860, 2.137)

Ãc1
(3) 0.0503 0.9103 (0.353, 0.427, 0.468) (2.036, 2.450, 2.558) (2.033, 2.240, 2.737) (0.397, 0.427, 0.527)

Ãc21
(3) 0.0778 0.8641 (0.549, 0.567, 0.686) (1.878, 1.897, 1.917) (1.376, 1.626, 1.858) (0.446, 0.518, 0.852)

Ãc22
(3) 0.0098 0.6968 (0.512, 0.579, 0.720) (1.514, 1.811, 2.007) (1.485, 1.539, 1.595) (0.498, 0.730, 0.756)

Ãc3
(3) 0.0343 0.8204 (0.540, 0.639, 0.857) (1.669, 2.060, 2.281) (0.976, 1.190, 1.426) (0.537, 0.639, 0.760)
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Assume that an acceptable consistency threshold is set to be 0.3562, which is a geometric
inconsistency approximated threshold value corresponding to 4× 4 pairwise comparison matrices
and CR = 0.1 listed in Table 1. Thus, as per Definition 3, all individual TFPRs given in Tables 2–4 are
of acceptable consistency. According to (33), group TFPRs are obtained and shown in Table 6.

Table 6. The obtained group triangular fuzzy judgments.

TFPR x1 x2 x3 x4

Ãc1
(G)

x1 1 (0.230, 0.306, 0.468) (0.241, 0.352, 0.500) (0.523, 0.826, 1.208)
x2 (2.137, 3.268, 4.348) 1 (0.955, 1.328, 1.716) (1.995, 3.140, 4.051)
x3 (2.000, 2.841, 4.419) (0.583, 0.753, 1.047) 1 (1.516, 2.633, 3.693)
x4 (0.828, 1.211, 1.912) (0.247, 0.318, 0.501) (0.271, 0.380, 0.660) 1

Ãc21
(G)

x1 1 (0.370, 0.438, 0.601) (0.325, 0.478, 0.655) (0.517, 0.791, 1.072)
x2 (1.664, 2.283, 2.703) 1 (0.844, 1.089, 1.300) (1.231, 1.782, 2.111)
x3 (1.527, 2.092, 3.077) (0.769, 0.918, 1.185) 1 (1.135, 1.540, 2.187)
x4 (0.933, 1.264, 1.934) (0.474, 0.561, 0.812) (0.457, 0.649, 0.881) 1

Ãc22
(G)

x1 1 (0.496, 0.671, 1.130) (0.336, 0.434, 0.545) (0.968, 1.250, 1.972)
x2 (0.885, 1.490, 2.018) 1 (0.521, 0.637, 0.886) (1.553, 2.141, 2.882)
x3 (1.835, 2.304, 2.980) (1.129, 1.571, 1.921) 1 (2.342, 3.247, 4.405)
x4 (0.507, 0.800, 1.033) (0.347, 0.467, 0.644) (0.227, 0.308, 0.427) 1

Ãc3
(G)

x1 1 (0.223, 0.284, 0.429) (0.427, 0.574, 0.838) (0.285, 0.378, 0.527)
x2 (2.331, 3.521, 4.484) 1 (2.274, 2.596, 3.424) (1.231, 2.072, 2.896)
x3 (1.193, 1.742, 2.342) (0.292, 0.385, 0.440) 1 (0.630, 0.949, 1.331)
x4 (1.898, 2.646, 3.509) (0.345, 0.483, 0.812) (0.751, 1.054, 1.587) 1

By using the computation Formula (24), triangular fuzzy weights w̃iH (i = 1, 2, 3, 4) are determined
and respectively listed in the last four columns in Table 5 for each individual TFPR. Similarly, group
triangular fuzzy weights are derived from each group TFPR given in Table 6, and are shown in Table 7.

Table 7. Triangular fuzzy weights of group TFPRs.

TFPR w̃(G)
1H w̃(G)

2H w̃(G)
3H w̃(G)

4H
Ranking

Ãc1
(G) (0.451, 0.546, 0.667) (1.608, 1.921, 2.072) (1.263, 1.541, 1.857) (0.520, 0.618, 0.831) x2

100%
� x3

100%
� x4

85.5%
� x1

Ãc21
(G) (0.528, 0.638, 0.762) (1.284, 1.451, 1.474) (1.154, 1.311, 1.564) (0.708, 0.824, 1.027) x2

78.3%
� x3

100%
� x4

100%
� x1

Ãc22
(G) (0.676, 0.777, 0.984) (0.990, 1.194, 1.405) (1.658, 1.852, 2.006) (0.480, 0.582, 0.680) x3

100%
� x2

100%
� x1

100%
� x4

Ãc3
(G) (0.443, 0.498, 0.605) (1.749, 2.086, 2.360) (0.757, 0.893, 0.979) (0.882, 1.077, 1.384) x2

100%
� x4

100%
� x3

100%
� x1

As per (34) and (35), twelve likelihood degree matrices are obtained from triangular fuzzy weights
given in Table 5 for the individual TFPRs. By using (34) and (36), we can establish four likelihood degree
matrices from the group triangular fuzzy weights shown in Table 7. According to (37), consensus
indices of the individual judgments listed in Tables 2–4 are determined and shown in the third column
in Table 5.

Assume that acceptable consensus thresholds are respectively set to be 0.8, 0.7, 0.65 and 0.75 for
group decision making problems on the key criteria or sub-criteria c1, c21, c22 and c3. Then, it follows
from the consensus indices given in Table 5 that each consensus index is more than or equal to its
acceptable threshold. This implies that the three experts reach a consensus ranking order listed in the
last column in Table 7.

In order to obtain a final ranking order of the four technology schemes, we need to aggregate
triangular fuzzy weights in Table 7 into overall fuzzy weights of xi (i = 1, 2, 3, 4). Assume that
importance weights of criteria or sub-criteria c1, c21, c22 and c3 are 0.35, 0.2, 0.15 and 0.3. Using
triangular fuzzy geometric weighting method yields overall fuzzy weights as
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w̃x1 = (0.492, 0.578, 0.705), w̃x2 = (1.466, 1.733, 1.899)

w̃x3 = (1.108, 1.302, 1.498), w̃x4 = (0.640, 0.766, 0.980)

According to (34), a likelihood degree matrix is established as

LO =
(

L(w̃xi ≥ w̃xj)
)

4×4
=


0.5 0 0 0
1 0.5 1 1
1 0 0.5 1
1 0 0 0.5


By summing values in the ith row of the above matrix LO, we obtain ranking scores s1 = 0.5,

s2 = 3.5, s3 = 2.5 and s4 = 1.5. As s2 > s3 > s4 > s1, the four technology schemes are ranked as

x2
100%
� x3

100%
� x4

100%
� x1, and thus x2 is the best technology scheme.

6. Conclusions

This paper has developed a triangular fuzzy group consensus decision making model. This model
takes both acceptable consistency of individual judgments and acceptable consensus of individual
and group decision results into consideration. A consistency index has been proposed to measure
inconsistency of TFPRs. A possibility degree-based index has been devised to measure consensus of
individual and group ranking orders of all alternatives. A case study of selecting energy-saving and
low-carbon technology schemes in star hotels has been offered to examine the application of the group
consensus decision making model developed.

Some significant issues could be addressed in the future. For instance, sometimes, a decision
maker may provide extremely fuzzy judgments in a TFPR while this TFPR may be judged to be
acceptable under the proposed acceptable consistency model. In addition, some judgments in an
original TFPR may be missing. It is worth examining how the simplified computation formulas and
the proposed consistency index are adapted and extended to handle these cases.
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