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Abstract: Road dust, which contains trace elements and certain organic matter that can be harmful
to human health, plays an important role in atmospheric pollution. In this paper, concentrations
of 16 elements in the road dust of Changchun, China were determined experimentally. A total of
100 samples were collected using plastic brushes and dustpans, and the elements were analyzed
by an inductively coupled plasma optical emission spectrometer (ICP-OES). It was indicated
that the elements could be divided into major and trace elements. The concentration of trace
elements followed the trend: mercury (Hg) > manganese (Mn) > zinc (Zn) > lead (Pb) > chromium
(Cr) > copper (Cu) > vanadium (V) > arsenic (As) > nickel (Ni) > cobalt (Co) > cadmium (Cd).
Contamination-level-assessment calculated by the geo-accumulation index (Igeo) showed that the
pollution-level ranged from non-contaminated to extreme contamination, while the calculations of
enrichment factor (EF) showed that EF values exhibited a decreasing trend: Cd > Hg > As > Pb >
Cu > Co > Zn > Ni > Cr > V > Mn > Mg > Fe > Sr > Ba. In our study, ingestion was the greatest
exposure pathway for humans to intake trace elements by calculating the average daily dose (ADD)
from three routes (ingestion, inhalation, and dermal contact). According to the health risk assessment
results, the non-carcinogenic risks that human beings suffered from these elements were insignificant.
Additionally, the hazard quotient (HQ) values were approximately one-tenth in the case of children.
Meanwhile, the total excess cancer risk (ECR) was also lower than the acceptable level (10−6–10−4)
for both adults and children.
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1. Introduction

In recent decades, the rapidly growing economy of China has resulted in a dramatic change in
human activities such as industrialization and urbanization [1–4]. As a result, serious environmental
problems have emerged, especially air pollution, which has become one of the most significant
environmental concerns of both the public and scientists for the past few decades. Researchers have
analyzed atmospheric pollution sources such as coal combustion, vehicle emission, soil, construction,
as well as road dust [5–7]. It is necessary to study the physical chemical properties of each source to
obtain a more precise result of source analysis, such as element characteristics, organic component,
polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs), and persistent
organic pollutants (POPs) [8–11].

Heavy metal pollutants can enter the atmosphere and natural water systems through re-suspension
and runoff, respectively [12–15]. Studies regarding the metal components of road dust have been
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conducted worldwide [16–20]. According to previous studies, the concentrations of elements in
road dust are significantly different depending on land use, population diversity, human activities,
vehicle situations, number of cars, commercial areas, park locations, etc. Furthermore, trace elements,
especially heavy metals, may harm human health since they can enter the body through ingestion,
inhalation, and dermal contact [21–24], and can even reach the lungs and alveoli. Lead (Pb), arsenic (As),
nickel (Ni), cadmium (Cd), and chromium (Cr), which are likely to cause cancer [25], have been
frequently reported in high concentrations and may cause an elevated cancer risk in both adults
and children.

Changchun city is the capital of Jilin Province located on the Northeast Plain of China. The city
area covers over 3619.42 km2, and the population was roughly 3,280,898 in 2015, an increase from
approximately 1,643,000 in 1980. The temperature is low in winter and the heating period can last
from October to the following March. The dominant wind directions are SW and NE through the
year. Industrial work makes up the most significant land uses in this city, followed by residential
and commercial usage. Since the first motor factory was built in Changchun, the automobile industry
has become the most developed economic activity in the area. In addition, metallurgy, medical,
machines and electronic manufacturing play an active part in the economy of Changchun city.
The number of motor vehicles reached 1 million in 2011 [26]. This technical change can cause severe
atmospheric pollution due to intense human activities and long-term heating in winter. Many studies
have reported the physical chemical characteristics of aerosols and source appointment. Studies have
been reported characteristics of elements in road dust throughout the world, but no research has been
published in the area of study. The article supports the references of source allocation in Northern China.

The main objectives of this paper were: (1) to obtain the metal element concentrations of road
dust in Changchun city; (2) to calculate the geo-accumulation index; (3) to determine the enrichment
factor; (4) to analyze the average exposure dose of elements; (5) to obtain the value of hazard quotient
(HQ) and hazard index (HI) for non-carcinogenic health risk; (6) to calculate the cancer risks of Pb, Ni,
As, Cr and Cd. The overall goals were to identify and evaluate the pollution levels of the different
elements in a northeastern city in China and to establish a comprehensive method for geochemical
data interpretation.

2. Materials and Methods

2.1. Sample Collection

One hundred road dust samples were collected from Changchun in June 2017 (Figure 1).
The sampling was not conducted on rainy or windy days, and the ground was dry, which was at least
seven days after any rainfall. At each site, samples were collected from the indurative ground, with each
sample weight being >100 g, by using plastic brushes and dustpans, which were stored in self-sealing
polyethylene bags and brought to the lab as soon as possible. After being air-dried, the collected
road dust was sieved with 100 µm nylon sieves to remove debris, hair, and leaves. The samples were
measured by an inductively coupled plasma optical emission spectrometer (ICP-OES) and were stored
at −20 ◦C before analysis. Sixteen typical elements were chosen to be tested. These were iron (Fe),
manganese (Mn), Cr, Ni, Cd, magnesium (Mg), aluminum (Al), copper (Cu), zinc (Zn), Pb, barium (Ba),
strontium (Sr), As, mercury (Hg), cobalt (Co), and vanadium (V). For the total concentrations, 0.1 g
samples (three repeat parallel samples for each site) were measured on an electronic balance (Sartorius
TE124S, Göttingen, Germany). Then, these were placed in Teflon tubes and digested using an 8 mL
acid mixture (VHCl : VHNO3 = 1 : 3). A microwave digestion apparatus (Topwave, Analytic Jena,
Jena, Germany) was used to digest the samples, selecting the digestion program Soil EPA 3051 (175 ◦C,
10 min, 50 ◦C, 22 min). After cooling, the digested solutions were diverted to a volumetric flask and
diluted to 50 mL. All the metals were determined by inductively coupled plasma optical emission
spectrometer (ICP-OES, Prodigy XP, Leeman, Hudson, NH, USA). The standard curve was accepted
when the correlation coefficients were close to 1. During the experimental process, ultra-pure water
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(electric resistivity: 18 MΩ × cm) was used for the dilutions. The used containers were dipped in liquid
acid (10% HNO3 in volume) for 12 h, then rinsed to avoid potential cross-contamination of the samples.
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2.2. Quality Assurance (QA) and Quality Control (QC)

Quality assurance (QA) and quality control (QC) were evaluated using duplicates, method blanks,
and state first-level conventional materials (GBW GSS-5). Each sample was tested three times,
and the results were accepted if the repeat sample analysis error was below 5%. The environmental
procedures followed were by the Chinese Technical Specification for Soil Environmental Monitoring
HJ/T 166-2004.

2.3. Contaminant Level Assessment

2.3.1. Geo-Accumulation Index

The geo-accumulation index (Igeo) assessment has been widely used to study metal enrichment
by comparing each value of the trace elements to the crust concentration [27,28]. It was computed
using the following equation:

Igeo = log2

Cx(sample)

1.5 × Cx(crust)
(1)

Cx(sample) and Cx(crust) represent the concentrations of metal “x” for measuring and earth crust,
respectively. Concerning the natural fluctuations and anthropogenic influence, the denominator
must be multiplied by 1.5. In general, Igeo values > 1 may imply that the metal can be impacted by
anthropogenic sources, which can be divided into seven classes as listed in Table 1.

Table 1. Contamination categories.

Geo-Accumulation Index Contamination Categories Based on EF Values

Class Igeo value Contamination level EF values Contamination categories
0 Igeo ≤ 0 Uncontaminated EF < 2 Deficiency to minimal enrichment
1 0 < Igeo ≤ 1 Uncontaminated to moderately contaminated 2 < EF < 5 Moderate enrichment
2 1 < Igeo ≤ 2 Moderately contaminated 5 < EF < 20 Significant enrichment
3 2 < Igeo ≤ 3 Moderately to heavily contaminated 20 < EF < 40 Very high enrichment
4 3 < Igeo ≤ 4 Heavily contaminated EF > 40 Extremely high enrichment
5 4 < Igeo ≤ 5 Heavily to extremely contaminated
6 Igeo > 5 Extremely contaminated
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2.3.2. Enrichment Factor

The enrichment factor (EF) was selected to assess the enrichment and contamination levels of the
elements [29]. EFs are calculated by the following formula:

EF = (C n/CAl)s /(C n/CAl)r (2)

(Cn/CAl)s is the ratio of the concentration of an element with that of Al at each sampling point,
and (Cn/CAl)r is the same ratio of the background content in soils. The reference values can be selected
as the Jilin Province background values. According to the EF values, five contamination levels were
divided (Table 1).

2.3.3. Exposure Dose

Exposure assessment reflects the considerations identified in the problem formulation,
including exposure dose and hazard identification [30]. It can be divided into three routes (oral,
respiratory, and dermal paths) for chemical penetration into the human body [31]. Consequently,
the exposure dose assessment can also be divided into three parts: ingestion, inhalation and dermal
contact [32,33], which can be calculated by the following equations:

ADDing =
C × CF × IRS × FI × EF × ED

BW × AT
(3)

ADDinh =
C × 1

PEF × IRa × ET × EF × ED
BW × AT

=
C × IRa × ET × EF × ED

PEF × BW × AT
(4)

ADDderm = DAevent×EF×ED×EV×SA
BW×AT

= C×CF×AF×ABS×EF×ED×EV×SA
BW×AT

(5)

ADDing, ADDinh, and ADDderm represent the average daily exposure doses of metals via ingestion,
inhalation, and dermal contact, respectively (mg/kg/day); C represents the concentration of metals
in road dust (mg/kg); CF is the conversion factor (10−6 kg/mg); IRs represents the ingestion rate
of receptors (mg/day); FI represents the fraction ingested from a contaminated source (unitless);
EF represents the exposure frequency (days/year); ED represents the exposure duration (years);
BW represents body weight (kg); AT represents the averaging time (days), non-carcinogenic effects is ED
× 365 days/year, and carcinogenic effects is 70 years × 365 days/year; IRa represents the inhalation rate
for receptor (m3/h); PEF represents the particulate emission factor (kg/m3); ET represents the exposure
time (hours/day), DAevent represents the absorbed dose per event (mg/cm2/event), the calculation
is C × CF × AF × ABS; AF represents the adherence factor from road dust to skin (mg/cm2/event);
ABS represents the dermal absorption fraction; SA represents the skin surface area available for contact
(cm2); and EV represents the event frequency (events/day). These parameters are shown in Table 2.

Table 2. The value of parameters for exposure dose.

Parm. Unit Class Value Parm. Unit Class Value

IRS mg/day Adults 30 a
IRa m3/h

Adults 7.63
Children 60 a children 20

EF days/year Adults 350 b
ABS unitless

Arsenic 0.03 b,c

Children 350 b others 0.001 d,c

ED years Adults 30 b
AF unitless

Adults 0.07 b

Children 6 b children 0.2 b

AT days Non-carcinogenic effects ED × 365 b
ET h/day Adults 14

Carcinogenic effects ED × 70 b children 8

BW kg Adults 70 b
SA cm2 Adults 5700 b

Children 15 b children 2800 b
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Table 2. Cont.

CF kg/mg —— 10−6 PEF kg/m3 —— 1.36 × 109

FI unitless —— 1 b EV events/day —— 1 b

a [33]; b [34]; c [35]; d [36].

2.3.4. Non-Carcinogenic Health Risk

Hazard quotient (HQ) and hazard index (HI) can be used to assess the non-carcinogenic health
risk for both adults and children. HQ is the individual value for each element, and HI is the sum of
HQ. These equations are as follows:

HQ =
ADD
RfD

(6)

HI = ∑ HQ (7)

where ADD represents the ingestion, inhalation and dermal daily dose, which are mentioned above;
RfD is a specific reference dose, which can be obtained from the Integrated Information Risk System
(IRIS) [37]. If HQ > 1, it implies an adverse effect on human health. Otherwise, if HQ < 1, the results
are the opposite. The safe limit of HI is also 1. If HI < 1, there is no significant risk of non-carcinogenic
effects; otherwise it has the opposite effect.

2.3.5. Risk Calculation

The reference values of carcinogenic risk through dermal exposure and ingestion were not
provided by the USEPA, so it cannot calculate the excess cancer risks (ECR) on the two exposure
pathways except for inhalation. Furthermore, the inhalation pathway can only consider the
carcinogenic risk of metals. Aside from this point, not all metals can cause cancer. In our study,
16 elements were tested, but only Cr, Ni, As, Cd, Pb were related to cancer (IRIS) [37]. Hence, only five
elements were considered when we calculated the cancer risk. The ECR for an exposed receptor can be
assessed with the following equation [18]:

ECRinh = SF × ADDinh =
IUR × BW

IRa
× C × IRa × ET × EF × ED

PEF × BW × AT
=

C × ET × EF × ED × IUR
PEF × AT

(8)

SF represents the cancer slope factor; and IUR represents the inhalation unit risk. Usually,
the default approach recommended for determining predictive cancer risk is a linear extrapolation
from the exposures observed in the animal or human occupational study. The slope of this line is
commonly called the slope factor, and the units are defined as IUR [30]. The IUR values of Pb, Ni, As,
Cd and Cr are 1.2 × 10−5, 2.4 × 10−4, 4.3 × 10−3, 1.8 × 10−3, and 0.012 (µg/m3)−1, respectively [34];
ET represents the exposure time, which in this study was 8 h/day. The other parameters were the
same as those mentioned earlier. The safe limit of ECR is the range 10−6–10−4.

3. Results and Discussion

3.1. Road Dust Metals Concentration

Metal concentrations of the road dust and the summary statistics of the study area are listed in
Table 3. The metals can be classified into two groups: major and trace elements. Metal concentrations
of the trace elements followed the sequence: Hg > Mn > Zn > Pb > Cr > Cu > V > As > Ni > Co > Cd.
Comparing the CNEMC values, all concentrations of the major elements were relatively lower; on the
other hand, the concentrations of the trace elements were higher, except for Mn and V. Furthermore,
the mean concentrations of Cd, Pb, As, and Hg were 214.3, 3.29, 5.97, and 14,000 times that of the
CNEMC values, respectively; this was significantly higher than the other elements, which may be
derived from anthropogenic sources.
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Table 3. Metal concentrations and summary statistics (mg/kg).

Elements n a Range (mg/kg) Mean ± SD (mg/kg) Median (mg/kg) CV Skewness Kurtosis CNEMC Value b (mg/kg)

Major elements
Fe 100 5.47 × 103–2.46 × 104 1.33 × 104 ± 2.87 × 103 1.28 × 105 0.22 0.98 2.29 2.74 × 104

Mg 100 2.30 × 103–7.80 × 103 3.54 × 103 ± 7.67 × 102 3.43 × 103 0.22 2.26 9.44 6.8 × 103

Al 100 3.12 × 103–2.19 × 104 6.08 × 103 ± 2.21 × 103 6.08 × 103 0.36 4.21 26.63 5.95 × 104

Ba 100 68.77–780.97 193.97 ± 126.71 150.97 0.65 2.34 5.95 529.00
Sr 100 25.22–140.86 75.74 ± 21.28 77.69 0.28 0.03 0.22 187.00

Trace elements

Mn 100 249.15–594.94 375.64 ± 64.63 367.49 0.17 1.01 1.75 636.00
Cr 100 30.36–208.69 65.53 ± 23.21 62.52 0.17 1.01 1.75 46.70
Ni 100 14.84–86.37 35.47 ± 9.03 35.47 0.25 2.02 11.00 21.40
Cd 100 1.98–36.73 21.43 ± 12.29 28.83 0.57 –0.92 –1.14 0.10
Co 100 9.56–41.27 29.96 ± 11.67 36.70 0.39 –0.92 –1.11 11.90
Cu 100 17.37–135.59 53.73 ± 21.66 50.36 0.40 1.21 2.29 17.10
Zn 100 34.56–419.86 169.79 ± 70.56 162.22 0.42 0.82 1.20 80.40
Pb 100 23.94–385.35 94.99 ± 67.99 73.31 0.72 2.26 5.86 28.80
As 95 0.56–144.27 47.72 ± 37.09 36.32 0.78 0.69 –0.68 8.00
Hg 73 0.53–1127.24 560.90 ± 294.68 543.43 0.53 0.04 –0.83 0.04
V 100 17.55–79.85 54.41 ± 15.77 60.05 0.29 –0.72 –0.89 68.00

a The n means effective data number; b China National Environmental Monitoring Center (CNEMC) [38].

Table 4. Elements concentrations (mg kg−1) in road/street dust of different cities in China and other countries.

City Year Mn Fe Mg Al Ba Sr Cr Ni Cd Co Cu Zn Pb As Hg V References

Baoji, China 2010 804.20 —— —— —— —— —— 123.00 42.00 —— 16.00 113.00 612.00 383.00 18.00 —— 31.40 [29]
Tehran, Iran 2012 —— —— —— —— —— —— 33.50 34.80 10.70 —— 225.30 873.20 257.40 —— —— —— [7]

Nanjing, China 2013 646.00 3.42 × 105 —— —— —— —— 126.00 —— —— 11.00 123.00 394.00 103.00 13.00 —— —— [39]
Isfahan, Iran 2015 —— —— —— —— —— —— 82.13 70.04 2.14 13.93 182.26 707.19 393.33 22.15 —— —— [10]

Villavicencio, Colombia
2016

—— —— —— —— —— —— 25.63 22.27 —— —— 213.40 289.73 467.63 —— —— —— [40]
Thessaloniki, Greece 529.10 2.51 × 105 9.50 × 103 2.92 × 104 —— —— 187.30 95.71 0.59 9.55 526.20 671.00 191.00 13.20 —— 53.70 [14]
Changchun, China

2017
375.64 1.33 × 105 3.54 × 103 6.08 × 103 193.97 75.74 65.53 35.47 21.43 29.96 53.73 169.79 94.99 47.72 54.41 54.41 This study

Hefei, China 240.50 8.69 × 103 5.35 × 103 8.39 × 103 12.20 —— 139.30 28.60 —— 7.20 41.60 130.10 0.90 2.00 —— 31.40 [41]
Xi’an, China 510.50 —— —— —— —— —— 145.00 30.80 —— 30.90 —— 268.60 124.50 —— —— 69.60 [42]

Beijing, China 2018 553.73 280.65 —— —— —— —— 92.10 32.47 0.59 —— 83.12 280.65 60.88 4.88 0.16 —— [43]
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The statistical characteristics included standard deviation (SD), the coefficient of variation (CV),
skewness and kurtosis, which were calculated as presented in Table 3. CV is used to represent the
discrete degree of data. CV ≤ 20%, low variability; 21% < CV ≤ 50%, moderate variability; 50% < CV ≤
100%, high variability; CV > 100%, very high variability. In this study, concentrations of Ba, Cd, Pb, As,
and Hg indicated high variability. The metals of Cd, Pb, As, and Hg varied widely between the different
sampling sites, which further indicated anthropogenic sources. All these metals are related to traffic,
state of the roads, tires, and brake wear, lubricants and paints and fuels [13,40,44]. The concentrations
of Mn and Cr showed small differences while the others showed moderate variability.

The concentrations of the elements in road dust in this study were compared to different sites
domestic and overseas, which are also presented in Table 4. Only the accumulation of Cr was lower
than in other cities. The mean levels of Cd, As, and Hg were significantly higher than those in
other sites.

3.2. Geo-Accumulation Index

The Igeo values of elements were calculated in the road dust of Changchun, which are listed in
Figure 2. The mean Igeo values of the elements followed the decreasing trend: Hg (12.87) > Cd (6.56)
> Cu (0.96) > Pb (0.88) > Co (0.58) > Zn (0.36) > Ni (0.10) > Cr (−0.16) > V (−0.98) > Mn (−1.37) >
Mg (−1.55) > Fe (−1.66) > Sr (−1.95) > Ba (−2.24) > Al (−3.94) > As (−10.37). The Igeo value of Hg
was the highest, followed by Cd and Cu. According to the classifications and other studies [15,22,40],
the average Igeo values indicated no contamination of the road dust by Mn, Cr, Fe, Mg, Al, Ba, Sr,
As and V; no contamination to moderately contaminated by Ni, Co, Cu, Zn, and Pb; and extremely
contaminated by Hg and Cd.
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In addition, there was a wide range of values of elements presented in Figure 2, that indicated that
the element contamination values varied by the diverse population, urban construction, traffic source,
demolition activities, residential burning, industrial distribution, and other factors [43,45].

3.3. Enrichment Factor

The element of Al was selected as a reference value, and the results are presented in Figure 3.
The EF of Cd, As, Hg was 18.31–384.22, 0.82–211.44, and 58.32–285.39, with the average of 225.55, 68.38,
and 150.46, which indicated extremely high enrichment. The EF of Co, Cu, Zn, and Pb were 8.26–56.25,
9.15–94.22, 3.28–63.01 and 5.40–196.57, with an average of 26.20, 32.86, 22.01, and 34.53, respectively,
which revealed a very high enrichment. The elements of Mn, Cr, Ni, Fe, and Mg showed significant
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enrichment, with the mean value ranging from 5–20. Ba and Sr were considered to originate primarily
from natural sources, while the mean EF values were 3.68 and 4.2, respectively. The mean EF values
exhibited the increasing trend: Ba < Sr < Fe < Mg < Mn < V < Cr < Ni < Zn < Co < Cu < Pb < As <
Hg < Cd. The trends revealed that the carcinogenic elements had a higher enrichment than others,
which showed significant anthropogenic sources.
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3.4. Exposure Dose

Table 5 shows the average daily dose (ADD) for the non-carcinogenic elements of road
dust through three different exposure pathways, which revealed the same trend in adults and
children, ADDing > ADDderm > ADDinh. This situation was similar to what is seen in previous
studies [22,23,44,46]. The ingestion exposure pathway is 2 to 4 orders higher than the other two
types. Among the ADD of road dust, the elements Fe and Al had the maximum dose, while Cd had
the minimum dose. According to the calculations, the total ADD for children was 5.2 times higher than
adults, which indicates that children are exposed to more elements than adults. However, as there are
various components in road dust, such as polycyclic aromatic hydrocarbons (PAHs), polybrominated
diphenyl ethers (PBDEs), persistent organic pollutants (POPs), a higher dose does not necessarily
indicate a higher risk while ignoring the assessment of others. Only five elements (Cr, Ni, Cd, Pb and
As) had different carcinogenic effects on humans through IRIS, so the ADD for the carcinogenicity of
the above five elements could be calculated, which are shown in Figure 4. It had the same trend in
children and adults when compared to the non-carcinogenic assessment.
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Table 5. Average daily exposure dose for non-carcinogenic elements through ingestion, inhalation and dermal contact.

Type Data Mn Cr Ni Cd Fe Mg Co Al Cu Zn Pb Ba Sr As Hg V

Ingestion

Adults Min 1.02 × 10−3 1.25 × 10−4 6.10 × 10−5 8.12 × 10−6 2.25 × 10−2 9.44 × 10−3 3.93 × 10−5 1.28 × 10−2 7.14 × 10−5 1.42 × 10−4 9.84 × 10−5 2.83 × 10−4 1.04 × 10−4 1.77 × 10−5 4.64 × 10−3 7.21 × 10−5

Max 2.44 × 10−3 8.58 × 10−4 3.55 × 10−4 1.51 × 10−4 0.10 3.21 × 10−2 1.70 × 10−4 9.01 × 10−2 5.57 × 10−4 1.73 × 10−3 1.58 × 10−3 3.21 × 10−3 5.79 × 10−4 5.93 × 10−4 4.63 × 10−3 3.28 × 10−4

Mean 1.54 × 10−3 2.69 × 10−4 1.46 × 10−4 8.81 × 10−5 5.46 × 10−2 1.46 × 10−2 1.23 × 10−4 2.50 × 10−2 2.21 × 10−4 6.98 × 10−4 3.90 × 10−4 7.97 × 10−4 3.11 × 10−4 1.86 × 10−4 1.07 × 10−3 2.24 × 10−4

Children Min 5.34 × 10−3 6.51 × 10−4 3.18 × 10−4 4.24 × 10−5 0.12 4.92 × 10−2 2.05 × 10−4 6.68 × 10−2 3.72 × 10−4 7.41 × 10−4 5.13 × 10−4 1.47 × 10−3 5.41 × 10−4 1.23 × 10−5 1.42 × 10−3 3.76 × 10−4

Max 1.27 × 10−2 4.47 × 10−3 1.85 × 10−3 7.87 × 10−4 0.53 0.17 8.84 × 10−4 0.47 2.91 × 10−3 9.00 × 10−3 8.26 × 10−3 1.67 × 10−2 3.02 × 10−3 3.09 × 10−3 2.42 × 10−2 1.71 × 10−3

Mean 8.05 × 10−3 1.40 × 10−3 7.60 × 10−4 4.59 × 10−4 0.29 7.59 × 10−2 6.42 × 10−4 0.13 1.15 × 10−3 3.64 × 10−3 2.04 × 10−3 4.16 × 10−3 1.62 × 10−3 9.69 × 10−4 5.57 × 10−3 1.17 × 10−3

Inhalation

Adults Min 3.83 × 10−7 4.67 × 10−8 2.28 × 10−8 3.04 × 10−9 8.41 × 10−6 3.53 × 10−6 1.47 × 10−8 4.79 × 10−6 2.67 × 10−8 5.31 × 10−8 3.68 × 10−8 1.06 × 10−7 3.88 × 10−8 1.62 × 10−9 7.34 × 10−8 2.70 × 10−8

Max 9.14 × 10−7 3.21 × 10−7 1.33 × 10−7 5.65 × 10−8 3.79 × 10−5 1.20 × 10−5 6.34 × 10−8 3.37 × 10−5 2.08 × 10−7 6.45 × 10−7 5.92 × 10−7 1.20 × 10−6 2.17 × 10−7 2.22 × 10−7 1.73 × 10−6 1.23 × 10−7

Mean 5.77 × 10−7 1.01 × 10−7 5.45 × 10−8 3.29 × 10−8 2.04 × 10−5 5.44 × 10−6 4.60 × 10−8 9.35 × 10−6 8.26 × 10−8 2.61 × 10−7 1.46 × 10−7 2.98 × 10−7 1.16 × 10−7 6.95 × 10−8 3.99 × 10−7 8.36 × 10−8

Children Min 4.68 × 10−6 5.71 × 10−7 2.79 × 10−7 3.72 × 10−8 1.03 × 10−4 4.32 × 10−5 1.80 × 10−7 5.87 × 10−5 3.27 × 10−7 6.50 × 10−7 4.50 × 10−7 1.29 × 10−6 4.74 × 10−7 8.10 × 10−8 2.12 × 10−6 3.30 × 10−7

Max 1.12 × 10−5 3.92 × 10−6 1.62 × 10−6 6.91 × 10−7 4.63 × 10−4 1.47 × 10−4 7.76 × 10−7 4.12 × 10−4 2.55 × 10−6 7.89 × 10−6 7.25 × 10−6 1.47 × 10−5 2.65 × 10−6 2.71 × 10−6 2.12 × 10−5 1.50 × 10−6

Mean 7.06 × 10−6 1.23 × 10−6 6.67 × 10−7 4.03 × 10−7 2.50 × 10−4 6.66 × 10−5 5.63 × 10−7 1.14 × 10−4 1.01 × 10−6 3.19 × 10−6 1.79 × 10−6 3.65 × 10−6 1.42 × 10−6 8.50 × 10−7 4.88 × 10−6 1.02 × 10−6

Dermal contact

Adults Min 1.36 × 10−5 1.66 × 10−6 8.11 × 10−7 1.08 × 10−7 2.99 × 10−4 1.26 × 10−4 5.23 × 10−7 1.70 × 10−4 9.49 × 10−7 1.89 × 10−6 1.31 × 10−6 3.76 × 10−6 1.38 × 10−6 1.06 × 10−6 6.17 × 10−6 9.59 × 10−7

Max 3.25 × 10−5 1.14 × 10−5 4.72 × 10−6 2.01 × 10−6 1.35 × 10−3 4.26 × 10−4 2.26 × 10−6 1.20 × 10−3 7.41 × 10−6 2.29 × 10−5 2.11 × 10−5 4.27 × 10−5 7.70 × 10−6 2.37 × 10−4 6.16 × 10−5 4.36 × 10−6

Mean 2.05 × 10−5 3.58 × 10−6 1.94 × 10−6 1.17 × 10−6 7.26 × 10−4 1.94 × 10−4 1.64 × 10−6 3.32 × 10−4 2.94 × 10−6 9.28 × 10−6 5.19 × 10−6 1.06 × 10−5 4.14 × 10−6 7.41 × 10−5 1.42 × 10−5 2.97 × 10−6

Children Min 8.92 × 10−5 1.09 × 10−5 5.31 × 10−6 7.08 × 10−7 1.96 × 10−3 8.23 × 10−4 3.42 × 10−6 1.12 × 10−3 6.22 × 10−6 1.24 × 10−5 8.57 × 10−6 2.46 × 10−5 9.03 × 10−6 4.63 × 10−5 4.04 × 10−4 6.28 × 10−6

Max 2.13 × 10−4 7.47 × 10−5 3.09 × 10−5 1.31 × 10−5 8.82 × 10−3 2.79 × 10−3 1.48 × 10−5 7.85 × 10−3 4.85 × 10−5 1.50 × 10−4 1.38 × 10−4 2.80 × 10−4 5.04 × 10−5 1.55 × 10−3 4.04 × 10−4 2.86 × 10−5

Mean 1.34 × 10−4 2.35 × 10−5 1.27 × 10−5 7.67 × 10−6 4.76 × 10−3 1.27 × 10−3 1.07 × 10−5 2.18 × 10−3 1.92 × 10−5 6.08 × 10−5 3.40 × 10−5 6.94 × 10−5 2.71 × 10−5 4.85 × 10−4 9.30 × 10−5 1.95 × 10−5

Total exposure

Adults 1.56 × 10−3 2.73 × 10−4 1.48 × 10−4 8.93 × 10−5 5.53 × 10−2 1.48 × 10−2 1.25 × 10−4 2.53 × 10−2 2.24 × 10−4 7.08 × 10−4 3.95 × 10−4 8.08 × 10−4 3.15 × 10−4 2.60 × 10−4 1.08 × 10−3 2.27 × 10−4

Children 8.19 × 10−3 1.42 × 10−3 7.73 × 10−4 4.67 × 10−4 0.29 7.72 × 10−2 6.53 × 10−4 0.13 1.17 × 10−3 3.70 × 10−3 2.08 × 10−3 4.23 × 10−3 1.65 × 10−3 1.45 × 10−3 5.67 × 10−3 1.19 × 10−3

Table 6. Hazard Quotient and Hazard Index for adults and children.

Type Data Mn Cr Ni Cd Fe Mg Co Cu Zn Pb Ba Sr As Hg V

Adults

HQing 1.10 × 10−2 8.98 × 10−2 7.29 × 10−3 8.81 × 10−2 —— 0.10 6.16 × 10−3 5.97 × 10−3 2.33 × 10−3 0.11 3.99 × 10−3 5.19 × 10−4 0.65 7.63 3.19 × 10−2

HQinh 1.15 × 10−2 3.52 × 10−3 2.65 × 10−6 3.29 × 10−5 —— 0.10 8.06 × 10−3 2.05 × 10−6 8.70 × 10−7 4.15 × 10−5 2.08 × 10−3 —— —— 9.99 × 10−3 ——
HQderm 1.12 × 10−2 1.43 × 10−2 1.94 × 10−3 2.34 × 10−2 —— —— 1.02 × 10−4 1.55 × 10−3 1.55 × 10−4 9.89 × 10−3 2.16 × 10−3 —— 0.26 14.50 3.30 × 10−4

HI 3.37 × 10−2 0.11 9.23 × 10−3 0.11 —— 0.211 1.43 × 10−2 7.51 × 10−3 2.48 × 10−3 0.12 8.23 × 10−3 5.19 × 10−4 0.92 22.10 3.23 × 10−2

Children

HQing 1.80 × 10−2 0.45 4.11 × 10−2 0.87 —— 8.21 × 10−3 11.70 0.18 1.21 × 10−2 2.13 1.45 × 10−2 2.89 × 10−3 219.00 7.93 ——
HQinh 0.14 4.31 × 10−2 3.24 × 10−5 4.03 × 10−4 —— 1.33 9.86 × 10−2 2.51 × 10−5 1.06 × 10−5 5.07 × 10−4 2.55 × 10−2 —— —— 0.12 ——
HQderm 7.31 × 10−2 9.38 × 10−2 1.27 × 10−2 0.15 —— —— 6.70 × 10−4 1.01 × 10−2 1.01 × 10−3 6.48 × 10−2 1.42 × 10−2 —— 1.71 94.90 2.16 × 10−3

HI 0.23 0.59 5.38 × 10−2 1.02 —— 1.34 11.8 0.19 1.32 × 10−2 2.19 5.42 × 10−2 2.89 × 10−3 221.00 103.00 2.16 × 10−3

RfD
RfDing 0.14 3.00 × 10−3 2.00 × 10−2 1.00 × 10−3 —— 0.14 2.00 × 10−2 c 3.70 × 10−2 b 0.30 3.50 × 10−3 b 0.20 0.60 3.00 × 10−4 3.00 × 10−4 d 7.00 × 10−3 c

RfDinh 5.00 × 10−5 2.86 × 10−5 a 2.06 × 10−2 b 1.00 × 10−3 b —— 5.00 × 10−5 5.71 × 10−6 c 4.02 × 10−2 b 0.30 b 3.52 × 10−3 b 1.43 × 10−4 c —— —— 8.57 × 10−5 d ——
RfDderm 1.84 × 10−3 c 2.50 × 10−4 b 1.00 × 10−3 b 5.00 × 10−5 b —— —— 1.60 × 10−2 c 1.90 × 10−3 b 6.00 × 10−2 5.25 × 10−4 b 4.90 × 10−3 c —— 3.00 × 10−4 2.1 × 10−6 d 9.00 × 10−3

a [22]; b [19]; c [11]; d The other values is selected from the IRIS [37].
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3.5. Assessment of Carcinogenic Health Risk

The results for HQ and HI are listed in Table 6. Both adults and children followed a similar trend
for HQ for all elements: HQing > HQderm > HQinh except for Mn which followed HQinh > HQderm >
HQing, and Co which followed HQinh > HQing > HQderm. The HQing values of Co (11.7), Hg (7.93),
Pb (2.13), As (219), and the HQderm values of As (1.7), Hg (94), and HQinh value of Mg (1.33) were
beyond 1 in the cases of children. The HQ values for all elements were all below 1 except Hg in the
case of adults related to the ingestion pathway. It was found that the HI was approximately 10 times
higher in children than adults; therefore, the elements of Co, Hg, Pb, and As in road dust had adverse
health effects in the children group, while it existed in the Hg for adult ingestion.

3.6. Assessment of Cancer Risk

ECRs for carcinogenic risk via the inhalation pathway were calculated, and the results are shown
in Figure 5. According to the IRIS, the ECRs for Cr, Ni, Cd, Pb and As were calculated in this study
as were two additional forms of chromium persisting Cr (III) and Cr (VI). Only Cr (VI) has been
established as carcinogenic. The value of Cr (VI) was used for calculating the carcinogenic health risk
and was taken as one-seventh of the total mass of chromium in road dust since the ratio of Cr (VI) to
Cr (III) is about 1:6 [34,47].
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The trend of ECR was similar in both adults and children: As > Cr (VI) > Cd > Ni > Pb. The highest
ECR for As related to adult inhalation was 2.24 × 10−8, which indicated that the value was under a
permissible limit. Since the value was under the range limit of 10−6, contamination did not produce a
serious carcinogenic risk.

4. Conclusions

The concentrations of 16 elements were divided into two groups: major and trace elements.
Major elements are mainly from the Earth’s crust, and levels were lower than the background values,
while the trace elements (except Mn and V) which could stem from anthropogenic sources were the
opposite. The contamination level assessment was made by using the pollution indices, Igeo, and EF.
The results showed a wide range of values for different elements. Mn, Cr, Fe, Mg, Al, Ba, Sr, As, and V
all exhibited non-contamination. Ni, Co, Cu, Zn, and Pb exhibited moderate contamination, and Hg
exhibited extreme contamination. The EF results showed that the EF values exhibited a decreasing
trend: Cd > Hg > As > Pb > Cu > Co > Zn > Ni > Cr > V > Mn > Mg > Fe > Sr > Ba. Cd, As, and Hg
exhibited extremely high enrichment. Co, Cu, Zn, and Pb exhibited very high enrichment. Moreover,
other elements exhibited significant enrichment.
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The ingestion exposure was the highest for both adults and children, followed by dermal
contact and inhalation. It showed the same decreasing trend for adults and children except for
Mn and Co. The health risk analysis showed that Co, Hg, Pb, and As had the potential to cause
non-carcinogenic risks in children. In contrast, the values for adults were well within the safe limit,
which is approximately one-tenth that of children. According to the calculations of carcinogenic risk,
the trend of ECR for carcinogenic factors was similar for both adults and children: As > Cr (VI) > Cd
> Ni > Pb. The total ECRs were found to be under the adequate level for both adult and children.
Although the results indicated no symbolic carcinogenic risk, people must pay more attention to the
trace elements in road dust.
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