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Abstract: In recent years, particulate matter (PM) pollution has increasingly affected public life and
health. Therefore, crop residue burning, as a significant source of PM pollution in China, should be
effectively controlled. This study attempts to understand variations and characteristics of PM10 and
PM2.5 concentrations and discuss correlations between the variation of PM concentrations and crop
residue burning using ground observation and Moderate Resolution Imaging Spectroradiometer
(MODIS) data. The results revealed that the overall PM concentration in China from 2013 to 2017 was
in a downward tendency with regional variations. Correlation analysis demonstrated that the PM10

concentration was more closely related to crop residue burning than the PM2.5 concentration. From a
spatial perspective, the strongest correlation between PM concentration and crop residue burning
existed in Northeast China (NEC). From a temporal perspective, the strongest correlation usually
appeared in autumn for most regions. The total amount of crop residue burning spots in autumn
was relatively large, and NEC was the region with the most intense crop residue burning in China.
We compared the correlation between PM concentrations and crop residue burning at inter-annual
and seasonal scales, and during burning-concentrated periods. We found that correlations between
PM concentrations and crop residue burning increased significantly with the narrowing temporal
scales and was the strongest during burning-concentrated periods, indicating that intense crop
residue burning leads to instant deterioration of PM concentrations. The methodology and findings
from this study provide meaningful reference for better understanding the influence of crop residue
burning on PM pollution across China.
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1. Introduction

Recently, particulate matter (PM) pollution has become a hot spot concerning people’s life and
health [1–3]. Both PM10 (coarse particles with aerodynamic diameter between 2.5 µm and 10 µm) and
PM2.5 (fine particles with aerodynamic diameter equal to or less than 2.5 µm) have been considered
as major air pollutants in China [4]. A great deal of research [5–7] has proved that in addition to
haze-induced low visibility, sustained exposure to high concentrations of PM10 and PM2.5 is harmful
for human’s physical and mental health. On the other hand, short-term exposure or low-concentration
exposure also adversely affects corporeity or even birth outcomes [8–10]. Furthermore, the morbidity
of respiratory disease, cardiovascular disease, and lung cancer are strongly correlated with severe
PM2.5 pollution [11]. However, although the government has taken some effective emission-reduction
measures to alleviate the air pollution, PM concentrations still significantly exceed the guideline
value proposed by the World Health Organization (WHO) in many cities of China [12]. There are
two major drivers for the PM pollution, anthropogenic activities, and unfavorable meteorological
conditions [13–15]. With increasing anthropogenic emission, PM pollution is hard to ameliorate in a
short time [16]. Specifically, biomass burning and secondary pollutant formation are two main sources
for PM pollution in China [17].

Crop residue burning, as one type of biomass burning, is a convenient, yet less environmentally
friendly way to dispose massive agricultural wastes. For China, agricultural production plays an
important role in the national economy, which means a large number of crop residues, such as
paddy straws, wheat straws, and corn stalks, are generated and piled up on bare croplands.
Following this, substantial crop residues are burnt directly to fertilize the soil and prepare for next
crop-planting season. However, the burning of crop residues has seriously influenced the local
and regional air quality during harvest seasons, especially in Northeast China [18–20]. During the
burning process, severe haze episodes are further aggravated because SO2 and NOX can be oxidized
into secondary inorganic/organic aerosol (SIA/SOA), which are important sources for generating
secondary PM2.5 [17]. In addition, other aerosol emissions from crop residue burning result
in the decline of local precipitation to a certain extent, leading to the further increase of PM2.5

concentrations [21,22]. In other words, the change of meteorological conditions caused by crop
residue burning may further exacerbate PM pollution. Therefore, in order to mitigate the current
ambient air pollution, it is highly urgent to take effective and targeted measures to control crop residue
burning in China.

Due to the vast territory of China, PM concentrations and the condition of crop residue burning
demonstrate notable temporal and spatial difference across China. Given the potential risk PM
exert on public health, it is essential to explore correlations between crop residue burning and
PM concentrations. Yin et al. revealed the spatial distribution of crop residue burning and PM2.5

concentrations in China at a seasonal pattern [23], and Chen et al. discussed the influence of crop
residue burning on PM2.5 concentration in Heilongjiang Province of China during a severe haze
episode [24]. Zhuang et al. analyzed the trend of crop residue burning in different regions of China
from 2003 to 2017 [18]. Meanwhile, some related studies have been conducted in other countries,
such as India and Thailand. Awasthi et al. explored the effect of crop residue burning on pulmonary
function tests of youth in North West India [25]. Although many scholars [26–28] have discussed
the emissions from crop residue burning, limited studies have been conducted on understanding
correlations between crop residue burning and PM concentrations. To fill this gap, we attempt to
understand the spatio-temporal variation of PM concentrations across China and its correlation
with crop residue burning. Firstly, from a regional perspective, we conducted spatio-temporal
trend analyses of PM (including PM2.5 and PM10) concentrations in China during 2013 to 2017.
Next, we analyzed interannual and seasonal variations of crop residue burning in different regions
across China. Following this, we analyzed the correlation between PM concentrations and crop residue
burning in different regions at different temporal scales.
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2. Materials and Methods

2.1. Study Area

China has a vast territory area of about 9.6 million square kilometers with complicated terrain
and climatic characteristics in different regions, which leads to different-periods of agricultural
crops-planting and reaping. Considering the notable spatio-temporal patterns of crop residue burning
in China, we divided the study area into seven regions (Figure 1) according to Chinese administrative
divisions [29]. The seven regions are named as follows: Northeast China (NEC, including Heilongjiang
Province, Jilin Province, Liaoning Province), North China (NC, including The Inner Mongolia
Autonomous Region, Shanxi Province, Hebei Province, Beijing, Tianjin), Northwest China (NWC,
including Shaanxi Province, Gansu Province, The Ningxia Hui Autonomous Region, Qinghai Province,
The Xinjiang Uygur Autonomous Region), East China (EC, including Shandong Province,
Jiangsu Province, Zhejiang Province, Fujian Province, Anhui Province, Jiangxi Province),
Central China (CC, including Henan Province, Hubei Province, Hunan Province), South China
(SC, including Guangdong Province, The Guangxi Zhuang Autonomous Region, Hainan Province),
and Southwest China (SWC, including Sichuan Province, Guizhou Province, Yunnan Province,
The Tibet Autonomous Region).
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2.2. Data Sources

2.2.1. Ground-Observed PM2.5 and PM10 Concentrations Data

The PM2.5 and PM10 concentrations data used for this study were obtained from website PM25.in
(http://pm25.in/about), which collects official real-time air quality data provided by China National
Environmental Monitoring Center (CNEMC). The real-time air quality data include hourly PM2.5
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concentration data (µg/m3), hourly PM10 concentration data (µg/m3), Air Quality Index (AQI),
and other airborne pollutants concentration data. Before 1 January 2015, the published PM data
supplied by PM25.in (http://pm25.in/about), covered 190 monitoring cities in China, and this number
has increased to 367 since 1 January 2015 [30]. The location of ground-monitoring air quality stations
can be seen in Figure 2.

Int. J. Environ. Res. Public Health 2018, 15, x 4 of 19 

 

by PM25.in (http://pm25.in/about), covered 190 monitoring cities in China, and this number has 
increased to 367 since 1 January 2015 [30]. The location of ground-monitoring air quality stations can 
be seen in Figure 2. 

By calling the specific API document on website PM25.in (http://pm25.in/about), we collected 
hourly PM2.5 and PM10 concentrations data for all monitoring cities in China from 18 January 2013 to 
31 December 2017. The daily PM concentration data for each region were calculated by averaging all 
available hourly PM data from all monitoring cities. 

 

Figure 2. The location of ground-monitoring air quality stations. 

2.2.2. MODIS Active Fire Data 

The Moderate Resolution Imaging Spectroradiometer (MODIS) is an optical remote sensing 
instrument widely used in the fields of Geoscience, Environmental Science, and so on. Owing to its 
multi-spectral bands (36) and broad spectrum, ranging from 0.4 μm (visible band) to 14.4 μm (thermal 
infrared band), MODIS can provide a great deal of geographic and atmospheric information. 
Meanwhile, terra (AM) and aqua (PM) with MODIS transits China four times per day on 10:30, 22:30, 
01:30, and 13:30, respectively [31]. Concerning the capability of fire detection, MODIS can monitor 
conflagration areas over 1000 m2. If the weather is suitable (e.g., little/no smoke and relative 
homogeneous land surface) for observing, one tenth of burning fire spots would be detected. Light 
fires covering around 50 m2 can be detected under the most favorable weather conditions [32]. 

We utilized MOD14A1/MYD14A1 daily Level 3 fire products (MODIS Thermal Anomalies/Fire 
products) with a spatial resolution of 1 km, which are available at NASA’s LAADS DACC ftp server [33], 
to extract crop residue burning spots in China. In addition, a contextual algorithm was applied to 
detect fire spots according to the strong radiation from mid-infrared bands [34]. The products also 
classified the reliability of fire detection into three levels, including low-confidence fires, nominal-
confidence fires, and high-confidence fires. MOD14A1/MYD14A1 were stored as a single file that 
consisted of eight days’ data for convenience, representing eight-day continuous collection of fire 
data. To get daily fire spots map (Figure 3a), a maximum value composite method was employed for 
processing the data integration of MOD14A1/MYD14A1 products. 

2.2.3. Land-Use and Land-Cover Data 

Although fire spots could be extracted from MODIS fire products, it cannot be directly defined 
as the crop residue burning spots. Owing to the existence of such burning types as forest fire and 
urban solid waste incineration, the extraction of crop residue burning spots was further processed 
with a dataset of Land-Use and Land-Cover Change (LUCC) provided by Resources and 
Environmental Sciences Data Center, Chinese Academy of Sciences (RESDC) [35]. The dataset reflects 
changes of land-use and land-cover in China every five years with a high spatio-resolution of 1 km, 
which is similar to that of MODIS fire products’. This data set has six classes, including cropland, 
forest, grassland, waters, urban and rural & industrial and residential areas, and unused land. The 

Figure 2. The location of ground-monitoring air quality stations.

By calling the specific API document on website PM25.in (http://pm25.in/about), we collected
hourly PM2.5 and PM10 concentrations data for all monitoring cities in China from 18 January 2013 to
31 December 2017. The daily PM concentration data for each region were calculated by averaging all
available hourly PM data from all monitoring cities.

2.2.2. MODIS Active Fire Data

The Moderate Resolution Imaging Spectroradiometer (MODIS) is an optical remote sensing
instrument widely used in the fields of Geoscience, Environmental Science, and so on. Owing to
its multi-spectral bands (36) and broad spectrum, ranging from 0.4 µm (visible band) to 14.4 µm
(thermal infrared band), MODIS can provide a great deal of geographic and atmospheric information.
Meanwhile, terra (AM) and aqua (PM) with MODIS transits China four times per day on 10:30,
22:30, 01:30, and 13:30, respectively [31]. Concerning the capability of fire detection, MODIS can
monitor conflagration areas over 1000 m2. If the weather is suitable (e.g., little/no smoke and relative
homogeneous land surface) for observing, one tenth of burning fire spots would be detected. Light fires
covering around 50 m2 can be detected under the most favorable weather conditions [32].

We utilized MOD14A1/MYD14A1 daily Level 3 fire products (MODIS Thermal Anomalies/Fire
products) with a spatial resolution of 1 km, which are available at NASA’s LAADS DACC ftp server [33],
to extract crop residue burning spots in China. In addition, a contextual algorithm was applied to detect
fire spots according to the strong radiation from mid-infrared bands [34]. The products also classified
the reliability of fire detection into three levels, including low-confidence fires, nominal-confidence
fires, and high-confidence fires. MOD14A1/MYD14A1 were stored as a single file that consisted of
eight days’ data for convenience, representing eight-day continuous collection of fire data. To get daily
fire spots map (Figure 3a), a maximum value composite method was employed for processing the data
integration of MOD14A1/MYD14A1 products.
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Resolution Imaging Spectroradiometer (MODIS) fire products; (b) Croplands extracted from Land-Use
and Land-Cover Change (LUCC) dataset in 2015; (c) Crop residue burning spots extracted by combining
MODIS fire products and LUCC dataset.

2.2.3. Land-Use and Land-Cover Data

Although fire spots could be extracted from MODIS fire products, it cannot be directly defined as
the crop residue burning spots. Owing to the existence of such burning types as forest fire and urban
solid waste incineration, the extraction of crop residue burning spots was further processed with a
dataset of Land-Use and Land-Cover Change (LUCC) provided by Resources and Environmental
Sciences Data Center, Chinese Academy of Sciences (RESDC) [35]. The dataset reflects changes of
land-use and land-cover in China every five years with a high spatio-resolution of 1 km, which is similar
to that of MODIS fire products’. This data set has six classes, including cropland, forest, grassland,
waters, urban and rural & industrial and residential areas, and unused land. The classification precision
of this dataset for each region varies from 73% to 89%, and the overall accuracy of whole nation is
up to 81% [36]. In this study, for more reliable extraction of crop residue burning spots, we used
the LUCC data in year 2010 and year 2015 (Figure 3b) to generate cropland-masks on study area.
Here, the extracted fire spots in year 2013 and 2014 corresponded to cropland-mask in 2010, and fire
spots in other years corresponded to cropland-mask in 2015 (Figure 3c).

2.3. Methods

Firstly, due to a tremendous amount of pixels comprised, we conducted mosaic processes to
compose complete remote sensing images of China. Meanwhile, we extracted “fire-mask” from Science
Dataset for obtaining fire spots maps of the study area. Given the long research period and the large
quantity of data, we employed batch processing using a specific tool named MODIS Reprojection
Tool (MRT) provided by the Land Processes Distributed Active Archive Center. Secondly, in order
to summarize overall fire spots in one day, a maximum value composite strategy was proposed
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and developed to count the number of daily fire spots [18]. The principle of this strategy is to set
corresponding attribute values (7 means low-confidence fire spots, 8 means nominal-confidence fire
spots, and 9 means high-confidence fire spots) to each pixel based on the maximum value in the daily
four observations. In the process of composite, if fire spots detected in the same pixel were recorded
several times for a day, we only counted them as one spot to avoid repeat counting. Clouds and haze
had significant influences on the detection of fire spots. Since the same area was rarely covered by
clouds in the four observations per day, this strategy reduced the occlusion effects and guaranteed
the accuracy of fire spots detection. Thirdly, we employed LUCC dataset for extracting crop residue
burning spots from the preprocessed data. Cropland-masks were selected from the dataset and
combined with corresponding fire spots maps, then daily fire pixels located in croplands (daily crop
residue burning spots) were extracted. On the other hand, hourly PM2.5 and PM10 concentration data
were collated into a daily format and the city-level observation data were also recalculated into a
regional scale. Finally, we employed statistical and Spearman’s rank correlation analysis to examine the
correlation between crop residue burning and PM pollution for each region at different temporal scales.

3. Results

To better understand the following study, the spatial distribution of crop residue burning and PM
concentrations in the different regions of China was shown in Figure 4.
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3.1. The 5-Years’ Variations and Characteristics of PM2.5 and PM10 in China from a Regional Perspective

3.1.1. Interannual Variations and Characteristics

According to Figure 5, one can see a remarkable downtrend of PM concentrations in all of
these seven regions from 2013 to 2017. Specially, during the first three years, PM concentrations
in each region decreased dramatically. Afterwards, the decline rate decreased and such regions as
SC even demonstrated a slight rise of PM concentrations in 2017. Different from variations of PM2.5

concentrations, PM10 concentrations from 2016 to 2017 presented a slight upward trend in most regions.
The peak value of PM2.5 concentrations usually appears in CC and NC. The region with highest PM10

concentration is NWC. Similarly, a clear decline of PM2.5 concentrations and PM10 concentrations was
witnessed in CC and NWC, respectively. The decrease of PM concentrations in NEC was relatively
higher than that of other regions. Furthermore, we analyzed the PM2.5/PM10 ratio, which could reveal
different characteristics and origins of particle pollution [36]. A higher ratio usually indicated that
PM pollution was caused by anthropogenic activities, while a lower ratio demonstrated that natural
factors were the main contribution source of PM pollution [37]. According to Figure 6, the PM2.5/PM10

ratio in each region all dropped to a much lower level with small fluctuations that occasionally arose
during 5-year period. Meanwhile, the most obvious decline of PM2.5/PM10 ratio was shown in CC
(from 0.85 in 2013 to 0.63 in 2017) and the lowest ratio appeared in NWC (average value is about 0.47)
for each year.
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3.1.2. Seasonal Variations and Characteristics

For better understanding seasonal variations and characteristics of PM2.5 and PM10 concentrations,
we divided twelve months into four seasons as follows: Spring (March, April, May), summer (June,
July, August), autumn (September, October, November), and winter (December, January, February).
As can be seen from Figure 7, the seasonal variation of PM10 concentrations in the same region is
similar to that of PM2.5 concentrations, whereas seasonal characteristics and variations of these two
PM concentrations vary significantly across regions. Besides, concentrations of PM10 and PM2.5 in
each region both demonstrated a generally decreasing tendency in each season, despite some obvious
concentration-growth in such years as 2014 and 2016.
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Regarding characteristics of PM10 concentrations in different regions, the highest value always
appeared in NWC and the lowest concentration of PM10 was usually observed in SC. In addition,
throughout a whole year, the average PM10 concentration of NC always maintained a much higher
level than that of other regions’. For CC and NEC, the PM10 pollution usually deteriorated in autumn
and winter. Moreover, from a temporal perspective, the maxima of PM10 concentrations in each region
appeared in winter, and the minima appeared in summer. In spring, PM10 concentrations evidently
decreased in NWC and slightly decreased in other regions. For the decline of PM10 concentration
in summer, the maximum change appeared in NWC, with NEC in the second place. In autumn,
the declines from 2013 to 2015 were evident in all regions and increases appeared in northern and
western China in 2016, when PM10 concentrations in CC, NEC, and NWC greatly reduced (40 µg/m3

approximately) compared to the previous high concentration. For winter, the major decrease of PM10

concentrations was witnessed in NEC, NC, and CC.
Similar to PM10 concentrations, PM2.5 concentrations in different regions were the lowest in

summer and highest in winter. Spatially, the peak of PM2.5 concentrations usually appeared in
CC and NC, which was different from that of PM10 concentrations. Meanwhile, the lowest PM2.5

concentration showed in SC, which was similar to that of PM10 concentrations. For other regions,
the PM2.5 concentration of NEC always kept at a much higher level in spring, autumn, and winter.
Although the PM2.5 concentration of NWC was not the highest in these seven regions, it remained at a
relatively high level throughout the year. The higher PM2.5 concentration was also observed in EC
in spring, summer, and winter. PM2.5 concentration in SWC was lower than other regions except for
SC. For spring, the notable decline of PM2.5 concentrations was witnessed in NWC and CC, whilst the
decrease in other regions was much smaller. For summer, the decline of PM2.5 concentrations was
very small in each region and the largest decrease of 16 µg/m3 appeared in NC. Different from slight
variations in spring and summer, PM2.5 concentrations in autumn and winter decreased significantly
in each region. Particularly, maximum changes were observed in CC (reduced about 50 µg/m3) and
NEC (reduced about 35 µg/m3). Besides, for NC, the decreased-concentration in winter was much
higher than that in autumn. Other seasonal-interannual variations of PM concentrations could be
found in Figure 7.

3.2. The 5-Year Variations of Crop Residue Burning in China from Regional Perspective

3.2.1. Interannual Variations

According to Figure 8, the most serious region of crop residue burning was NEC, with an
annual average number of crop residue burning spots up to 30,569 during the five years period.
Meanwhile, throughout China the number of crop residue burning spots progressively reduced from
east to west. Specifically, the decline of burning spots in NWC and EC was the most obvious without
large fluctuations. The number of crop residue burning spots in CC decreased significantly in the past
five years, whereas during the first three years, the number actually increased gradually until 2016,
when a significant decrease showed up. The number of crop residue burning spots in NEC increased
significantly from 2014 to 2015. Although the number dropped to a relatively low level in 2016, it rose
in 2017 to three times of the number in 2013. Similarly, the number of crop residue burning spots
in NC also increased generally, except for the decrease in 2014. Compared with the north of China,
the number of crop residue burning spots distributed in SC and SWC were small and interannual
variations of burning spots in these two regions were very slight.
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3.2.2. Seasonal Variations

According to Figure 9, we can see clear seasonal variations of crop residue burning spots for
each region. Crop residue burning in CC usually took place in summer and autumn. During 2013 to
2017, the proportion of crop residue burning in spring increased gradually, and decreased notably in
summer and autumn, whilst it demonstrated slight variations in winter. The variation of crop residue
burning in EC were generally consistent with that in CC. For NC, crop residues were often burnt in
summer and autumn. However, the proportion of crop residue burning spots in these two seasons
decreased year by year, while the ratio in spring gradually increased to one third of the total amount.
The number of crop residue burning spots were limitedly distributed in winter. As an agriculturally
developed region, NEC experienced very intense crop residue burning, which mainly concentrated
in spring and autumn. Meanwhile, the proportion of crop residue burning in autumn decreased
from 67% in 2013 to 34% in 2017, and the proportion in spring increased from 27% in 2013 to 64% in
2017. For NWC, crop residue burning mainly took place in spring and autumn. A sudden increase
appeared in the spring of 2014, whilst the proportion in autumn plummeted to 20%. Following this,
crop residue burning in spring and autumn decreased dramatically, and gradually concentrated in
summer. During this period, the proportion of crop residue burning in autumn decreased whilst the
proportion in spring stabilized between 30% and 40%. Finally, crop residue burning spots in NWC
presented similar proportion in spring, summer and winter in 2017. Unlike the northern part of China,
crop residue burning in SC was usually observed in winter. Whereas, in recent years, proportions
of crop residue burning in other seasons increased without clear pattern. Furthermore, crop residue
burning of SWC usually concentrated in spring and summer. During this period, the proportion of
crop residue burning increased in summer and decreased in spring.
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3.3. The Correlation between PM Concentration and Crop Residue Burning at Different Temporal Scales

3.3.1. The Correlation between PM Concentrations and Crop Residue Burning at an Annual Scale

We employed Spearman’s rank correlation for establishing the correlation between daily PM
data and daily crop residue burning spots data. The result (Table 1) showed that the correlation
between PM concentration and crop residue burning in NEC and SC were much stronger than that
in other regions. According to Figure 10, variations were different in these two regions. In NEC,
correlations between PM10 concentration and crop residue burning were generally upward with
fluctuations, except for a notable decrease in 2015. The overall trend of the correlation between crop
residue burning and PM2.5 concentrations was similar, yet the significance of this correlation was much
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weaker. In SC, correlation coefficients between PM concentrations and crop residue burning generally
decreased, except for a slight increase in 2015. In addition, a significant phenomenon was that the
correlation between PM10 concentrations and crop residue burning was stronger than that between
PM2.5 concentrations and crop residue burning.

Table 1. The correlation between particulate matter (PM) concentrations and crop residue burning
occurred in different regions of China during 2013 to 2017.

CC EC NC NEC NWC SC SWC

Spearman PM10 0.095 ** 0.110 ** −0.011 0.218 ** −0.027 0.260 ** −0.019
PM2.5 −0.015 0.002 −0.106 ** 0.124 ** −0.134 ** 0.228 ** −0.068 **

Note: ** p < 0.01.
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3.3.2. The Correlation between PM Concentrations and Crop Residue Burning at a Seasonal Scale

We analyzed correlations between PM concentrations and crop residue burning for each region
from a seasonal perspective. The results (in Figure 11 and Table 2) showed that correlations in
autumn were significantly stronger for the north part of China, including CC, EC, and NEC. For SC,
correlations were stronger throughout four seasons and the largest correlation coefficient appeared
in winter. Correlations in SWC were relatively poor and only significant in spring and summer.
The correlation coefficient in NEC was the strongest among seven regions and the strongest correlation
usually appeared in spring and autumn, when crop residues were intensely burnt in NEC. For EC,
the correlation between PM concentrations and crop residue burning was significant in four seasons
and were much stronger in autumn and winter. Similar to annual analysis, PM10 concentrations were
more strongly correlated with crop residue burning than PM2.5 concentrations.

Table 2. The seasonal variation of correlation coefficients in different regions from 2013 to 2017.

Spring Summer Autumn Winter

CC
PM10 0.063 0.214 ** 0.426 ** 0.148 **
PM2.5 −0.056 0.124 ** 0.321 ** 0.003

EC
PM10 0.199 ** 0.193 ** 0.397 ** 0.363 **
PM2.5 0.125 ** 0.153 ** 0.255 ** 0.283 **

NC
PM10 0.019 0.088 0.186 ** −0.159 **
PM2.5 0.035 −0.009 0.040 −0.239 **

NEC
PM10 0.398 ** 0.032 0.486 ** −0.132 **
PM2.5 0.435 ** −0.060 0.464 ** −0.158 **
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Table 2. Cont.

Spring Summer Autumn Winter

NWC
PM10 −0.106 * −0.013 0.139 ** 0.186 **
PM2.5 −0.151 ** −0.114 * 0.087 0.007

SC
PM10 0.236 ** 0.187 ** 0.214 ** 0.418 **
PM2.5 0.177 ** 0.180 ** 0.194 ** 0.391 **

SWC
PM10 0.179 ** 0.130 ** 0.068 0.042
PM2.5 0.119 * 0.023 0.063 0.091

Note: * p < 0.05; ** p < 0.01.
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3.3.3. The Correlation between PM Concentrations and Crop Residue Burning in
Burning-Concentrated Periods

With different time of crop ripening in each region, periods of crop residue burning are different
accordingly. Therefore, in order to better analyze the change of PM concentrations when crop residues
were intensely combusted, for each year, we selected a burning-concentrated period for each region
during 2013–2017. The principle of selection was based on the appearance of peak months of crop
residue burning spots and prior knowledge of agricultural production. In total, we acquired five
periods for each region and analyzed the correlation between the number of crop residue burning
spots during the burning-concentrated period and corresponding PM2.5 concentrations. The results
are shown in Table 3. Except for NC, correlations between PM concentrations and crop residue
burning were significant in all regions. Generally, correlations in NC and SWC were the weakest,
and correlations in NEC were the strongest. Meanwhile, the correlation between PM10 concentrations
and crop residue burning was significantly stronger than that of PM2.5 concentrations. This result
indicated that the variation of PM10 concentrations was more sensitive to crop residue burning than
that of PM2.5 concentrations during the process of crop residue burning. Correlation between PM
concentrations and crop residue burning increased significantly with the narrowing temporal scales and
was the strongest during burning-concentrated periods, indicating that intense crop residue burning
exerts a much stronger influence on the short-term than long-term variation of PM concentrations.

Table 3. The correlation between PM concentrations and crop residue burning occurred in different
regions of China during burning-concentrated periods.

CC EC NC NEC NWC SC SWC

Spearman PM10 0.362 ** 0.444 ** 0.236 ** 0.491 ** 0.347 ** 0.436 ** 0.234 **
PM2.5 0.335 ** 0.404 ** 0.044 0.446 ** 0.407 ** 0.400 ** 0.169 *

Note: * p < 0.05; ** p < 0.01.

4. Discussion

4.1. The Attribution of Variations of PM10 and PM2.5 Concentrations during 5-Year Period

In this study, we analyzed variations and characteristics of PM concentrations from interannual
and seasonal perspectives. Meanwhile, we selected some crop residue burning-concentrated periods
to explore variations of PM concentrations during the burning processes. Generally, concentrations
of PM10 and PM2.5 have decreased notably since 2013. Besides, PM2.5/PM10 ratios also declined
during the 5-year period which indicates that the composition of PM10 occupied by PM2.5 is
decreasing. Meanwhile, some studies have shown that the high PM2.5/PM10 ratio can be attributed
to human activities, while the lower ratio is related to natural factors [37,38]. In other words,
PM2.5 pollution has been mitigated significantly, due to a series of emission-reduction measures.
Firstly, in autumn and winter, the variation of PM concentrations in northern China can be attributed
to the control of crop residue burning, traffic exhaust, and coal combustion for large-scale central
heating [39]. Secondly, with the implementation of Red and Orange alert measures for reducing PM
pollution, PM2.5 concentrations have decreased remarkably [40]. Thirdly, as a result of traffic control,
the exhaust-emission of vehicles has been cut down dramatically and leads to the reduction of PM
concentrations [41]. Fourthly, some environmental-meteorological projects have been implemented
to address PM pollution issues [42]. In burning-concentrated periods, the variation trend of PM
concentrations is consistent with that of crop residue burning in all regions, indicating intensive crop
residue burning leads to instant deterioration of PM concentrations. Hence, more strict and effective
policies should be proposed and implemented to encourage more efficient utility of crop residues and
reduce large scale and intensive crop residue burning.



Int. J. Environ. Res. Public Health 2018, 15, 1504 16 of 20

4.2. The Attribution of Correlations between PM Concentration and Crop Residue Burning

The correlation between PM concentrations and crop residue burning was discussed in this
paper. Firstly, it is found that the correlation between PM concentrations and crop residue burning is
significant and strong, especially in burning-concentrated periods, which is consistent with findings
from previous studies [43]. Awasthi et al. (2010) found PM10, PM2.5, PM10–2.5 concentrations increased
significantly during crop residue burning in India. Strong correlation between crop residue burning
and PM concentrations was observed. Different from this research, Awasthi et al. (2010) found
that the PM2.5 concentration was more sensitive to crop residue burning than PM10 concentrations.
This difference may result from pollution level and meteorological diffusion conditions in India.
However, our finding about the very strong correlation between crop residue burning and PM
concentrations during the intensive crop residue burning period in all regions across China proved that,
despite other influencing factors such as emission sources and meteorological factors, intensive and
large-scale crop residue burning could be a dominant emission sources for PM pollution across
China. Secondly, correlations between different particulate matters and crop residue burning are
distinct. PM10 concentrations are much strongly correlated with crop residue burning than PM2.5

concentrations, indicating crop residue burning in China may produce more PM10 than PM2.5. From a
temporal perspective, crop residue burning in autumn usually presents a higher correlation with PM
concentration, which is consistent with the findings from Yin et al. Whereas, different from this research,
Yin et al.’s research [23] mainly introduced the temporal variation of both crop residue burning and
PM2.5 concentrations in China and did not discuss the correlation from different temporal scales. From a
spatial perspective, the correlation in NEC is the strongest among the seven regions, especially in
spring and autumn, suggesting that the PM concentration is closely related to crop residue burning
in the burning-concentrated periods. This phenomenon was consistent with findings from previous
studies suggesting that crop residue burning is related to PM2.5 concentration [23,24]. The main
reason for the poor correlation in NC is that the source of PM is high exhaust-emission of vehicles and
industrial production, instead of crop residue burning [41]. For NWC, petroleum exploitation is also
an important contributor to PM pollution [44], which may be the reason why PM10 demonstrates a
weaker correlation with crop residue burning than PM2.5. To sum up, the burning of crop residues
has a great contribution to PM pollution, though the relative contribution of crop residue burning to
PM concentrations, compared with other emission sources, including industry and traffic exhaust,
should be further investigated.

4.3. Limitations and Prospect

Although the paper comprehensively examined correlations between PM concentration and
crop residue burning, some limitations remain. Firstly, due to the fact that crop residue burning
usually lasts for a short period, the correlation analysis should be more reliable if it is conducted
based on a finer temporal resolution, such as hourly. Thus, considering the finer temporal resolution
of Himawari-8, it is a better choice to extract fire spots on the hourly scale. Secondly, due to the
limited spatial resolution of MODIS data, some actual burning spots may be lost in the process of
fire spots extraction and statistics. That means remote sensing data with higher temporal resolution
are required for extracting fine-scale crop reside burning spots. Furthermore, due to complicated
interactions between PM and meteorological factors, commonly used correlation analysis may be
biased significantly. To reduce the influence from other factors and better investigate the influence of
crop residue burning on PM concentrations, advanced causality methods, such as cross convergent
mapping (CCM) [45] and chemical transport models (CTM), such as WRF-CAMx [46], should be
employed in future studies. Whereas, the difficulty for examining the causality of crop residue burning
on PM concentration without other influencing factors, using above models lies in the short time
series of the concentrated crop residue burning periods. Meanwhile, the MODIS data extracted crop
residue burning spots are mainly based on a daily scale and thus the time series of intensive crop
residue burning is limited to less than 30 numbers, not sufficient for a robust CCM or CTM analysis.
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Therefore, to implement CCM or CTM analysis, fire spots should be extracted using remote sensing
data with a much higher temporal resolution, such as Himawari 8 with 10-min temporal resolution.
In the future, with growing availability and accuracy of Himawari data sources, it is possible to conduct
robust causality analysis based on CCM or CTM using long time series data of crop residue burning
and PM pollution. In this case, the influence of crop residue burning on PM concentrations can be
better extracted by filtering the biases of other influencing factors.

5. Conclusions

This paper analyzed interannual and seasonal variations of PM10 and PM2.5 concentrations and
simultaneous variations of crop residue burning in several regions across China. The results showed
that the PM concentration was in a downward trend from interannual and seasonal perspectives and
PM2.5/PM10 ratios in different regions decreased gradually. The peak value of PM10 concentrations
usually appeared in NWC and winter whilst the peak value of PM2.5 concentrations appeared in NC
and CC. Temporal variations of PM2.5 are similar to that of PM10 concentrations. For the number of crop
residue burning spots in China, it remained a downward tendency during the 5-year period in most
regions, except for an evident increase in NEC in 2017. Furthermore, we analyzed correlations between
PM concentration and crop residue burning and explored at different temporal scales. The variation
of PM10 concentration was more sensitive to crop residue burning than that of PM2.5 concentrations
and the strongest correlation between PM concentrations and crop residue burning appears in NEC.
Correlation between PM concentrations and crop residue burning increased significantly with the
narrowing temporal scales and was the strongest during burning-concentrated periods, indicating that
intense crop residue burning exert a much stronger influence on the short-term than long-term variation
of PM concentrations. The methodology and conclusions from this study provide useful reference
for better understanding the influence of crop residue burning on PM concentrations at different
scales and suggest that intensive crop residue burning leads to instant increases of PM concentrations.
Given the major contribution of crop residue burning to PM pollution, more strict and effective policies
should be proposed and implemented to encourage more efficient utility of crop residues and reduce
large scale and intensive crop residue burning.
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