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Received: 13 April 2018; Accepted: 29 May 2018; Published: 1 June 2018
����������
�������

Abstract: The main topic of this study is a human health risk assessment of a defined exposure
scenario in the floodplain soils of the headwater areas of the central European watershed, with the
aim of exploring both multivariate and regional data structures. Flood-prone areas are recognized
worldwide to be susceptible to contamination and its redistribution. Contributions of various classes
of toxic compounds (organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs),
polychlorinated biphenyls (PCBs)) to human health risks were assessed in a screening risk assessment.
However, due to the relative nature of our data and a high PAH dominancy over the data ensemble,
reliance solely on the standard statistical processing of raw data might lead to incomplete insight
into the structure of the multivariate data. Explanatory analysis of the data structure using the
compositional approach was found to be beneficial to elucidating human health risk profiles and
provided robust evidence that a contrast between agricultural and airborne industrial pollution
controlled the whole human toxicological variation of persistent organic pollutants (POPs) in
floodplain soils. These results were effectively quantified with the subcomposition of benzo(a)pyrene,
DDT, and alpha-hexachlorocyclohexane (aHCH), allowing for an interpretation of structural
differences in regional pollution patterns, which conferred different extents and compositions of
human health risks in floodplain soils.
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1. Introduction

The contamination of the environment by hazardous substances such as persistent organic
pollutants (POPs) is a worldwide public health concern. POPs show serious toxic effects on humans
as well as wildlife in very low concentrations [1]. One of the matrixes that acts as an effective sink of
these toxic chemicals is soil [1,2]. Whilst floodplain soils are renowned for their fertility, attributed
to nutrient inputs, the same enrichment process renders these soils susceptible to contamination
by various pollutants [3]. They are subject to further redistribution and transformation processes,
which are a matter of great importance in floodplain soils [4]. Although the rivers in the Czech Republic
underwent significant changes in the quality of surface waters during the 1990s due to a decline in
industrial and agricultural activity associated with political changes [5], increased concentrations of
various pollutants in alluvial soils in Central Europe can still be found [6–8]. The Czech Republic, as a
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typical Central European country, is located in the European Watershed area; hence, several European
great rivers have their headwaters located there. Since ongoing climatic changes may increase the
risk of extensive floods in Europe [9], both the health and environmental consequences of the old
burdens as well as of emerging pollution should be monitored and controlled in the floodplains.
Humans are a sensitive target of POP bioaccumulation and its associated adverse effects [10]. Also,
potential transfer to the human body may occur through different pathways of direct exposure [11–13]
or dietary exposure [14].

Since our knowledge of POP pollution profiles in floodplain soils in the Czech Republic is still
fragmentary and there are many data gaps regarding nondietary exposure pathways, extensive soil
sampling combined with a screening assessment of human health risks was conducted. To assess the
health risks connected to the presence of POPs in floodplain soils, we proceeded as follows. In the first
step, a countrywide inventory of floodplain soils was performed with a focus on the properties and
contamination levels of cultivated soils. As a second step, an established model [15] was adapted to
field data for evaluation and interpretation of exposure to toxicologically important organic chemicals.
Contributions of various classes of toxic compounds (PCBs, organochlorine pesticides (OCPs), PAHs)
to total human health risks were then assessed using the main principles of statistical analysis for
compositional data in this study.

2. Materials and Methods

2.1. Sampling and Data Acquisition

The target areas for soil sampling were selected using a geographic information system
(GIS)-based approach, bringing together nationwide digital data on soil distribution, land use,
and hydrological floods in the Czech Republic. The soils were preferentially sampled in those areas
vulnerable to inundation (the five-year floodplains) where the risk of extensive inundations met a
high cropland extent. For each sampling site (n = 100), a mixed sample consisting of 10 individual
probes with depths of 0–30 cm was collected between 2010 and 2015. The basic soil properties (e.g.,
total organic carbon, soil texture characteristics) were also determined.

2.2. Laboratory Analysis

Chemical measurements for POPs (PAHs, PCBs, OCPs) were performed in the accredited
laboratory of in the Trace Analysis Laboratories in the Research Center for Toxic Compounds in
the Environment. All soil samples (10 g) were spiked with a 50 µL solution of perdeuterated PAHs and
extracted using automated Soxhlet extraction for 40 min with dichloromethane in a Büchi extraction
unit (Büchi, Uster, Switzerland). The extract was divided into a ratio of 1:9 for PAHs and PCBs + OCPs.
For PAH analysis, the volume was reduced under a gentle nitrogen stream at ambient temperature
and further covered by silica purified using Soxhlet for 8 h with dichloromethane. The fractionation
achieved on a silica gel column was then used for the analysis of the PAH content. The sample was
eluted using a mixture of dichloromethane and hexane, and spiked with deuterated p-terphenyl
(50 µL, 4 µg/mL) surrogate standard. PAH contents were quantified using gas chromatography–mass
spectrometry (GC–MS) (Agilent GC 7890/MS-MS Triple Quadrupole 7000B-Agilent, Santa Clara,
CA, USA) equipped with a 60 m × 0.25 mm × 0.25 µm DB5-MS capillary column (J&W Scientific,
Folsom, CA, USA). The isotope dilution method was used for quantification of the compounds.
Helium was used as an inert carrier gas. For PCBs and OCPs, the volume was reduced under a
gentle nitrogen stream at ambient temperature, covered by purified silica, and transferred into a vial.
Finally, PCB 121-81 (0.2 µg/mL) was added as an internal standard. The extract was cleaned on an
H2SO4-modified (44% w/w) silica column, and analytes were eluted with a 20 mL DCM/n-hexane
mixture (1:1, v/v). Samples were quantified using gas chromatography–mass spectrometry (GC–MS)
(Agilent GC 7890/MS-MS Triple Quadrupole 7000B) equipped with a 60 m × 0.25 mm × 0.25 µm
HT8 SGE column (SGE Analytical Science, Ringwood, Australia) and with helium as a mobile phase.
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The isotope dilution method was used for quantification of the compounds. Certified reference
materials (Cambridge Isotope Labs soil standard RM-0002) and laboratory blanks were analyzed with
each set of POP samples.

2.3. Human Health Risk Assessment

In this study, a screening risk assessment was performed for the estimation of the human intake
of soil contaminants and consequent risks as suggested by the United States Environmental Protection
Agency [16]. The risks were quantified under the present environmental conditions for the selected
exposure scenario for those compounds that may pose the most significant potential risk to humans.
The selected human exposure pathways addressed in this study included the inhalation of particles,
dermal contact, and ingestion. Risk characterization was considered separately for carcinogenic and
noncarcinogenic effects.

From a numerical perspective, the potential human health risks were estimated by a confrontation
of the actual environmental concentration (PEC) with the calculated soil screening level (SSL) for
human health risks of soil contamination (see Equations (1) and (2)). The SSLs represented the
risk-based soil concentrations determined for the involved chemicals from equations combining
exposure assumptions with common toxicity criteria. The SSLs based on noncarcinogenic risks were
estimated using the site-specific exposure parameters (in Table 1) substituted into Equation (1).

Human exposure risks were assessed for certain exposure scenarios. Setting the exposure
parameters specified the extent to which the model accurately represented reality. The site-specific
exposure parameters were set out according to typical conditions of these soils in alluvial areas
(Tables 2 and 3). As such, they are a fair reflection of the exposure of farmers, although other
population groups, such as residents and bystanders, may also be exposed to these compounds
due to soil pollution. The detailed methodology is also described in Čupr et al. [15], whose paper
includes a discussion of the factors that may result in either an overestimation or an underestimation
of the risks.

SSLi =
THQ·BWc·ATc

EFr·EDc

[(
1

R f Do
· IRSc

106mg/kg

)
+
(

1
R f Do

· SAc ·AFc ·ABS
106mg/kg

)
+
(

1
R f Di

· IRAc
VFs or PEF

)] (1)

Table 1. Exposure parameters for noncarcinogenic risk calculation.

Symbol Parameter (Unit) Value

THQ Target hazard quotient 1
BWc Body weight, child (kg) 15
ATn Averaging time, noncarcinogens (days) ED × 365
EFr Exposure frequency, resident (day year−1) 250 (8 h/day)
EDc Exposure duration, child (years) 25
IRSc Soil ingestion rate, child (mg day−1) 100
RfDo Oral reference dose (mg kg−1 day−1) Chemical-specific
SA Dermal surface area, child (cm2 day−1) 3470
AF Soil adherence factor, child (mg cm−2) 0.12

ABS Skin absorption factor (unitless) Chemical-specific
IRAc Inhalation rate, child (m3 day−1) 20
RfDi Inhalation reference dose (mg kg−1 day−1) Chemical-specific
VFs Volatilization factor for soil (m3 kg−1) Chemical-specific
PEF Particulate emission factor (m3 kg−1) Chemical-specific

The SSLs based on carcinogenic risks were estimated using the site-specific exposure parameters
(in Table 2) substituted into Equation (2). The results were compared with the carcinogenic
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benchmark level, i.e., exposure posing an upper-bound lifetime excess cancer risk of 1 × 10−6 (one
cancer occurrence in one million people).

SSLi =
TR·ATc

EFr

[( IFSadj ·CSFo

106mg/kg

)
+
( SFSadj ·ABS·CSFo

106mg/kg

)
+
( InhFadj ·CSFi

VFs or PEF

)] (2)

Table 2. Exposure parameters for carcinogenic risk calculation.

Symbol Parameter (Unit) Value

SSLi Contaminant concentration (mg kg−1) Chemical-specific
TR Target cancer risk 1 × 10−6

ATc Averaging time, carcinogens (days) 25,550
EFr Exposure frequency, resident (day year−1) 250 (8 h/day)

IFSadj Age-adjusted soil ingestion factor ((mg year−1)/(kg day))−1 100
CSFo Oral cancer slope factor (mg kg-1 day−1) Chemical-specific
SFSadj Age-adjusted dermal factor ((mg year−1)/(kg day−1)) 361
ABS Skin absorption factor (unitless) Chemical-specific

InhFadj Age-adjusted inhalation factor ((m3 year−1)/(kg day−1)) 11
CSFi Inhalation cancer slope factor (mg kg day)−1 Chemical-specific
VFs Volatilization factor for soil (m3 kg−1) Chemical-specific
PEF Particulate emission factor (m3 kg−1) Chemical-specific

The hazard quotient assumes that there is a level of exposure below which it is unlikely for
even sensitive populations to expect any adverse health effects. In our case of exposure to multiple
chemicals, a final cumulative health risk (hazard index for n pollutants) related to each sampling site
was calculated as a sum of the partial quotients for the i involved compounds in Equation (3). A final
HI < 1 indicates that no adverse health effects are likely to occur at the present exposure dose, and the
human health risks (HHRs) are currently acceptable.

HQHUMAN = PECi/SSLi (3)

HIHUMAN =
n

∑
i=1

HQHUMAN (4)

In the last step we calculated the relative contribution of each substance to an overall hazard
index (HIHUMAN):

piRISKHUMAN
= HIHUMANi /HQHUMAN . (5)

2.4. Data Manipulation and Statistical Analysis

Principal component analysis (PCA) and cluster analysis were performed to evaluate the
compositional similarities among samples. PCA is a widely used explanatory technique in terms
of variance explanation and dimension reduction. The goal of any cluster analysis is to recognize
homogenous clusters with the assumption that an underlying group structure exists. Following the
expository potential of both tools, these were applied to explore the compositional variability of major
components in our health risk survey. Nevertheless, these techniques cannot be directly applied to
compositional data (objects described by vectors comprising parts of some whole) because they do
not agree with the geometrical structure of the feature space [17]. Since the benefits of using the ratios
between components have been recognized in statistical theory [18], the log-ratio transformations were
proposed to overcome the shortcomings of analyzing compositional data. The advantages of both the
centered log-ratio (clr) transformation [18] and the isometric log-ratio (ilr) transformation [19] may be
exploited in the framework of a robust PCA [20]. A matrix of relative contributions of each pollutant
to total HIHUMAN for each locality was prepared before the statistical analysis (Equation (5)). In order
to avoid misinterpretation of the results, half of the detection limit was used in all summations
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and for statistical analyses. However, a sizeable proportion of all data with an identical value
can influence the multivariate analysis of compositional data [21]. This may be the case of some
PCBs and hexachlorocyclohexane isomers (HCHs), where congeners PCB 52 and PCB 118 as well
as the bHCH isomer proved to have especially significant proportions of observations below the
detection limit (see Table 3). This effect of abundant identical values may be relieved by using the
relative contributions of each compound to calculate the human risks from our point of view. Hence,
all of the compounds were included in the multivariate analysis. PCA was performed after the
matrix had been transformed using the ilr transformation and the resulting loadings and scores were
back-transformed to the clr-space—for details, see Filzmoser et al. [20]. For clustering purposes,
the fuzzy c-means algorithm (FCM) was employed to provide a degree of membership to each one
of the resulting clusters. The fuzzy clustering problem can be characterized as classifying a given
set of objects to fuzzy subsets, each of which is represented by its prototype with the most typical
group characteristics [22]. Palarea-Albaladejo et al. [23] and Templ et al. [21] empirically tested
various clustering algorithms on compositional datasets adopting a log-ratio approach. Following
their experience, the clustering results were obtained using the FCM on ilr-transformed data. In the
last steps, some graphical tools were used to pool the multivariate results. Therefore, a biplot [24]
was used to graphically represent the variability in the entire composition and to assist the selection
of relevant subcompositions that retain as much of the total variability in the entire composition
as possible. The exact procedure for constructing the biplot adapted to compositions was presented
in Filzmoser et al. [20]. For its statistical interpretation, see Aitchison and Greenace [25]. Finally,
PCA results led to a ternary diagram, enabling readers to obtain lower-dimensional insights into
the nature of the compositional dataset. These plots were subsequently used to represent clusters
using the well-suited subcomposition defined according to the PCA results. The compositional biplots
constructed on the basis of PCA and ternary plots have been shown to be powerful exploratory
tools for various compositions [20,25]. Following this, we used them for visualization and deeper
understanding of the survey results.

Since we analyzed only some of the possible compounds in the soil sample, our chemical dataset
actually represents a subcomposition. Moreover, we replaced some measured values (mass ratios,
µg/kg) by some computed ones (health risk estimations combining exposure assumptions with toxicity
criteria) in our analysis. When applying any statistical method to compositions, three conditions should
be fulfilled: scale invariance, permutation invariance, and subcompositional coherence [18]. Thus,
using a log-ratio approach was an essential step to avoid the pitfalls of compositional data.

All of the computations and visualizations were conducted with the “robCompositions” [26],
“compositions” [27], “ape” [28], and “cluster” [29] packages for the R statistical software (R CORE
TEAM, Vienna, Austria). The regional patterns of the multivariate analyses results were spatially
visualized using ArcGIS 10.2 (ESRI, Redlands, CA, USA).

3. Results

When our findings were compared to concentrations of POPs in Czech agricultural soils reported
by Holoubek et al. [1], a similar trend could be observed for all POP compounds. Median concentrations
were lower in our dataset (PAHs, DDTs, HCHs, PCBs, hexachlorobenzene (HCB); see Table 3),
but usually with a wider range of values (PAHs, DDTs, HCHs). The results revealed a general
high variability of POP concentrations in floodplain areas. In a previous study, both the magnitude
of the estimated human health risks and the magnitude of hazards quotients of involved POPs were
surveyed. Moreover, the highest estimated human health risks were found only in floodplain areas
with high contents of PAHs exceeding the Czech legislation limits for agricultural soils [30]. In a closed
system of compositional data (summing up to a constant), there is little space for all other compositional
parts to vary in the case of exceptionally high relative contributions of carcinogenic PAHs (c-PAHs) to
the estimation of HHRs (i.e., benzo(a)pyrene > benzo(b)fluoranthene > benzo(a)anthracene in Table 3).
These proportional effects may be relieved by applying a log-ratio approach to the compositional
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dataset [31]. This approach allows researchers to explore those variable relationships that may be forced
by the overall predominance of PAHs in health risk estimations and hence allows an interpretation of
both known and unexpected patterns in the opened data.

Table 3. Summary statistics for the chemical concentrations of persistent organic pollutants (POPs)
in the floodplain soil dataset (minimum: MIN; median: MED; maximum: MAX; spread expressed as
median absolute deviation (MAD) and percentage of observations below the detection limit (% <DL))
and a summary of the hazard quotient calculation (median (MED_HQ) and its relative proportion to
the median of the hazard index (%_HI)).

POPs Chemical Measurement Risk Estimation

Compound Abbreviation
MIN MED MAX MAD % <DL MED_HQ %_HI

µg/kg % - %

PCB 28 PCB28 0.06 0.10 1.37 0.02 38 0.0001 0.05
PCB 52 PCB52 0.05 0.10 0.56 0.00 58 0.0001 0.05
PCB 101 PCB101 0.03 0.13 1.18 0.05 37 0.00014 0.07
PCB 118 PCB118 0.02 0.10 0.34 0.07 57 0.0001 0.05
PCB 153 PCB153 0.08 0.32 4.66 0.25 6 0.000318 0.15
PCB 138 PCB138 0.06 0.32 3.36 0.25 15 0.00032 0.15
PCB 180 PCB180 0.05 0.28 4.68 0.24 9 0.00028 0.13

Pentachlorobenzene PeCB 0.01 0.12 1.82 0.09 16 1.79 × 10−7 0.00
Hexachlorobenzene HCB 0.13 1.21 8.66 0.95 0 0.000843 0.39

alpha-Hexachlorocyclohexane aHCH 0.12 0.44 9.52 0.41 16 0.001189 0.56
beta-Hexachlorocyclohexane bHCH 0.03 0.10 11.0 0.00 74 7.69 × 10−5 0.04
gamma-Hexachlorocyclohexane gHCH 0.10 0.41 3.88 0.19 15 0.000164 0.08

o,p’-DDE opDDE 0.01 0.10 35.4 0.02 41 1.47 × 10−5 0.01
p,p’-DDE ppDDE 0.34 3.85 1923 4.05 0 0.000551 0.26
o,p’-DDD opDDD 0.01 0.13 12.3 0.07 29 1.35 × 10−5 0.01
p,p’-DDD ppDDD 0.04 0.52 38 0.52 8 5.42 × 10−5 0.03
o,p’-DDT opDDT 0.05 0.49 329 0.55 9 5.58 × 10−5 0.03
p,p’-DDT ppDDT 0.12 4.28 1082 4.77 0 0.000493 0.23

Naphthalene N 4.38 10.4 648 5.09 0 0.000614 0.29
Acenapthene Ace 0.06 1.67 589 1.39 1 3.73 × 10−8 0.00

Fluorene Fluor 0.92 2.86 477 1.74 0 9.58 × 10−8 0.00
Anthracene Ant 0.67 5.27 791 5.58 0 2.2 × 10−8 0.00

Fluoranthene Fl 10.58 89.31 4268 95.2 0 2.95 × 10−6 0.00
Pyrene Pyr 8.31 71.93 2966 75.5 0 3.11 × 10−6 0.00

Benz(a)anthracene BaA 3.00 35.84 16,705 36.4 0 0.012255 5.73

Chrysene Chr 4.58 45.81 1368 45.5 0 0.000158 0.07

Benzo(b)fluoranthene BbF 5.58 53.30 1818 53.7 0 0.018431 8.62

Benzo(k)fluoranthene BkF 2.08 23.05 624 22.3 0 0.000792 0.37

Benzo(a)pyrene BaP 3.62 44.50 1475 43.7 1 0.152897 71.53

Indeno(1,2,3-cd)pyrene Ipyr 2.77 33.05 966 31.3 0 0.011278 5.28
Dibenz(ah)anthracene DBahAnt 0.10 3.29 58.43 3.37 1 0.011179 5.23

Multivariate Results

Figure 1 summarizes the compositional biplot obtained with the robust PCA using the log-ratio
approach and allows the interpretation of compositional variability. The origin of the compositional
biplot represents the center of the compositional dataset; links between ray vertices represent the
variance of the log-ratios between two components; and rays represent the clr-transformed variables.
If several rays are collinear, the relative variability within the subcomposition formed by these variables
might be one-dimensional and might represent a process influencing these components in a similar
way [31]. If ray vertices coincide, then the two involved compositional parts may be assumed to be
redundant. Nevertheless, when interpreting rays, one has to consider their dependency on the center
as they represent clr-transformed variables. Hence, the constellation of links is fundamental when
interpreting the compositional covariance structure in these biplots. Short links indicate variables that
are highly proportional. Orthogonal links suggest two involved subcompositions to be uncorrelated.
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Figure 1. Biplot of the first two robust principal components (PCs) for the centered log-ratio
(clr)-transformed major components (explained variation: PC1, 51%; PC2, 20%).

By applying these principles, we can clearly see several coincident rays consistently pointing
towards diverging directions and connected with relative short links indicating three distinct groups
of variables in Figure 1:

1 PAH compounds,
2 DDTs and metabolites, and
3 PCBs, HCHs, and PeCB.

Short links between those compounds in each group indicate variables that are highly proportional
and predetermine redundant variables. On the other hand, the orthogonality of the three groups
suggests some uncorrelated log-ratios (for instance, PAHs/DDTs vs DDTs/HCHs). This may be useful
in the investigation of subcompositions for possible independence and the selection of variables to be
visualized in ternary plots. Since such clear patterns were found in the preceding descriptive analysis,
a well-suited ternary diagram of the subcomposition formed by the distinctive rays from each group
could record the whole variability exceptionally well [31]. This is the case for the subcomposition
(BaP, gHCH, ppDDT) in Figures 2 and 3. Since the proportion of explained variance captured by the
two first principal components (PCs) reached 71%, the PCA results as well as the derived ternary
diagrams may be considered a good approximation to the real structures in the data set. The robust
PC1 can be seen as a contrast between the components of the PAH group and DDT group, while PC2
is dominated by elements of the third group in both Figures 1 and 2. The analysis of the compositional
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biplot suggests that most of the variability was controlled by two main factors—PAH contamination
connected to higher atmospheric pollution inputs in the catchment, and DDT contamination connected
to the agricultural intensity.
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A three-group solution was considered as the optimal grouping of the dataset in the
cluster analysis. The membership probabilities from the FCM approach are graphically shown for each
sample in Figures 4 and 5. Comparing clustering and ordination results can be beneficial to explaining
the differences between groups of sites. Compositional biplots summarize the variance relationships
within the compositions; nevertheless, they are chosen to maximize the variance of the projected data
cloud and are not tailored to highlight between-group differences [31]. For this purpose, a graphical
representation of principal coordinate analysis (PCoA) was used on the Aitchison distance matrix,
in which the eigenvectors are scaled to the square root of the corresponding eigenvalues (Figure 4).
Gower [32] showed that eigenvectors scaled in this way preserve the original distance among the
objects in the distance matrix. We can see that the clusters are basically defined by their projections
along the first two principal components, according to their human risk patterns and the differences in
relative contributions of DDTs, HCHs, and PAHs to the calculated human risks. Hence, the three-group
clustering corresponded well to the variation within the composition.
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In fact, if we used a ternary plot (Figure 2) to represent the established subcomposition (designed
by representative compositional parts formed by some of the longest rays from each group in the
compositional biplot in Figure 1), the clusters are clearly distinguished. The data as much as the grid
lines were centered and the first two principal components of the subcomposition were added to the
ternary plot. The data were centered by calculating the closed geometric mean, which was obtained
as the closure of the vector of geometric means of each component. In this way, the geometric center
of the observed data could be moved to the barycenter of the simplex space, allowing us to better
visualize the structure of the sample [33]. When comparing the ternary diagram obtained for raw
data (Figure 3) with that obtained for the centered log-ratio-transformed data (Figure 2), we could
see that the raw data tended to collapse on a vertex, obscuring the structure (BaP in our case). Hence,
only limited information can be extracted from raw proportions due to the proportionality effect [31].
Comparing both diagrams, the actual benefits of the log-ratio approach can be seen. Note that the
positions of the clustering groups within the subcompositional representation using ternary diagrams
(Figure 2) agree with the partition results of fuzzy clustering in Figure 4. It can be again seen that
Clusters 1 and 3 are the groups with the most similar characteristics, and also that Cluster 2 is the most
different group. This may be explained by the fact that Cluster 1 and 3 are both dominated by relatively
high contributions of various OCP compounds and thus may be both influenced to some extent by
long-term intensive husbandry. Finally, the processes behind the clusters were investigated according
to the relative weight of each POP component in every group using centered data, according to
Palarea-Albaladejo et al. [23] (Figure S1).

4. Discussion

Cluster 1 included samples with a higher proportion of organochlorine pesticides with prevailing
agricultural origin (HCHs, PeCB, HCB) together with samples with higher organochlorine compounds
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of industrial origin (PCBs). On the contrary, Cluster 2 was composed of samples with relatively high
contributions of PAH compounds to the estimated HHRs (see Figure S1 for each cluster profile in
more detail). The increased PAH content in the environment was evident in the fluvial systems of
the broader Moravian Silesian region (the Odra and Bečva Rivers). In this region, the anthropogenic
pollution sources (coal processing, metallurgy) have generated higher PAH air concentrations [34] and
greater contamination of agricultural soils [35]. The PAH contamination in floodplains of the Bečva
River may be significantly influenced by the coal tar refinery (Deza Corporation) producing aromatic
hydrocarbons [36]. Elevated concentrations of PAHs were also recorded in the floodplains along the
Jizera River near the industrial center of Mladá Boleslav (automobile manufacturing). Last but not
least, traffic-related emissions increased exposure to PAHs at several locations with a lower distance
to highways. PAHs have been determined to be elevated in soils affected by highway traffic [37,38]
and have been proved to significantly contribute to AhR-mediated activity and adverse health effects
of traffic-associated pollution [39,40]. Ollivon et al. [41] described how car traffic and atmospheric
washout might impact river contamination in the highly urbanized area within the Seine catchment.
Elevated PAH contributions, associated with above-average health risks, were surprisingly recorded
in the headwaters of the Elbe and Morava Rivers. This could only be explained by an atmospheric
transport of PAHs that may increase their concentrations in remote freshwater ecosystems with no
other pollution sources [42]. Using a regression tree model, Kubošová et al. [43] confirmed the crucial
role of industry and other primary anthropogenic sources in soil contamination by PAHs. Yet, they
also identified precipitation as the main transfer route of atmospheric PAHs to soils. The resulting
regional patterns of PAHs in their stochastic approach using regression trees [43] corresponded well to
our results of health risk patterns in floodplain areas.

Concerning Cluster 1, two regional centers could be distinguished. One was probably associated
with the former contamination of the Spolana chemical plant at the middle reach of the Elbe River.
The chemical plant grounds were contaminated with dioxins, chlorinated aliphatic hydrocarbons,
and OCPs [44,45]. Studying the POP bioaccumulation in the Elbe River, Randák et al. [46] also found
the highest concentrations of PCBs in chub muscle in fish from the Neratovice site. Thus, multiple
sources may interact, resulting in a more complex soil pollution profile and corresponding health risks.
The second regional occurrence of Cluster 1 was observed at the middle reach of the Morava River,
where higher concentrations of organochlorine pesticides (especially HCHs and PeCB) were found.
Studying POP dynamics in the dissolved phase in the water column of the Morava River and its
tributaries, Prokeš et al. [47] found high aqueous concentrations of organochlorine hydrocarbons
(especially PCBs and HCHs).

Finally, the characteristic features of Cluster 3 included higher contributions of DDT and its
metabolites to the estimated HHRs. DDT and its metabolites dominated most soil samples from the
catchment of the Berounka River (Central Bohemia), from the lower reach of the Eger River, and from
a wider region of the South Moravian catchments. The floodplains of these lowland regions belong to
traditional areas of intensive agricultural production over a long period of time. The observed regional
pattern of Cluster 1 showed exceptional agreement with the predicted concentrations for DDTs in a
regression tree model [43] and with some field observations of sediment geochemistry [48].

Given the results of the total estimation of HHRs for all soil samples, potential regional hot spots
of human health impacts may be recognized (note the yellow circles in Figures 2 and 5 highlighting
the samples with HIHUMAN > 1.0). In fact, if we display these samples in a ternary plot (Figure 2) or in
the results of fuzzy clustering (Figure 5), the predominance of PAH-induced human health risks is
clearly evident. Some exceptions to this included the Elbe samples collected close to the confluence
with the Eger River and samples taken near the Neratovice site, which both showed more complex
pollution profiles (elevated contributions of PCBs, HCHs, DDTs, and PAHs).
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5. Conclusions

An elevated probability of human health impacts of soil pollution may be expected at
several sampling sites under exactly defined exposure conditions. When combining both the
magnitude of estimated HHRs (noncarcinogenic and carcinogenic effects) and the compositional
variation of pollution profiles, several localities with high contents of PAHs proved to have
the highest estimated HHRs. Concerning the intensive agricultural utilization of floodplains,
the exposure of farmers can be considerable when they are exposed to polluted soils with significantly
increased concentrations of POPs (mainly c-PAHs) and over long working hours. Since other
population groups, such as residents and bystanders, may also be exposed to these compounds due to
environmental pollution, a high degree of attention should be dedicated to human risk assessments
associated with nonoccupational exposure in floodplain areas. This may especially be the case for
the North Moravian region, where the population generally suffers from higher residential exposure
due to air pollution. This study only focused on certain POPs and exposure scenarios and did not
consider additional routes of exposure (dietary intake) or special vulnerable populations with specific
exposure scenarios [49]. However, in agricultural areas it must be considered that concentrations of
additional contaminants (especially formerly used or emerging pesticides [50,51], polychlorinated
dibenzo-p-dioxins and dibenzofurans [52], heavy metals [3,53], or other micropollutants [54,55]) may
also contribute to a higher probability of adverse effects. Likewise, health risks may be underestimated
owing to the nature of the simple additive model avoiding all compound interactions and their
synergic effects. According to the intensive farming in the floodplains and potential pathways for POP
transfer to the human food chain, dietary exposure is expected to significantly contribute to HHRs.
Various studies have provided strong evidence that the flooding of pastureland can indeed result in
elevated concentrations of POPs in milk and meat produced on flood-prone land [52,56,57]. POPs are
adsorbed on soil organic matter or in the plant rhizosphere so strongly that they are marginally
transported to plant tissues [58]. Some problems might arise from the growing of feed crops for direct
consumption, especially for plants producing consumable parts in the soil [59–61], since Trapp [58]
presented a comparable adsorption of lipophilic organic substances within the rootzone with their
adsorption to soil organic carbon. These risks may come into question for the localities in Cluster 3,
where a high contribution of DDTs and metabolites to HHRs meets areas of intensive vegetable farming
in floodplains near the Elbe and Eger confluence or in South Moravia. The regional patterns obtained in
our floodplain study corresponded well with results of model-based predictions of POP concentrations
in soils [43] and with some field observations of sediment, water, and biota [46–48]. This indicates
the general role of floodplains as an effective sink of overall regional pollution. Since microbial
degradation is a potential mechanism for the removal or transformation of POPs [62] and soil microbial
characteristics have been proven to be very dynamic in human-altered riverine landscapes [63],
special attention should be paid to the bioavailability mechanisms of POPs in these soils in the future.
Moreover, filling the data gaps in understanding contaminant bioaccessibility is advisable to accurately
assess human exposure to POPs via direct pathways [64].

Since a recent evolution of riverine landscape tends toward higher flood control in urban areas and
flood-retarding inundation out of populated areas, agricultural floodplain soils will suffer the impacts
of high water events. Hence, the results of this study were implemented in a national certified guideline
for a complex assessment of soil pollution in flood-prone areas [65]. Additionally, these results were
used to verify the relevancy of the human health limits recently adopted within the national soil
protection legislation [30]. Purely from a methodical point of view, an exploratory analysis of the
results of human health assessments using a compositional approach might be worth modeling and
interpreting, especially when a clear dominance of c-PAH contributions outweighs the contributions
of most other elements.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/15/6/1146/
s1, Figure S1: Visualization of cluster profiles: relative weights of POP components for every cluster in the robust
cluster analysis (isometric log-ratio (ilr)-transformed and centered data).
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HHRs human health risks; OCPs: organochlorine pesticides
PAHs polycyclic aromatic hydrocarbons
c-PAHs carcinogenic polycyclic aromatic hydrocarbons
PC principal component
PCA principal component analysis
PCBs polychlorinated biphenyls
PeCB pentachlorobenzene
POPs persistent organic pollutants
SSL soil screening level
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