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Abstract: The tension brought about by sickbeds is a common and intractable issue in public hospitals
in China due to the large population. Assigning the order of hospitalization of patients is difficult
because of complex patient information such as disease type, emergency degree, and severity. It is
critical to rank the patients taking full account of various factors. However, most of the evaluation
criteria for hospitalization are qualitative, and the classical ranking method cannot derive the detailed
relations between patients based on these criteria. Motivated by this, a comprehensive multiple
criteria decision making method named the intuitionistic multiplicative ORESTE (organísation,
rangement et Synthèse dedonnées relarionnelles, in French) was proposed to handle the problem.
The subjective and objective weights of criteria were considered in the proposed method. To do
so, first, considering the vagueness of human perceptions towards the alternatives, an intuitionistic
multiplicative preference relation model is applied to represent the experts’ preferences over the
pairwise alternatives with respect to the predetermined criteria. Then, a correlation coefficient-based
weight determining method is developed to derive the objective weights of criteria. This method
can overcome the biased results caused by highly-related criteria. Afterwards, we improved the
general ranking method, ORESTE, by introducing a new score function which considers both the
subjective and objective weights of criteria. An intuitionistic multiplicative ORESTE method was
then developed and further highlighted by a case study concerning the patients’ prioritization.

Keywords: intuitionistic multiplicative preference relation; ORESTE; multiple criteria decision
making; correlation coefficient; patients’ prioritization; hospital management

1. Introduction

Nowadays, with the rapid growth of the world population, finite medical resources make it hard
to meet people’s requirements for healthcare. Most countries face the issue of how to rationally and
effectively allocate medical resources so that patients can be treated timely. The same situation exists
in China. The scales of public hospitals in China are far beyond that of the primary-level medical
and health care institutions. Figure 1 illustrates the significant difference between different types of
hospitals in Chengdu, China. It shows that the number of beds in public hospitals are about 1.33 times
those in other types of hospitals. As we know, there are many high quality medical resources in
public hospitals, such as advanced medical equipment and high-quality top-notch medical personnel.
Patients would prefer to go to the public hospitals rather than the primary-level medical or healthcare
institutions. The large-scale general hospitals are overcrowded, while the primary medical institutions
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are not. How to determine the patients’ order of hospitalization for a public hospital with tight beds
has become a key issue.

Figure 1. Distribution of medical resources in different types of hospital in Chengdu, China.

Patients’ prioritization of hospitalization can be taken as a Multiple Criteria Decision Making
(MCDM) problem, which consists of (1) evaluating the patients’ performances; (2) determining the
weights of evaluation criteria; (3) aggregating the evaluation values with respect to the criteria weights
and then determining the patients’ orders. Due to the complexity of objective things, usually it is
hard to evaluate the utility value of an alternative (criterion) directly. However, giving the preference
relation of pairwise alternatives (criteria) is easy to implement. Fuzzy set theory [1] can be taken as a
useful tool to represent the complex preference information in decision making problems [2], and it
has been extended to various forms, such as extended hesitant fuzzy set [3], linguistic intuitionistic
fuzzy [4], hesitant linguistic intuitionistic fuzzy set [5], and intuitionistic fuzzy set [6]. Orlovsky [7]
developed the fuzzy preference relation to describe the dominance degree of alternative Ai over Ak

under criterion cj by a membership degree ρ
j
ik. Given the ambiguity and uncertainty of people’s

cognition, Xu [8] depicted the preference degree of pairwise alternatives by both membership function
and non-membership function and expressed it as (ρ

j−
ik , 1 − ρ

j+
ik ). Besides, there are some other

preference relations which have been researched in recent years, such as the single-valued trapezoidal
neutrosophic preference relation [9] and the 2-tuple fuzzy linguistic preference relation [10]. However,
these models are limited in the 0.1− 0.9 scale. It deems the relation between preference degree of Ai

over Ak and the preference degree of Ak over Ai being complementary. That is to say, ρ
j−
ik + ρ

j−
ki = 1 if

there is no hesitation. In fact, the preference relation of pairwise objects is the reciprocal relationship,
which implies ρ

j−
ik × ρ

j−
ki = 1 if there is no hesitation. Therefore, Xia et al. [11] employed the Saaty’s

1/9− 9 scale [12] instead of the 0.1− 0.9 scale to describe the pairwise preference relation, and proposed
the concept of the Intuitionistic Multiplicative Preference Relation (IMPR).

The IMPR model is flexible in expressing the uncertain preference opinions of individuals
given that it can reflect the membership, non-membership, and hesitation degree clearly. Because
of the effectiveness, IMPR has attracted growing concerns. Researchers studied the operations and
comparison method [13], measurements [14,15], consensus models [16], and aggregation models [17,18]
of intuitionistic multiplicative sets (IMSs). Furthermore, the IMPR has been combined with different
weighting methods and ranking techniques to handle the MCDM problems. Ren et al. [19] extended
the classical analytic hierarchy process to solve the MCDM with the IMPRs, and applied it to deal
with the evaluation of site section for hydropower station. To overcome the questionable consistency
checking and repairing method in Ren et al. [19], Zhang et al. [20] developed a new intuitionistic
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multiplicative group analytic hierarchy process based on the consistency concept proposed in Ref. [21].
Mou et al. [22] extended the best-worst method to the uncertain environment with the evaluation
expressed as IMPR and applied it to solve the problem concerning medical diagnosis of patients
with emphysema.

However, there are some drawbacks in the exiting MCDM methods with IMPRs. (1) The connection
between criteria is ignored in the existing IM-MCDM methods and the highly-related criteria may
mislead the results; (2) The uncertain preference opinions of experts on the importance of criteria are
translated into fuzzy criteria weights by some weighting techniques, such as the possibility degree-based
weighting method [19,20] and the optimization model-based weighting method [22]. Information
loss may be caused by these translating processes; (3) They cannot distinguish the indifference and
incomparability relations between two alternatives. In this regard, the results lack reliability.

The ORESTE [23] is a general ranking method to deal with the MCDM problems with qualitative
information. It first determines the weak ranking of alternatives by aggregating criterion weights
and alternatives’ performance which are expressed as orders. Then, the preference, indifference, and
incomparability (PIR) relations between pairwise alternatives are distinguished by conflict analysis.
Finally, a strong ranking can be obtained to clearly reveal the relationships between the alternatives.
Compared with other decision-making methods, such as PROMETHEE, TOPSIS, and VIKOR methods,
with ORESTE it is not necessary to translate the fuzzy importance degrees evaluated by experts to
crisp weights. In this sense, it can avoid information loss produced in the translating process. Both the
TOPSIS and VIKOR methods cannot derive the indifference relation between alternatives in application.
A strict rule exists in the conflict analysis of the PROMETHEE method, such as the two alternatives
are indifference relation if and only if both their positive and negative outranking flows are equal.
In this sense, the derived rankings of alternatives by the PROMETHEE method may be unconvincing.
However, all the above mentioned problems can be carried out by the ORESTE method. The ORESTE
method has been applied in many fields, such as web design firm selection [24], insurance company
selection [25], ports’ ranking [26] and innovative design selection of shared cars [27]. Thus, in this paper,
we apply the ORESTE method to explore the problem of patients’ prioritization of hospitalization.

To solve the problem of patients’ prioritization for hospitalization, staff in hospital need to consider
multiple complex evaluation criteria, and then give their ranking results of patients through a complex
analysis process. As usual, traditional methods are not only difficult for evaluating the criteria, such
as the value of pathology, clinical features, related risks, and the emergency degree, but also hard
for deriving scientific ranking results of patients. Thus, this paper aims to propose a comprehensive
method to handle the MCDM problems with intuitionistic multiplicative information, and then apply
it to solve the problem concerning patients’ prioritization of hospitalization in HX hospital.

There are some limitations with the traditional ORESTE method, i.e., it is limited in considering
the subjective and objective weights of criteria simultaneously [25,26]. Besides, it is limited in
handling the evaluations expressed as IMPRs. Therefore, we concentrate on overcoming the defects
mentioned above as well as deriving robust decision results. The paper is highlighted by the following
contributions:

1. We present a correlation coefficient-based weight determining method in the context of IMPR.
This method can avoid highly-related criteria misleading the final results by assigning small
weights to them.

2. We introduce a new global score function to aggregate the weights of criteria and the alternatives’
performance under each criterion. Both the subjective and objective weights of criteria are
considered in this function.

3. We derive threshold values which can be used to determine the PIR relations between alternatives
under the IMPR environment.

4. We carry out a case study concerning patients’ prioritization for hospitalization in a public
hospital in China by the proposed IM-ORETSE method.
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The rest of this paper is summarized as follows: Section 2 reviews the knowledge of IMPR and
the traditional ORESTE method. The IM-ORESTE method is proposed in Section 3. In Section 4,
we present a case study concerning the patients’ prioritization for hospitalization to illustrate the
application of our proposed method. The paper ends with some interesting conclusions in Section 5.

2. Preliminaries

In this section, some basic knowledge of IMPR and the ORESTE method are introduced.

2.1. Intuitionistic Multiplicative Preference Relation

Xia et al. [11] proposed the definition of IMPR.

Definition 1. [11] Let X be fixed. An intuitionistic multiplicative set (IMS) in X is defined as:

D = {< x, (ρ(x), σ(x)) > | x ∈ X} (1)

which assigns to each element x a membership function ρ(x) and a non-membership function σ(x), with the
conditions: 1/9 ≤ ρ(x), σ(x) ≤ 9, ρ(x)σ(x) ≤ 1, ∀x ∈ X.

For convenience, the pair (ρ(x), σ(x)) is called an Intuitionistic Multiplicative Number (IMN).
For each IMN, τ(x) = 1/ρ(x)σ(x) can be described as uncertain or hesitant information. Obviously,
1/92 ≤ τ(x) ≤ 92, ∀x ∈ X. An IMN can also be denoted as (ρ(x), σ(x), τ(x)).

Let A = {A1, A2, · · · , Am} be m objects. An IMPR is expressed as X = (αik)m×m where αik =

(ρik, σik) is an IMN. ρik expresses the degree to which object Ai is preferred to Ak, and σik expresses
the degree to which object Ai is not preferred to Ak. They meet the conditions ρik = σki, σik = ρki,
ρikσik ≤ 1 and 1/9 ≤ ρik, σik ≤ 1.

Definition 2. [11] For an IMN α = (ρα, σα), the score function of α is defined as

s(α) = ρα/σα (2)

and the accuracy function is h(α) = ρασα. For two IMNs α1 and α2:

• If s(α1) > s(α2), then α1 > α2.
• If s(α1) = s(α2), then (i) If h(α1) > h(α2), then α1 > α2; (ii) If h(α1) = h(α2), then α1 = α2.

Qian and Niu [28] defined some operations of IMNs, which can guarantee the closeness
of operations.

Definition 3. [28] Let α1 = (ρ1, σ1) and α2 = (ρ2, σ2) be two IMNs, then

(1) α1 ⊕ α2 =

(
9

log9 (ρα1ρα2)−log9 ρα1 log9 ρα2+1
2 , 9

log9 (σα1σα2)+log9 σα1 log9 σα2−1
2

)
;

(2) λα =

(
91−2( 1−log9 ρα

2 )
λ

, 92( 1+log9 σα
2 )

λ
−1
)

, where λ > 0 is a real number.

Additionally, to measure the deviation between IMSs, Jiang et al. [14] proposed the distance
measure between IMSs as

d(A, B) =
1
4

n

∑
i=1

(∣∣∣∣log9
ρA(xi)

ρB(xi)

∣∣∣∣+ ∣∣∣∣log9
σA(xi)

σB(xi)

∣∣∣∣+ ∣∣∣∣log9
τA(xi)

τB(xi)

∣∣∣∣) (3)
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2.2. The ORESTE Method

The ORESTE was first proposed by Roubens [23] and further improved by Pastijn and Leysen [29].
In ORESTE, both the importance degrees of criteria and the evaluations of alternatives are expressed
with rankings. Compared with other ranking methods, the decision results of ORESTE are not the
single ranking order but the PIR relations among alternatives. In ORESTE, experts are invited to
evaluate the initial ranking, rj of criterion cj based on its importance degree and the initial ranking rij
of Ai under cj. The steps of the ORESTE method are shown as follows:

Algorithm 1 (The ORESTE method)

Step 1. Calculate the global preference score of alternative Ai under criterion cj by Equation (4).
(See Refs. [23,29] for more details)

Dij =
√

ςrj
2 + (1− ς)rij

2 (4)

where ς indicates the relative importance degree between the ranks of alternatives and criteria in final
decision. The global weak ranking r(Aij) of each alternative is derived by Dij in ascending order.
If Dij > Dkj, then r(Aij) > r(Akj); if Dij = Dkj, then r(Aij) = r(Akj).

Step 2. Aggregate the global weak ranking of each alternative by Equation (5)

R(Ai) =
n

∑
j=1

r(Aij) (5)

The weak rankings of alternatives are determined by the ascending order of R(Ai).
Step 3. Determine the PIR relations between alternatives after the conflict analysis. If the weak

rankings of two alternatives are equal or similar, they are not always the indifference relation that they
can replace to each other in decision making. Two alternatives may have the same weak rankings but
their performances are quite different under some criteria. In this case, if we select one of them, the
criteria under which the selected alternative performs well than another will be highlighted. Therefore,
it is necessary to distinguish the incomparability relation from the indifference relation between two
alternatives. The ORESTE method applies the preference intensities to make the conflict analysis.

The average preference intensity of Ai over Ak is:

T(Ai, Ak) = ∑n
j=1

(
max

(
r(Akj)− r(Aij), 0

)
/(m− 1)n2

)
(6)

The net preference intensity of Ai over Ak is:

∆T(Ai, Ak) = T(Ai, Ak)− T(Ak, Ai) (7)

The conflict analyses to construct the PIR structures are as follows:

1. If |∆T| ≤ β and min(T(Ai, Ak), T(Ak, Ai) < T∗), then Ai I Ak;
2. If min(T(Ai, Ak), T(Ak, Ai))/|∆T| ≥ γ, then Ai R Ak;
3. If |∆T| > β, min(T(Ai, Ak), T(Ak, Ai))/|∆T| < γ and ∆T(Ai, Ak) > 0, then Ai P Ak;
4. If |∆T| > β, min(T(Ai, Ak), T(Ak, Ai))/|∆T| < γ and ∆T(Ai, Ak) < 0, then Ak P Ai.

where β, γ, and T∗ are three thresholds to distinguish the PIR relations. Their values are
determined by

β < 1/(m− 1)n, γ > (n− 2)/4, T∗ < χ/2(m− 1) (8)

where χ is given by DMs subjectively to distinguish the indifference or incomparability relation
between two alternatives under each criterion. It denotes the maximal rank difference between
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two indifferent alternatives. In other words, Ai is indifferent to Ak if the ranking difference of
them is small than χ with respect to criterion cj.

Step 4. Determine the strong ranking by the weak ranking and the PIR structure.
As a general outranking method, the ORESTE has some advantages: (1) It is simple to understand

and easy to make application in terms of technical parameters which are deduced objectively [24].
(2) The process is clear and visible in that we can observe the changes in result when the initial
evaluations change or different thresholds are predefined. (3) It does not have to translate the fuzzy
criteria weights to crisp weights, which can avoid information loss. Huylenbroeck [30] illustrated
that the conflict analysis is more effective in separating the PIR relations than the PROMETHEE
and ELECTRE. Based on the flexible manufacturing system selection problem, Chatterjee and
Chakraborty [31] validated the superiority of the ORESTE method over five acceptable outranking
methods in terms of the reliability of results.

3. Intuitionistic Multiplicative ORESTE Method

This section develops an IM-ORESTE method to solve the MCDM problems with the evaluations
expressed as IMNs. We first present an objective weight determining method based on the correlation
coefficient, which can avoid the misleading results caused by highly-related criteria. Then, the classical
ORESTE method is improved by introducing a new global score function. Finally, the IM-ORESTE
method is proposed based on the distance measure between IMNs.

3.1. Description of the Intuitionistic Multiplicative MCDM Problem

A MCDM problem consists of the alternatives {A1, · · · , Ai, · · · , Am}, the criteria{
c1, · · · , cj, · · · , cn

}
and their weights (ω1, · · · , ωj, · · · , ωn). The performances of pairwise

alternatives are compared by experts under each criterion. The preference of Ai over Ak under cj is

expressed as an IMN, α
j
ik. We can establish the decision matrices as follows:

Dj =

A1
...

Ai
...

Am



α
j
11 · · · α

j
1i · · · α

j
1m

...
. . .

...
. . .

...
α

j
i1 · · · α

j
ii · · · α

j
im

...
. . .

...
. . .

...
α

j
m1 · · · α

j
mi · · · α

j
mm


, j = 1, 2, · · · , n (9)

There are two types of criteria weights to describe the importance of criteria, including the
subjective weights and the objective weights. The subjective weights are determined by experts’
preferences. The relative importance evaluated by experts of pairwise criteria are expressed as IMNs,
αjt, j, t = 1, 2, · · · , n. The objective weights are determined by the distribution of evaluation values
under each criterion. Considering both types of weights can derive a robust ranking of alternatives.

3.2. The Correlation Coefficient-Based Weighting Method

This part presents an objective weight determining method based on the correlation coefficient of
criteria with the IMNs information.

Most practical decision-making problems are defined on multiple criteria. The “conflict” is
the fundamental concept in MCDM problems in that different criteria should provide independent
information on the performance of alternatives [32]. However, there are always highly interactive
influence, strong repeatability, and linear crossover among criteria because of the interrelated and
interactive objective things. For example, when evaluating a teacher’s ability, the criterion, respecting
the dignity of students, has a causative effect on the criterion, students’ satisfaction. If the same
weights are assigned to these highly-related criteria, the results will be biased, because the same
information existing in more than one criterion is reconsidered when aggregating the performance of
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each alternative under all criteria. Merging interdependent criteria by some methods, such as principle
component analysis [33], is complex and may mislead the final results. However, deleting these criteria
is impolite and may lose useful information to some extent. Therefore, assigning a small weight to the
highly-related criterion is a reasonable way to overcome this problem [32]. Inspired by this idea, we
used the correlation coefficient to denote the correlation degree of one criterion to others. The larger
the correlation coefficient is, the smaller is the weight of the criteria. The steps of the correlation
coefficient-based weighting method are constructed as follows:

Step 1. Aggregate the preference values α
j
ik (k = 1, 2, · · · , m) of alternative Ai compared with

others Ak (k = 1, 2, · · · , m; k 6= i) under criterion cj.

α
j
i =

1
m− 1

m
⊕

k=1
α

j
ik, k 6= i (10)

where α
j
i is an IMN of alternative Ai with respect to criterion cj. The IM decision matrix can be

established as D = (α
j
i)m×n.

Step 2. Calculate the Pearson correlation coefficient between criteria cj and ct based on the
distance measure of IMNs.

Cjt =

m
∑

i=1

[(
dij

max
i

(dij)
− 1

m

m
∑

i=1

dij
max

i
(dij)

)
×
(

dit
max

i
(dit)
− 1

m

m
∑

i=1

dit
max

i
(dit)

)]
√

m
∑

i=1

(
dij

max
i

(dij)
− 1

m

m
∑

i=1

dij
max

i
(dij)

)2
×

√
m
∑

i=1

(
dit

max
i

(dit)
− 1

m

m
∑

i=1

dit
max

i
(dit)

)2
(11)

where dij = d(αj
i , αj+), dit = d(αt

i , αt+).
Step 3. Compute the subjective weights by:

ω′j =
n

∑
t=1

(
1− Cjt

)
/

n

∑
j=1

(
n

∑
t=1

(
1− Cjt

))
(12)

There are other kinds of objective weighting methods, such as the standard deviation-based
weighting method [34] and the entropy measure-based weighting method [35]. They are based on
the dispersion degrees of evaluations in that the criterion with great dispersion degree of alternatives’
performances is assigned a big weight. They have less influence on the final rankings, since
the gaps between alternatives are widened. More importantly, however, they fail to handle the
highly-related criteria. In the following, we take a simple example to illustrate the effectiveness of our
proposed method.

Example 1. Suppose that we rank three teachers A1, A2, and A3 based on respecting the dignity of students c1,
students’ satisfaction c2 and stimulating students’ initiative c3. The preference matrices are

D1 =

 (1, 1) (1/4, 4) (1/3, 3)
(4, 1/4) (1, 1) (3/2, 2/3)
(3, 1/3) (2/3, 3/2) (1, 1)

, D2 =

 (1, 1) (1/4, 4) (1/3, 3)
(4, 1/4) (1, 1) (3/2, 2/3)
(3, 1/3) (2/3, 3/2) (1, 1)

, D3 =

 (1, 1) (4, 1/4) (3/2, 2/3)
(1/4, 4) (1, 1) (1/3, 3)

(2/3, 3/2) (3, 1/3) (1, 1)



We can find that criteria c1 and c2 are highly correlated since similar information is presented by
them. By Equation (10), we obtain the IM decision matrix as:

D =

 (961/3319, 3319/961) (961/3319, 3319/961) (1189/441, 441/1189)
(1189/441, 441/1189) (1189/441, 441/1189) (961/3319, 3319/961)
(4083/2461, 2461/4083) (4083/2461, 2461/4083) (4083/2461, 2461/4083)





Int. J. Environ. Res. Public Health 2018, 15, 777 8 of 18

The scores s(αj
i) (i = 1, 2, · · ·m, j = 1, 2, · · · n) calculated by Equation (2) are shown as

s =

 0.0838 0.0838 7.2692
7.2692 7.2692 0.0838
2.7526 2.7526 2.7526


We rank the alternatives based on the scores of IMNs. The comprehensive score of each alternative

can be calculated by:

s(Ai) =
n

∏
j=1

s(αj
i)

ωj
(13)

In the following, we use two methods to calculate the objective weights of criteria and then derive
the rankings of the three teachers.

1. Rank the teachers based on the correlation coefficient-based weighting method

From Equations (3)–(5), we obtain the weights of criteria are ω′1 = 0.25, ω′2 = 0.25, and ω′3 = 0.5.
By Definition 2, we obtain s(A1) = 0.97, s(A2) = 0.97, and s(A3) = 2.02, thus A3 � A2 = A1.

2. Rank the teachers based on the standard deviation-based weighting method

The dispersion degree-based weighting methods aim to determine the criteria weights based on
the variation of evaluations under each criterion. A small weight is assigned when the evaluations
under this criterion are close, while a big weight is assigned when the gaps of the evaluations
are large. We use a representative method of this type, the standard deviation-based weighting
method, to solve Example 1. Standard deviation σj under IM context can be defined as:

σj =

√√√√∑m
i=1

(
(s(αj

i)− 1/m∑m
i s(αj

i)
)2

m
(14)

In this Example, by Equation (14), we obtain σ1 = 1.65, σ2 = 1.65, and σ3 = 1.65. After
normalization, we obtain ω̃1 = 0.33, ω̃2 = 0.33, and ω̃3 = 0.33. From Definition 2, we get s̃(A1) = 0.59,
s(A2) = 1.58, and s(A3) = 2, thus A3 > A2 > A1. The same weight is assigned to each criterion since
these criteria maintain the same variation of evaluations.

Comparative analyses: From the preference matrices, we can find that c1 is highly related to c2

since similar information is composed in these two criteria. We can integrate them as one criterion
to describe the performance of alternatives. By the correlation coefficient-based weighting method,
small weights are assigned to them. The correlation coefficient-based weighting method is effective in
avoiding the misleading results caused by the highly-related criteria. We find that A2 � A1 are derived
by the standard deviation-based weighting method. However, both alternatives perform equally in
total since one of c1 and c2 should be considered in decision making in this case. We can conclude
that the misleading results caused by some highly-related criteria cannot be avoided by the dispersion
degree-based weighting methods.

3.3. The IM-ORESTE Method

This part improves the ORESTE method by introducing the objective criteria weights and extends
it to solve the MCDM problems with the evaluation values expressed as IMNs. In IM-ORESTE, both the
preferences on criteria evaluated by experts subjectively and the preferences on pairwise alternatives
under each criterion are expressed as IMNs. Like the classical ORESTE method, the process of the
IM-ORESTE method is divided into two stages.
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Stage 1. Determine the weak rankings

We introduce a global preference score function to consider both the subjective and objective
weights of criteria. It is hard to assign a crisp weight to a criterion by experts due to the fuzziness of
people’s cognition and the complexity of the objects. However, it is easy to compare the importance
between two criteria. The IMN is effective in describing the experts’ uncertain and fuzzy preferences
over criteria. Suppose that the preference of cj over ct is denoted as αjt (j, t = 1, 2, · · · n). From
Equation (10), we obtain the IMN αj of each criterion and denote it as the fuzzy subjective weight
ω
′′
j . Translating the fuzzy subjective weights to the crisp numbers will cause information loss. Thus,

we are not supposed to integrate the subjective and objective weights of criterion into a collective
one. Motivated by the global score function proposed in Ref. [29], we aggregate each alternative’s
performance and subjective weights of criteria by the weighted Euclidean distance measure of IMNs.
Furthermore, considering the objective weights, we introduce a new global score function as:

GSij = ω′j

√
ξ
(

d
(

α
j
i , α

j+
i

))2
+ (1− ξ)

(
d
(

ω
′′
j , ω

′′
j+

))2
(15)

where ω
′′
j+ = max

j
ω
′′
j = max

j

{
αj}, ξ indicates the relative importance between the alternative’s

performance and the criterion importance in calculating the global preference score of Ai under cj.
ξ ∈ (0, 1] and GSij ∈ [0, 1].

The utility value of each alternative is determined by aggregating the global scores under all criteria:

Ui = ∑n
j=1 GSij (16)

The weak rankings are determined by the utility values in ascending order.

Stage 2. Determine the PIR relation

It is a strict way to determine the relations among alternatives based on the utility values.
If Ui < Uk, then Ai > Ak; if Ui = Uk, then Ai = Ak. However, there is usually a certain amount of
error in our evaluations due to the fuzziness of thinking and the limitation of cognition. Therefore,
we are supposed to allow a certain range of differences when comparing the two alternatives’ utility
values. The utility value is limited to derive the definitive relationship between two alternatives.
To overcome this defect, we further conduct the pairwise comparison under each criterion based on
the global scores. Compared with the initial preference relation between two alternatives given by
experts directly, the global scores integrate criteria weights information. The preference intensity of Ai
over Ak with respect to cj can be defined as:

PIj(Ai, Ak) = max
{(

GSkj − GSij

)
, 0
}

(17)

PIj(Ai, Ak) indicates the superiority of Ai over Ak with respect to cj, and PIj(Ai, Ak) ∈ [0, 1].
The comprehensive preference intensity of Ai over Ak under all criteria can be calculated as:

PI(Ai, Ak) =
n

∑
j=1

PIj(Ai, Ak) (18)

PI(Ai, Ak) indicates the comprehensive superiority of Ai over Ak, and PI(Ai, Ak) ∈ [0, 1]. The net
preference intensity of Ai over Ak can be defined as

∆PI(Ai, Ak) = PI(Ai, Ak)− PI(Ak, Ai) (19)

∆PI(Ai, Ak) determines the overall preference relation between Ai and Ak. ∆PI(Ai, Ak) ∈ [−1, 1],
and it satisfies ∆PI(Ai, Ak) = Uk −Ui and |∆PI(Ai, Ak)| = |∆PI(Ak, Ai)|.
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The PIR relations between two alternatives should meet the following conditions:
(1) When the absolute value of the net preference intensity |∆PI(Ai, Ak)| is large enough, we can

ensure that Ai and Ak are preference relation. That is, Ai P Ak or Ak P Ai if |∆PI(Ai, Ak)| ≥ µ.
(2) If |∆PI(Ai, Ak)| < µ, and the performances of Ai and Ak are similar under each criterion, that

is to say, max(PIj(Ai, Ak), PIj(Ak, Ai)) < δ, then Ai and Ak is the indifference relation Ai I Ak. In this
situation, they can replace each other when making a decision.

(3) If |∆PI(Ai, Ak)| < µ, but the performances of Ai and Ak are quite different under some criteria,
that is to say, max(PIj(Ai, Ak), PIj(Ak, Ai)) ≥ δ, then Ai and Ak is the incomparability relation Ai R Ak.
In this case, they cannot replace each other when making a decision. For example, we suppose that
two products, A1 and A2, are opposite with regard to quality and price. If A1 is better than A2 in
quality, then A2 is better than A1 in price. If quality and price have the same weight, A1 and A2 are not
the preference relation but the indifference relation. If we select A1, the quality is highlighted, while
if we select A2, the price is highlighted. In this condition, we need to redefine the importance of the
criteria to select A1 or A2.

We define µ as the preference threshold and δ as the indifference threshold. We need to determine
reasonable values of µ and δ, respectively. It is not easy to assign the value of δ based on the preference
intensity PIj(Ai, Ak). Therefore, we employ the initial preference values α

j
ik given by experts to deduce

the value of δ. In this way, δ is objective and meets our cognition.
Suppose that there are one criterion and two alternatives. For a small dominance, A1 is slightly

preferred to A2, then α1
12 = (2, 1/2) and α1

21 = (1/2, 2). Aggregating α1
1 = (2, 1/2) and α1

2 = (1/2, 2),
the global scores are obtained as GS11 = 0 and GS21 = 0.22. Thus, PI1(A1, A2) = 0.22. Therefore, we
let δ < 0.22. If PIj(Ai, Ak) ≥ 0.22, there is significant preference relation between Ai and Ak.

We determine the PIR relations among alternatives based on the comprehensive preference
intensity PI(Ai, Ak). We further introduce an incomparability threshold θ. The thresholds µ and θ are
determined by the value of δ through analyses on the PIR relations:

(1) Based on the Pareto optimality theory, if for n− 1 criteria,
n−1
∑

j=1
PIj(Ai, Ak)−

n−1
∑

j=1
PIj(Ak, Ai) = 0,

and for the nth criterion, max(PIn(Ai, Ak), PIn(Ak, Ai)) = δ, then Ai P Ak. Suppose that the same
objective weight is assigned to each criterion. Then, |∆PI(Ai, Ak)| =|PIn(Ai, Ak)− PIn(Ak, Ai)|= δ/n .
As this is the minimal case that Ai P Ak, we let µ = δ/n to distinguish the preference relation based
on the net preference intensities of pairwise alternatives. We give a simple example to shown the
preference relation between A1 and A2 in Table 1.

Table 1. The minimal situation for the preference relation between A1 and A2.

Preference c1 c2 c3 c4

A1 (2,1/2) (1/2,2) (1,1) (1/3,3)
A2 (1/2,2) (2,1/2) (1,1) (3,1/3)

(2) If |∆PI(Ai, Ak)| < µ and max(PIj(Ai, Ak), PIj(Ak, Ai)) < δ for all criteria, then Ai I Ak.
Suppose that each criterion has the same weight. Then, max(PI(Ai, Ak), PI(Ak, Ai)) <

n−1
2 ×

δ
n + δ

n =
(n+1)δ

2n if n is odd; max(PI (Ai, Ak), PI(Ak, Ai)) <
n
2 ×

δ
n = δ

2 if n is even. Thus, we let θ = (n + 1)δ/2n
if n is odd, and θ = δ/2 if n is even. Tables 2 and 3 show the indifference relation between A1 and A2

when n is odd and even respectively.

Table 2. The indifference relation between A1 and A2 if n is odd.

Preference c1 c2 c3 c4 c5

A1 (2/3, 3/2) (3/2, 2/3) (3/4, 4/3) (4/3, 3/4) (3/2, 3/5)
A2 (3/2, 2/3) (2/3, 3/2) (4/3, 3/4) (3/4, 4/3) (3/5, 3/2)
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Table 3. The indifference relation between A1 and A2 if n is even.

Preference c1 c2 c3 c4

A1 (2/3, 3/2) (3/2, 2/3) (3/4, 4/3) (4/3, 3/4)
A2 (3/2, 2/3) (2/3, 3/2) (4/3, 3/4) (3/4, 4/3)

(3) For the incomparability relation Ai P Ak, |∆PI(Ai, Ak)| < µ and max(PI(Ai, Ak), PI(Ak, Ai)) ≥ θ.
Table 4 shows the incomparability relation between A1 and A2.

Table 4. The incomparability relation between A1 and A2.

Preference c1 c2 c3 c4

A1 (5, 1/5) (1/5, 5) (1/6, 6) (6, 1/6)
A2 (1/5, 5) (5, 1/5) (6, 1/6) (1/6, 6)

Based on the above analyses, we present the test rule to establish the PIR relations in the
IM-ORESTE method:

If |∆PI(Ai, Ak)| ≥ µ, then

{
∆PI(Ai, Ak) > 0, Ai P Ak
∆PI(Ak, Ai) > 0, Ak P Ai

If |∆PI(Ai, Ak)| < µ, then

{
min(PI(Ai, Ak), PI(Ak, Ai)) < θ, Ai I Ak
max(PI(Ai, Ak), PI(Ak, Ai)) ≥ θ, Ai R Ak

(20)

where µ = δ/n, θ = (n + 1)δ/2n if n is odd, and θ = δ/2 if n is even with δ < 0.22.
The procedure of the IM-ORESTE method is given as follows.

Algorithm 2 (The IM-ORESTE method)

Step 1. Experts compare pairwise alternatives based on their performances under each criterion.
The evaluations are expressed as IMNs α

j
ik, i, k = 1, 2 · · ·m, j = 1, 2, · · · n. Establish the preference

matrixes Dj = (α
j
ik)m×m, j = 1, 2, · · · n. The preferences of experts on pairwise criteria based on their

importance are also expressed as IMNs αjt, j, t = 1, 2, · · · n.
Step 2. Integrate the preference values α

j
ik(k = 1, 2, · · · , m) into the IMN α

j
i under each criterion

by Equation (10). Build the decision matrix D = (α
j
i)m×n. αjt are aggregated to αj by Equation (10).

Step 3. Determine α
j+
i by Equation (4) and calculate the distances d(αj

i , α
j+
i ), j = 1, 2, · · · n,

by Equations (2)–(3). Then compute the Pearson correlation coefficient Cjt between two criteria by
Equation (11). Determine the object weights ω′j, j = 1, 2, · · · n, by Equation (12).

Step 4. Calculate the global score GSij of alternative Ai under criterion cj by Equation (15). GSij
is integrated by the performance of Ai and the subjective and objective weights of cj.

Step 5. Compute the utility values Ui, i = 1, 2 · · ·m, by Equation (16), based on which the weak
rankings of alternatives are obtained.

Step 6. Derive the preference intensity PIj(Ai, Ak) by Equation (17), the comprehensive preference
intensity PI(Ai, Ak) by Equation (18) and the net preference intensity ∆PI(Ai, Ak) by Equation (19).

Step 7. Determine the value of δ which satisfies δ < 0.22, and calculate the values of µ and θ.
Then derive the PIR relations for pairwise alternatives based on the rules in Equation (20).

Step 8. Derive the strong rankings of alternatives considering both the weak rankings and the
PIR relations between pairwise alternatives.

4. Case Study: Patients’ Prioritization of Admission

In this section, a case concerning the patients’ prioritization of admission is presented to illustrate
the application of the IM-ORESTE method.
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4.1. Case Description

HX is a large scale hospital in Chengdu, China. According to statistics, every month there are
about 6000 patients waiting for beds for hospitalization in HX hospital. The average waiting time
of each patient is about 2 to 3 months, and some patients may even have to wait half a year to be
hospitalized. There are some serious patients among them who are in urgent need of hospitalization.
HX hospital has about 200 thousand hospitalized patients every year. However, over 30% of them do
not need to be hospitalized in HX hospital.

To solve this problem, in December 2011, HX hospital set up the Admission Service Center (ASC)
to optimize the hospitalization process and promote the effective management of medical resources.
Almost all beds are assigned by this center to help patients have a convenient and quick admission.
It can assist the hospital to manage the beds efficiently so as to let the patients with serious illness
be hospitalized quickly. However, many patients go to HX hospital no matter if they have a serious
disease or not. The staff in ASC have to evaluate each patient to determine the severity of the illness
and the priority. On this basis, the sequence of patients’ admission can be derived by ASC. In ASC,
the evaluation indicators of patients’ prioritization are summarized as: c1: the emergency degree of
disease; c2: the severity of disease; c3: the type of medical insurance and its place of belonging; c4: the
scientific research value of disease; c5: the waiting time; c6: the priority for special disease; c7: VIP
(very important person).

Patients’ prioritization has attracted much attention in hospital management in recent years.
For example, Ashour and Kremer [36] developed a dynamic grouping and prioritization algorithm to
optimize the process of the emergency department of a hospital. By considering the implementation
mechanism in practice, Solans-Domènech et al. [37] proposed a priority scoring system for patients
who are waiting for elective surgery according to the defined criteria and their weights. Additionally,
some scholars applied new approaches with a hesitant fuzzy linguistic term set to deal with the
patients’ prioritization problem [38,39]. Zhang et al. [38] proposed general criteria to evaluate the
prioritization of patients, and then applied the developed HFL-VIKOR method to solve the problem
concerning the prioritization of patients waiting for beds in ASC. Sun et al. [39] dealt with the patients’
prioritization by using the proposed HFL-MABAC method.

In the past, the ASC selected the patients for hospitalization through artificial screening. However,
there are many issues in this selection process, such as the factors of human intervention on beds and
the complexity of the multifactor decision-making problem. There are no clear evaluation criteria. It is
difficult for the staff in ASC to determine the priority of each patient. Motivated by this, we apply the
IM-ORESTE method proposed in this paper to solve the patients’ prioritization in ASC.

Suppose that four patients are waiting for beds in ASC, and three experts are invited as a group
to take part in the decision process. Note that the experts are selected from the staff in ASC and the
doctors in HX hospital. The expert group analyzes all evaluation criteria and then gives their overall
preference relation matrix in IMPR according to pairwise comparisons over the criteria, shown as:

PR =



(1, 1) (1, 1) (3, 1/3) (5/2, 1/3) (9/2, 1/5) (4, 1/4) (7, 1/8)
(1, 1) (1, 1) (5/2, 1/3) (3, 1/4) (4, 1/4) (5, 1/6) (6, 1/7)

(1/3, 3) (1/3, 5/2) (1, 1) (4/3, 2/3) (2, 1/2) (5/2, 1/3) (4, 1/5)
(1/3, 5/2) (1/4, 3) (2/3, 4/3) (1, 1) (5/2, 1/3) (5/2, 2/5) (4, 2/9)
(1/5, 9/2) (1/4, 4) (1/2, 2) (1/3, 5/2) (1, 1) (1, 1) (2, 1/3)
(1/4, 4) (1/6, 5) (1/3, 5/2) (2/5, 5/2) (1, 1) (1, 1) (2, 1/2)
(1/8, 7) (1/7, 6) (1/5, 4) (2/9, 6) (1/3, 2) (1/2, 2) (1, 1)


(21)
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The preferences of expert group on pairwise alternatives with respect to each criterion are
expressed as IMPRs, shown as:

D1 =


(1, 1) (5, 1/6) (2, 1/2) (3, 2/7)

(1/6, 5) (1, 1) (1/3, 3) (1/6, 4)
(1/2, 2) (3, 1/3) (1, 1) (3/2, 1/2)
(2/7, 3) (4, 1/6) (1/2, 3/2) (1, 1)

,

D2 =


(1, 1) (2, 1/2) (9/2, 1/5) (4, 1/4)

(1/2, 2) (1, 1) (3, 1/3) (5/2, 1/4)
(1/5, 9/2) (1/3, 3) (1, 1) (2/3, 1)
(1/4, 4) (1/4, 5/2) (1, 2/3) (1, 1)

,

D3 =


(1, 1) (3, 1/3) (1/6, 6) (1/5, 5)

(1/3, 3) (1, 1) (1/9, 8) (1/7, 7)
(6, 1/6) (8, 1/9) (1, 1) (2, 1/3)
(5, 1/5) (7, 1/7) (1/3, 2) (1, 1)

, D4 =


(1, 1) (1/3, 3) (4, 1/6) (3, 1/4)

(3, 1/3) (1, 1) (7, 1/7) (6, 1/7)
(1/6, 4) (1/7, 7) (1, 1) (2/3, 3/2)
(1/4, 3) (1/7, 6) (3/2, 2/3) (1, 1)

,

D5 =


(1, 1) (1/2, 2) (1/5, 5) (1/5, 5)

(2, 1/2) (1, 1) (1/3, 5/2) (1/3, 3)
(5, 1/5) (5/2, 1/3) (1, 1) (1, 1)
(5, 1/5) (3, 1/3) (1, 1) (1, 1)

, D6 =


(1, 1) (5, 1/6) (2, 1/2) (3, 1/4)

(1/6, 5) (1, 1) (1/4, 3) (1/3, 2)
(1/2, 2) (3, 1/4) (1, 1) (2, 1/4)
(1/4, 3) (2, 1/3) (1/4, 2) (1, 1)

,

D7 =


(1, 1) (1/5, 5) (2, 1/2) (2, 1/4)

(5, 1/5) (1, 1) (7, 1/7) (6, 1/7)
(1/2, 2) (1/7, 7) (1, 1) (1/2, 2)
(1/4, 2) (1/7, 6) (2, 1/2) (1, 1)

.

(22)

4.2. Solving the Case by the IM-ORESTE Method

Step 1. The relevant evaluation information is given in Section 4.1.
Step 2. Aggregate the preference values α

j
ik (k = 1, 2, · · · , m) into the IMN α

j
i by Equation (10).

Then, a decision matrix D = (α
j
i)m×n can be derived:

D =


(3.3431, 0.2553) (3.4961, 0.2719) (0.6991, 1.4304) (2.1496, 0.3103) (0.2793, 3.5808) (3.3431, 0.2450) (1.1589, 0.5892)
(0.2131, 3.8907) (1.8238, 0.4375) (0.1795, 5.3789) (5.5582, 0.1676) (0.7116, 1.3399) (0.2431, 3.0426) (6.0859, 0.1551)
(1.5098, 0.5986) (0.3682, 2.2155) (5.9390, 0.1111) (0.2707, 3.2661) (2.7581, 0.3418) (1.6706, 0.3835) (0.3459, 2.8914)
(1.2093, 0.5056) (0.4286, 1.6767) (4.0982, 0.2359) (0.4548, 1.9530) (2.9257, 0.3418) (0.6152, 0.9902) (0.5386, 1.4787)


Step 3. Calculate the Pearson correlation coefficient Cjt by Equation (11) and then derive the

objective weights of criteria according to Equation (12). Then, we obtain ω′1 = 0.1261, ω′2 = 0.1321,
ω′3 = 0.1418, ω′4 = 0.1474, ω′5 = 0.1727, ω′6 = 0.1239, ω′7 = 0.1560. Additionally, the score values s(αj

i) of

α
j
i can be calculated by Equation (2) and shown in Table 5.

Table 5. The score values s(αj
i).

s(αj
i) C1 C2 C3 C4 C5 C6 C7

A1 13.0933 12.8569 0.4888 6.9264 0.0780 13.6443 1.9669
A2 0.0548 4.1684 0.0334 33.1676 0.5311 0.0799 39.2361
A3 2.5223 0.1662 53.4507 0.0829 8.0693 4.3565 0.1196
A4 2.3921 0.2556 17.3703 0.2329 8.5598 0.6213 0.3642

Step 4. Calculate the global score GSij by Equation (15) and the results are given in Table 6.
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Table 6. The global scores of each alternative.

GSij C1 C2 C3 C4 C5 C6 C7

A1 0.0000 0.0010 0.0619 0.0325 0.0835 0.0404 0.0820
A2 0.0558 0.0139 0.0910 0.0234 0.0653 0.0660 0.0706
A3 0.0173 0.0478 0.0209 0.0754 0.0522 0.0427 0.1019
A4 0.0206 0.0446 0.0270 0.0638 0.0521 0.0526 0.0933

Step 5. The utility values of patients are calculated as U1 = 0.3013, U2 = 0.3860, U3 = 0.3581 and
U4 = 0.3541. Thus, we obtain A1 > A4 > A3 > A2.

Step 6. Calculate PIj(Ai, Ak), PI(Ai, Ak) and ∆PI(Ai, Ak) from Equations (17)–(19). The results
are shown in Tables 7 and 8.

Table 7. The comprehensive preference intensities.

PI(Ai, Ak) A1 A2 A3 A4

A1 0.0000 0.1234 0.1293 0.1191
A2 0.0387 0.0000 0.1173 0.0938
A3 0.0725 0.1451 0.0000 0.0194
A4 0.0663 0.1257 0.0235 0.0000

Table 8. The net preference intensities.

∆PI(Ai, Ak) A1 A2 A3 A4

A1 0.0000 0.0847 0.0568 0.0528
A2 −0.0847 0.0000 −0.0279 −0.0319
A3 −0.0568 0.1730 0.0000 −0.0040
A4 −0.0528 0.0319 0.0040 0.0000

Step 7. Predefine that δ = 0.1845, based on which, the values of µ and θ can be determined as
µ = 0.0264 and θ = 0.1054. By Equation (20), the PIR relations of the alternatives are: A1PA2, A1PA3,
A1PA4, A3PA2, A4PA2, A3 IA4.

Step 8. Based on the weak ranking and the PIR relations of the alternatives, we can obtain the
final ranking of alternatives as A1 > A3 ∼ A4 > A2.

4.3. Comparative Analyses and Discussions

In this section, a detailed comparative analysis between the IM-ORESTE method and the existing
MCDM methods is presented to illustrate the effectiveness and superiority of our proposed method.

Considering that the crisp weights of criteria are the basis of most MCDM methods, we translate
the subjective weights evaluated by DMs to crisp weights by

w̃′′j =
s
(
αj)

∑n
j=1 s

(
αj
) (23)

Then we apply Equation (22) to integrate the crisp subjective weight and the objective weight
calculated from Equation (12) of each criterion into a collective one.

wj =

√
w′jw̃

′′
j

∑n
j=1

√
w′jw̃

′′
j

(24)



Int. J. Environ. Res. Public Health 2018, 15, 777 15 of 18

By Equation (22), we obtain w1 = 0.3108, w2 = 0.3092, w3 = 0.1338, w4 = 0.1258, w5 = 0.0567,
w6 = 0.0426, w7 = 0.0211. We respectively apply the IM-TOPSIS method, IM-VIKOR method and
IM-PROMETHEE method to solve this problem, and the calculation results are shown in Table 9.

Table 9. Comparison between our proposed method and the existing methods.

Methods Coefficient A1 A2 A3 A4 The Ranking Order

IM-TOPSIS The relative coefficient 0.7755 0.3611 0.4845 0.4820 A1 > A3 > A4 > A2

IM-VIKOR
IMGUi 0.1433 0.4023 0.3267 0.3422
IMIRi 0.0778 0.1947 0.1584 0.1477

IMCi (λ = 0.5) 0 1 0.6988 0.6830 A1 > A4 > A3 > A2

IM-
PROMETHEE

SP(Ai) Positive outranking
flow 18.6450 4.7028 14.1578 2.6417

SN(Ai) Negative outranking
flow 0.8407 25.1155 8.8524 9.1867

S(Ai) Net outranking flow 17.8043 −20.4127 5.3054 −6.5451 A1 > A3 > A4RA2

In this paper Utility values of the patients Ui 0.3013 0.3860 0.3581 0.3541 A1 > A3 ∼ A4 > A2

From Table 9, we know that the patient A1 has the highest priority compared with other patients.
There are some differences in the ranking of patients when we apply different MCDM methods. For the
IM-TOPSIS method, the ranking of patients is A1 > A3 > A4 > A2. For the IM-VIKOR method, if
we take λ = 0.1, 0.7, 0.8 and 0.9, the ranking of patients is A1 > A3 > A4 > A2; while the ranking of
patients is A1 > A4 > A3 > A2 when λ = 0.2, 0.3, 0.4, 0.5, 0.6 (see Table 10). In addition, we obtain
A1 > A3 > A4RA2 by applying the IM-PROMETHEE method, but we cannot determine the relation
between the patients A2 and A4.

As we know, both the IM-TOPSIS method and the IM-VIKOR method are based on the overall
utility values of alternatives. Neither the IM-TOPSIS method nor the IM-VIKOR method can derive
the PIR relations among the alternatives. The IM-TOPSIS method fails to accurately describe the
indifference relation between the patients A3 and A4, although there is little difference between the
relative coefficient values of them. From Table 10, we also find that there is little difference between
the overall utility values of the patients A3 and A4. But the IM-VIKOR method also fails to accurately
distinguish the relation between them.

Table 10. The calculation results of the IM-VIKOR method.

A1 A2 A3 A4 The Ranking Order

IMGUi 0.1433 0.4023 0.3267 0.3422 A1 > A3 > A4 > A2
IMIRi 0.0778 0.1947 0.1584 0.1477 A1 > A4 > A3 > A2

IMCi

λ = 0.1 0 1 0.6913 0.6149 A1 > A4 > A3 > A2
λ = 0.2 0 1 0.6932 0.6319 A1 > A4 > A3 > A2
λ = 0.3 0 1 0.6951 0.6489 A1 > A4 > A3 > A2
λ = 0.4 0 1 0.6969 0.6659 A1 > A4 > A3 > A2
λ = 0.5 0 1 0.6988 0.6830 A1 > A4 > A3 > A2
λ = 0.6 0 1 0.7007 0.7000 A1 > A4 > A3 > A2
λ = 0.7 0 1 0.7025 0.7170 A1 > A3 > A4 > A2
λ = 0.8 0 1 0.7044 0.7340 A1 > A3 > A4 > A2
λ = 0.9 0 1 0.7062 0.7510 A1 > A3 > A4 > A2

Some theoretical defects exist in the IM-PROMETHEE method. There is indifference relation
between Ai and Aj, if and only if both the positive outranking flow and the negative outranking flow
of them are equal. The IM-PROMETHEE method is based on the outranking flows of alternatives
but not the preference relations of alternatives over the criteria. Therefore, the calculation result is
questionable to some extent.
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For the IM-ORESTE method, it can overcome the defects discussed above. In other words, it
is more reasonable than the IM-TOPSIS method, the IM-VIKOR method, and the IM-PROMETHEE
method in practice. Specifically, the IM-ORESTE method has the following advantages:

(1) Both the objective and subjective weights of criteria are considered in the IM-ORESTE method.
In addition, the correlation coefficient-based weight determining method can avoid the effects of
correlated criteria on the final result.

(2) The PIR relations are derived from the IMPR of alternatives but not from the outranking flows.
The preference, indifference, and incomparability relations among the alternatives are determined
rationally based on the scientific calculation process.

5. Conclusions

Compared with the primary medical institutions, the public hospitals in China face a huge
sickbed crisis. An irrational order of hospitalization often leads to worsening of the disease. In recent
years, there has been a dramatic increase of patient dissatisfaction on the admission process in China.
A reasonable method is needed to rank a patient for hospitalization based on multiple conflict criteria.
This is a typical MCDM problem. This paper proposed the IM-ORESTE method to rank the patients
according to seven predefined evaluation criteria. The advantages of this method compared with other
existing MCDM methods are summarized as follows:

1. Experts are allowed to give their opinions by pairwise comparisons of alternatives, which are
easy to determine. The uncertain evaluations of experts can be fully reflected by the IMSs in
terms of the membership degree, non-membership degree, and uncertainty degree.

2. Based on the correlation coefficient-based objective weight determining method, the biased
results caused by the highly-related criteria can be avoided in solving MCDM problems.

3. Experts’ preferences on the importance of criteria are also considered. The fuzzy subjective
weights of the criteria are not required to translate into crisp weights, which can avoid
information loss.

4. A reliable result is ensured by the conflict analysis to distinguish the PIR relations
between alternatives.

On this basis, we applied the proposed IM-ORESTE method to solve the problem concerning
patients’ prioritization of hospitalization in China. The results showed that it can be used to deal with
the complex MCDM problem in which the weights of criteria were unknown and both the qualitative
and quantitative criteria existed simultaneously.

However, there are some limitations in the proposed MCDM method. When applying the
proposed method to handle this kind of problem concerning hospitalization, it may cost manual
effort since heavy work exists in the process of pairwise comparison between patients. Thus, in
the future, we will continue to improve this method via some computer aid techniques to make it
timesaving and laborsaving. In addition, we will focus on setting up a systematic criterion to rank
the patients for hospitalization. It would be valuable to apply the developed IM-ORESTE method
to other medical management problems. Extending the improved ORESTE method to other types of
evaluation models [34,40] should be interesting as well.
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