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Abstract: Because the natural disaster system is a very comprehensive and large system, the disaster
reduction scheme must rely on risk analysis. Experts’ knowledge and experiences play a critical
role in disaster risk assessment. The hesitant fuzzy linguistic preference relation is an effective tool
to express experts’ preference information when comparing pairwise alternatives. Owing to the
lack of knowledge or a heavy workload, information may be missed in the hesitant fuzzy linguistic
preference relation. Thus, an incomplete hesitant fuzzy linguistic preference relation is constructed.
In this paper, we firstly discuss some properties of the additive consistent hesitant fuzzy linguistic
preference relation. Next, the incomplete hesitant fuzzy linguistic preference relation, the normalized
hesitant fuzzy linguistic preference relation, and the acceptable hesitant fuzzy linguistic preference
relation are defined. Afterwards, three procedures to estimate the missing information are proposed.
The first one deals with the situation in which there are only n− 1 known judgments involving all
the alternatives; the second one is used to estimate the missing information of the hesitant fuzzy
linguistic preference relation with more known judgments; while the third procedure is used to deal
with ignorance situations in which there is at least one alternative with totally missing information.
Furthermore, an algorithm for group decision making with incomplete hesitant fuzzy linguistic
preference relations is given. Finally, we illustrate our model with a case study about flood disaster
risk evaluation. A comparative analysis is presented to testify the advantage of our method.

Keywords: group decision making; incomplete hesitant fuzzy linguistic preference relation; additive
consistency; nature disaster risk evaluation

1. Introduction

China is one of the few countries with the most serious natural calamities in the world. China’s
natural disasters have the following characteristics: the range is wide, the frequency is high,
the seasonality is obvious, and the loss is heavy. The formation of natural disasters in China is
deeply influenced by natural environment and human activities. The Eastern monsoon area has highly
frequent natural disasters and serious losses. China has vast territory, and complex geographical and
climatic conditions. In addition to the disasters caused by modern volcanic activity, almost all natural
disasters—such as floods, droughts, earthquakes, typhoons, hail, snow disasters, landslides, debris
flows, disease and insect pests, and forest fires—occurred every year.

Disaster reduction management must be based on reasonable risk evaluation. In natural disaster
risk evaluation, the experiences and knowledge of experts play a critical role. In the process of
evaluating, experts would like to use linguistic terms to assess alternatives, which aligns people’s
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thoughts and speaking manners closely [1]. Rodríguez et al. [2] proposed the Hesitant Fuzzy Linguistic
Term Set (HFLTS) to enrich the linguistic elicitation on the basis of fuzzy linguistic approaches and
context-free grammars. The HFLTS allows experts to express judgments in more than one linguistic
term. For example, the evaluation of a company’s performance can be “at least good” and the assessment
on a school’s teaching quality can be “between medium and poor”. The HFLTS has obtained wide-ranging
and deep development since it was proposed [3–9]. Liao et al. [3] developed a definition of HFLTS
in mathematical form and introduced the concept of Hesitant Fuzzy Linguistic Element (HFLE),
aiming at making the HFLTS much easier to understand. A comprehensive review on HFLTSs
can be found in our previous work [9]. The preference relation is an effective tool in expressing
preference information when the experts need to compare alternatives pairwise. Over the past several
decades, various kinds of preference relations have been defined, for instance, the fuzzy preference
relation [10], the multiplicative preference relation [11], and the hesitant fuzzy preference relation [12].
Rodríguez et al. [6] initially proposed the definition of hesitant fuzzy linguistic preference relation
(HFLPR). Liu et al. [13] enhanced the definition of HFLPR into a subscript-symmetric form. Zhu and
Xu [14] further proposed the definition of HFLPR in a mathematical form. The HFLPR is a powerful
tool to represent the situations in which the experts are hesitant among a set of probable linguistic
values for the preference degrees of pairwise comparisons on alternatives.

It is noted that a complete preference matrix has n(n− 1)/2 judgments, which means that an
expert needs to make n(n− 1)/2 comparisons. When n is large, the expert’s workload is heavy.
Furthermore, sometimes an expert does not have the ability to discriminate the degree to which an
alternative is better than another. While we cannot force the experts to provide their opinions as this
may produce the wrong information, it is necessary for us to provide tools, allowing the experts to
express the lack of knowledge. As a result, an incomplete HFLPR (IHFLPR) with missing information
is constructed. However, there is little research focusing on the study of estimating the missing
information in an HFLPR. In the environment of IHFLPR, Ren et al. [15] established two models
that consider the satisfaction degrees of experts and applied several experiments in evaluating these
models. Then, the models introduced were used in site selection for a hydropower station. However,
they did not propose the approaches to estimate the missing information. In this paper, we will study
this issue.

To do this, in our paper, some theoretical findings related to IHFLPRs are investigated in detail.
The novelties of this paper are highlighted as follows:

Some characteristics of an additive consistent HFLPR are studied. Two theorems to facilitate
further study on estimating the missing information of a HFLPR are given. To deal with the
situation in which the calculation results over the HFLEs do not fall in the original Linguistic
Term Set (LTS), a linear function to unify the terms within the given LTS is proposed.

The definition of the IHFLPR, the normalized IHFLPR and the acceptable IHFLPR are initially
introduced. The IHFLPRs are divided into three categories: the IHFLPR with n− 1 known
judgments (one particular alternative is compared with all other alternatives only once),
the IHFLPR with more than n− 1 judgments, and the IHFLPR with one alternative with
totally missing information. We put forward three approaches to estimate the missing values
of IHFLPRs with the above three categories.

A novel method to measure the distance between two HFLTSs is proposed. Based on which,
an algorithm for group decision making with IHFLPRs is established.

A real-world case study about flood disaster risk evaluation is provided to verify the
feasibility of the Group Decision Making (GDM) model.

The rest of this paper is organized as follows: In Section 2, we briefly review the concepts of
HFLTSs and HFLPRs. Some characteristics related to the additive consistent HFLPR are discussed
in Section 3. In Section 4, the definition of the IHFLPR and three proposed approaches to construct
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a complete HFLPR are introduced. An algorithm for GDM with the IHFLPRs is given in Section 5.
Section 6 illustrates an example in terms of flood disaster risk assessment. Section 7 concludes this
paper with some remarks.

2. Preliminaries

In this section, we briefly review the HFLTS and the HFLPR.

2.1. HFLTS

In many real-world decision situations, experts would like to use some possible linguistic terms to
assess alternatives. To represent these problems, Rodríguez et al. [2] introduced the concept of HFLTS.

Definition 1. [2] Let S = {s0, s1, . . . , sg} be a LTS. A HFLTS, hS, is an ordered finite subset of the consecutive
linguistic terms of S.

In Definition 1, the subscripts of S are asymmetric. This kind of definition may cause some
problems [4]. To overcome this limitation, Liao et al. [3] developed the mathematical definition of
HFLTS and used the subscript-symmetric LTS.

Definition 2 [3]. Let S = {sα|α ∈ [−τ, τ]} be a LTS. A HFLTS on X, BS, is in mathematical terms of

BS = {〈x, bS(x)〉|x ∈ X} (1)

where bS(x) = {sφl (x)|sφl (x) ∈ S, l = 1, 2, . . . , L} with L being the number of linguistic terms in bS(x).
We call bS(x) the hesitant fuzzy linguistic element (HFLE).

In the following section of this paper, we use the subscript-symmetric linguistic term set S
for our discussion. For example, let S = {s−4 = extremely low, s−3 = very low, s−2 = low, s−1 =

slightly low, s0 = medium, s1 = slightly high, s2 = high, s3 = very high, s4 = extremely high} be a
LTS. Based on S, we give two HFLTSs as b1 = {s−3 = very low, s−2 = low}, b2 = {s1 = slightly high,
s2 = high, s−3 = very high}, or briefly, b1 = {s−3, s−2}, b2 = {s1, s2, s3}.

Linguistic expressions align closely with people’s thoughts and manner of speaking.
Rodríguez et al. [2] developed a context-free grammar and a function to transform the linguistic
expressions into HFLEs.

Given a HFLE b, s(b) = ∑sα∈β

(
α

2τ

)
/lb is called the score function of b, where lb is the number of

linguistic terms in b [5]. For two HFLEs b1 and b2, if s(b1) > s(b2), then b1 > b2; if s(b1) = s(b2), we
have b1 = b2.

To aggregate the HFLEs, Zhang and Wu [5] proposed the hesitant fuzzy linguistic weighted
averaging (HFLWA) operator:

Definition 3 [5]. Let bi(i = 1, 2, . . . , n) be a collection of HFLTSs. A HFLWA operator is defined as

HFLWA(b1, b2, . . . , bn) =
n
⊕

i=1

(
1
n

bi

)
= ∪

sα1∈b1,sα2∈b2,sα3∈b3

{
s∑n

i=1
αi
n

}
(2)

Let I : S→ [−τ, τ] be a function to transform the linguistic term to its subscript, such that

I(sα) = α (3)
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2.2. HFLPR

When expressing preference information over alternatives, experts often give pairwise comparisons
of alternatives by linguistic expressions. Based on context-free grammars, Rodríguez et al. [6] introduced a
model which can use several linguistic terms to express the pairwise preferences on alternatives. It is noted
that the HFLPR defined by Rodríguez et al. [6] is asymmetric. After that, Liu et al. [13] extended the
definition of HFLPR in which the elements bij(i, j = 1, 2, . . . , n) have the following forms: (1) the single
term sl ∈ S; (2) the expression “at least sl”, sl ∈ S; (3) The expression “at most sl”, sl ∈ S; and (4) the
expression “between sl and sm”, where sl < sm, sl ∈ S. The HFLPR proposed by Liu et al. [13] satisfied
the following conditions: (1) bii = s0; (2) if bij = sl , then bji = s−l ; (3) if bji = “at least sl”, then
bji = “at most sl”; (4) if bji= “at most sl”, then bji = “at least s−l”; and (5) if bij = “between sl and sm”, then
bji = “between s−m and s−l”.

Motivated by the above results, Zhu and Xu [14] introduced the mathematical definition of HFLPR:

Definition 4. [14] A HFLPR B = (bij)n×n ⊂ X × X, where bij = {bσ(l)
ij |l = 1, 2, . . . , Lbij

} (Lbij
is the

number of linguistic terms in bij) is an HFLE, denoting the hesitant degrees to which xi is preferred to xj. For all
i, j = 1, 2, . . . , n, bij(i < j) should satisfy the conditions as follows:

bσ(l)
ij ⊕ bσ(l)

ji = s0, bii = s0, Lbij
= Lbji

, bσ(l)
ij < bσ(l+1)

ij , bσ(l+1)
ji < bσ(l)

ji (4)

where bσ(l)
ij and bσ(l)

ji are the the lth elements in bij and bji, respectively.

Example 1. Assume that an expert assesses four alternatives and constructs a HFLPR as:

B =


{s0} {s−2, s−1} {s2, s3, s4} {s−3, s−2, s−1}
{s2, s1} {s0} {s1} {s4}

{s−2, s−3, s−4} {s−1} {s0} {s0, s1}
{s3, s2, s1} {s−4} {s0, s−1} {s0}


It is observed that the experts usually provide different numbers of linguistic terms when

comparing alternatives in pairwise, for instance, in Example 1, b12 = {s−2, s−1} and b13 = {s2, s3, s4}.
To facilitate the calculation on HFLEs, Zhu and Xu [14] developed two normalization principles to
make different HFLEs have the same number of linguistic terms:

(1) α-normalization: Remove some elements of bi whose number of elements is more than others;
(2) β-normalization: Add some elements of bi whose number of elements is less than others. Let b+

and b− be the max and min linguistic terms of the HFLE b = {bσ(l)|l = 1, 2, . . . , Lb}, respectively,
and δ(0 ≤ δ ≤ 1) be an optimized parameter. With the β-normalization principle, b = δb+ + (1− δ)b−

can be taken as the added linguistic term. Once all the HFLEs in a HFLPR are extended to the same
length, a normalized HFLPR can be established.

Definition 5 [14]. For a HFLPR B = (bij)n×n, we use the optimized parameter δ(0 ≤ δ ≤ 1) to add linguistic
terms to bij (i < j) and use the parameter 1− δ to add linguistic terms to bji (i < j). We can obtain a normalized
HFLPR B = (bij)n×n, satisfying

Lbij
= max{Lbij

|i, j = 1, 2, . . . , n, i 6= j} (5)

where Lbij
is the number of linguistic terms in bij.
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Example 2. (Continued to Example 1) For the HFLPR in Example 1, let δ = 1, the normalized HFLPR B can
be obtained as:

B =


{s0} {s−2, s−1, s−1} {s2, s3, s4} {s−3, s−2, s−1}

{s2, s1, s1} {s0} {s1, s1, s1} {s4, s4, s4}
{s−2, s−3, s−4} {s−1, s−1, s−1} {s0} {s0, s1, s1}
{s3, s2, s1} {s−4, s−4, s−4} {s0, s−1, s−1} {s0}


The HFLPR has been studied in various aspects, including the consistency measures of the

HFLPR [14–18], the priority derivation from the HFLPR [19], and the consensus reaching process with
HFLPRs [19,20]. After transforming the HFLPR into its corresponding normalized HFLPR by the
β-normalization principle, Zhu and Xu [14] discussed the additive consistency of the HFLPR. Based on
the possibility distribution-based method, Wu and Xu [16] further gave the definition of the additive
consistency of the HFLPR and proposed a consistency improving method. To overcome the limitation
of the normalized process in previous work [14], based on graph theory, Wang and Xu [17] introduced
a new additive consistency of the extended HFLPR. In addition, Zhang and Wu [18] defined the
multiplicative consistency of the HFLPR. In view of the statistical distributions, Wang and Gong [19]
established chance-restricted programming to derive the priority weights from the HFLPR. As for the
consensus reaching process of HFLPRs, Dong et al. [20] proposed a consensus measure based on the
distance to the preference relations and then advanced an optimization-based consensus model for
GDM with HFLPRs. Wu and Xu [21] gave an interactive consensus model based on the distance to the
collective preference.

3. Properties of the Additive Consistent HFLPR

In this section, we study the properties of the additive consistent HFLPR.
Based on Definition 5, Zhu and Xu [14] introduced the concept of additive consistent HFLPR.

Definition 6 [14]. Given a HFLPR B = (bij)n×n and its normalized HFLPR B = (bij)n×n with δ, if

b
σ(l)
ij = b

σ(l)
ik ⊕ b

σ(l)
kj (i, j, k = 1, 2, . . . , n) (6)

then B is an additive consistent HFLPR.

Theorem 1. For a HFLPR B = (bij)n×n and its corresponding normalized HFLPR B = (bij)n×n with δ,
the following statements are equivalent:

(a) B is additive consistent;

(b) I
(

b
σ(l)
i(i+1)

)
+ I
(

b
σ(l)
(i+1)(i+2)

)
+ · · ·+ I

(
b

σ(l)
(j−1)j

)
+ I
(

b
σ(l)
ji

)
= 0, ∀i < j;

(c) I
(

b
σ(l)
ij1

)
+ I
(

b
σ(l)
j1 j2

)
+ · · ·+ I

(
b

σ(l)
jt−1 jt

)
+ I
(

b
σ(l)
jti

)
= 0, ∀i < j1 < j2 < · · · < jt.

Proof. (a) ⇒ (b) Let i < j, k = j − i. The expression (a) can be rewritten in a mathematical form:

I
(

b
σ(l)
ij

)
= I
(

b
σ(l)
ik

)
+ I
(

b
σ(l)
kj

)
(i, j, k = 1, 2, . . . , n). bij satisfies I

(
b

σ(l)
ij

)
+ I
(

b
σ(l)
ji

)
= 0, I

(
b

σ(l)
ii

)
= 0.

Mathematical induction is used to prove this part. When k = j− i = 1, it is obvious. Next we

assume that the property is true for k = n, that is, I
(

b
σ(l)
i(i+1)

)
+ I
(

b
σ(l)
(i+1)(i+2)

)
+ · · · I

(
b

σ(l)
(i+n−1)(i+n)

)
+

I
(

b
σ(l)
(i+n)i

)
= 0. Then for k = n + 1, we have
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I
(

b
σ(l)
i(i+1)

)
+ I
(

b
σ(l)
(i+1)(i+2)

)
+ · · ·+ I

(
b

σ(l)
(i+n−1)(i+n)

)
+ I
(

b
σ(l)
(i+n)(i+n+1)

)
+ I
(

b
σ(l)
(i+n+1)i

)
=
(

I
(

b
σ(l)
i(i+1)

)
+ I
(

b
σ(l)
(i+1)(i+2)

)
+ · · ·+ I

(
b

σ(l)
(i+n−1)(i+n)

))
+ I
(

b
σ(l)
(i+n)(i+n+1)

)
+ I
(

b
σ(l)
(i+n+1)i

)
= −I

(
b

σ(l)
(i+n)i

)
+ I
(

b
σ(l)
(i+n)(i+n+1)

)
+ I
(

b
σ(l)
(i+n+1)i

)
= I
(

b
σ(l)
i(i+n)

)
+ I
(

b
σ(l)
(i+n)(i+n+1)

)
+ I
(

b
σ(l)
(i+n+1)i

)
= 0

Therefore, the expression (b) is confirmed.
(b)⇒ (a) Based on the condition, we have

I
(

b
σ(l)
ij

)
+ I
(

b
σ(l)
jk

)
+ I
(

b
σ(l)
ki

)
= −I

(
b

σ(l)
ji

)
− I
(

b
σ(l)
kj

)
+ I
(

b
σ(l)
ki

)
=
(

I
(

b
σ(l)
i(i+1)

)
+ I
(

b
σ(l)
(i+1)(i+2)

)
+ · · ·+ I

(
b

σ(l)
(j−1)j

))
+
(

I
(

b
σ(l)
j(j+1)

)
+ I
(

b
σ(l)
(j+1)(j+2)

)
+ · · ·+ I

(
b

σ(l)
(k−1)k

))
+ I
(

b
σ(l)
ki

)
=
(

I
(

b
σ(l)
i(i+1)

)
+ I
(

b
σ(l)
(i+1)(i+2)

)
+ · · ·+ I

(
b

σ(l)
(j−1)j

)
+ I
(

b
σ(l)
j(j+1)

)
+ I
(

b
σ(l)
(j+1)(j+2)

)
+ · · ·+ I

(
b

σ(l)
(k−1)k

)
+ I
(

b
σ(l)
ki

))
= 0.

Thus, the expression (a) is confirmed.
(a)⇒ (c) Similar to the proof of (a)⇒ (b), mathematical induction is used to prove this part. When

t = 1, the expression (c) is given as I
(

b
σ(l)
ij1

)
+ I
(

b
σ(l)
j1i

)
= 0. It is clearly true.

Next, we assume that the hypothesis is true when t = n, i.e., I
(

b
σ(l)
ij1

)
+ I
(

b
σ(l)
j1 j2

)
+ · · · +

I
(

b
σ(l)
jn−1 jn

)
+ I
(

b
σ(l)
jni

)
= 0, ∀i < j1 < j2 < · · · < jn. Then for t = n + 1, we have I

(
b

σ(l)
ij1

)
+ I
(

b
σ(l)
j1 j2

)
+

· · · + I
(

b
σ(l)
jn−1 jn

)
+ I
(

b
σ(l)
jn jn+1

)
+ I
(

b
σ(l)
jn+1i

)
=
(

I
(

b
σ(l)
ij1

)
+ I
(

b
σ(l)
j1 j2

)
+ · · ·+ I

(
b

σ(l)
jn−1 jn

))
+ I
(

b
σ(l)
jn jn+1

)
+

I
(

b
σ(l)
jn+1i

)
= −I

(
b

σ(l)
jni

)
+ I
(

b
σ(l)
jn jn+1

)
+ I
(

b
σ(l)
jn+1i

)
= I
(

b
σ(l)
ijn

)
+ I
(

b
σ(l)
jn jn+1

)
+ I
(

b
σ(l)
jn+1i

)
= 0.

(c)⇒ (a) Based on the condition, we have I
(

b
σ(l)
ij

)
+ I
(

b
σ(l)
jk

)
+ I
(

b
σ(l)
ki

)
= −I

(
b

σ(l)
ji

)
− I
(

b
σ(l)
kj

)
+

I
(

b
σ(l)
ki

)
=

(
I
(

b
σ(l)
ij1

)
+ I
(

b
σ(l)
j1 j2

)
+ · · ·+ I

(
b

σ(l)
jt−1 j

))
+
(

I
(

b
σ(l)
jk1

)
+ I
(

b
σ(l)
k1k2

)
+ · · ·+ I

(
b

σ(l)
kt−1k

))
+

I
(

b
σ(l)
ki

)
= I
(

b
σ(l)
ij1

)
+ I
(

b
σ(l)
j1 j2

)
+ · · ·+ I

(
b

σ(l)
jt−1 j

)
+ I
(

b
σ(l)
jk1

)
+ I
(

b
σ(l)
k1k2

)
+ · · ·+ I

(
b

σ(l)
kt−1k

)
+ I
(

b
σ(l)
ki

)
= 0.

This completes the proof of Theorem 1. �

Note. The values in Theorem 1(b) are arranged in consecutive orders, for instance, I
(

b
σ(l)
12

)
,

I
(

b
σ(l)
23

)
, I
(

b
σ(l)
34

)
and I

(
b

σ(l)
41

)
, while the values in Theorem 1(c) are not necessarily arranged in

consecutive orders, for instance, I
(

b
σ(l)
13

)
, I
(

b
σ(l)
35

)
, I
(

b
σ(l)
58

)
and I

(
b

σ(l)
81

)
. Thus, Theorem 1(b) is a

special case of Theorem 1(c). Theorem 1 reveals an important character of the additive consistent
HFLPR. It plays a key role in estimating the missing information of incomplete HFLPR.

Theorem 2. Let B = (bij)n×n be a HFLPR and B = (bij)n×n be its associated normalized HFLPR with δ.
Then B is additive consistent if and only if

I
(

b
σ(l)
ij

)
− I
(

b
σ(l)
ik

)
= I
(

b
σ(l)
l j

)
− I
(

b
σ(l)
lk

)
, ∀i, p ≤ j < k (7)

Proof.

(1) Sufficiency. If I
(

b
σ(l)
ij

)
− I
(

b
σ(l)
ik

)
= I

(
b

σ(l)
pj

)
− I
(

b
σ(l)
pk

)
, ∀i, p ≤ j < k. Let p = j. Since

I
(

b
σ(l)
jj

)
= 0, we have I

(
b

σ(l)
ij

)
− I
(

b
σ(l)
ik

)
= 0 − I

(
b

σ(l)
jk

)
, ∀i ≤ j < k. That is, I

(
b

σ(l)
ij

)
=

I
(

b
σ(l)
jk

)
+ I
(

b
σ(l)
ki

)
, ∀i ≤ j < k. Therefore, B is additive consistent.

(2) Necessity. If B is additive consistent, we can get I
(

b
σ(l)
ij

)
= I
(

b
σ(l)
jk

)
+ I
(

b
σ(l)
ki

)
and I

(
b

σ(l)
ij

)
−

I
(

b
σ(l)
ik

)
= −I

(
b

σ(l)
jk

)
, ∀i ≤ j < k. Similarly, I

(
b

σ(l)
l j

)
= I

(
b

σ(l)
lk

)
+ I
(

b
σ(l)
kl

)
and I

(
b

σ(l)
l j

)
−

I
(

b
σ(l)
lk

)
= −I

(
b

σ(l)
jk

)
, ∀l ≤ j < k. Thus, I

(
b

σ(l)
ij

)
− I
(

b
σ(l)
ik

)
= I
(

b
σ(l)
l j

)
− I
(

b
σ(l)
lk

)
, ∀i, p ≤ j < k.

This completes the proof of Theorem 2. �
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From Theorem 2, another important property of the additive consistent HFLPR can be obtained.
That is, the difference between the elements in two columns is a constant value for all rows.

Note. It is noted that, in the calculation process, some virtual linguistic terms that are not in

the original LTS {sα|α ∈ [−τ, τ]} may be obtained. For example, let τ = 4, b
σ(1)
12 = s2, b

σ(1)
23 = s3.

Then, we have I
(

b
σ(1)
12

)
+ I
(

b
σ(1)
23

)
= 5. s5 /∈ {sα|α ∈ [−4, 4]}. In this situation, a matrix B = (bij)n×n

with entries in {sα|α ∈ [−a− τ, a + τ]} where s−a−τ is the worst linguistic term in the matrix B and
sa+τ is the best linguistic term in the matrix B is obtained. We need a conversion function F to make
the virtual linguistic terms be in {sα|α ∈ [−τ, τ]}, where F : [−a− τ, a + τ]→ [−τ, τ] , satisfying
(a) F(−a− τ) = −τ; (b) F(a + τ) = τ. Then, a transformation function that meets the conditions (a)
and (b) is used to make the virtual linguistic terms fall in {sα|α ∈ [−τ, τ]}:

F(x) =
τx

τ + a
(8)

4. Incomplete HFLPR and Some Repairing Procedures for Inconsistent IHFLPR

In this section, the definition of the IHFLPR is introduced. The IHFLPRs are divided into three
categories: the IHFLPR with n− 1 judgments (one particular alternative is compared with all other
alternatives only once); the IHFLPR with more than n− 1 judgments; the IHFLPR with one alternative
having no information. Three approaches to induce these three kinds of IHFLPRs to the complete
HFLPRs are put forward.

4.1. The Incomplete HFLPRs

A complete HFLPR regarding to n alternatives has n× (n− 1)/2 judgments that need to be
determined. However, when n is large, the workload is heavy. Furthermore, the experts often lack
knowledge for a problem, which means they cannot provide complete information. As a result,
the IHFLPR with missing elements is constructed. The IHFLPR in mathematical form is defined
as below:

Definition 7. Let B = (bij)n×n be a HFLPR, where bij = {b
σ(l)
ij |s = 1, 2, . . . , Lbij

}(i, j = 1, 2, . . . , n). If some
elements cannot be given by the expert, then we call B an IHFLPR. We use “x” to represent the missing elements.
The known elements provided by the expert satisfy

bσ(l)
ij ⊕ bσ(l)

ji = s0, bii = s0, Lbij
= Lbji

, bσ(l)
ij < bσ(l+1)

ij , bσ(l+1)
ji < bσ(l)

ji , ∀bij ∈ Φ (9)

where Φ is the set of all known elements in B.

The missing elements can be resulted from the incapacity or inexperience of an expert who cannot
provide clear view on how the alternative xi is better. For example, an IHFLPR can be given as

B =


{s0} x {s2, s3} x

x {s0} x {s−4, s−3, s−2}
{s−2, s−3} x {s0} {s4}

x {s4, s3, s2} {s−4} {s0}


It should be noted that the HFLEs of a HFLPR often have different numbers of linguistic terms.

Therefore, a normalization process is necessary. Based on Definition 5, the β-normalization principle is
used to add linguistic terms and obtain a normalized incomplete HFLPR.
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Definition 8. For an IHFLPR B = (bij)n×n, after utilizing δ(0 ≤ δ ≤ 1) to add some linguistic terms to
bij ∈ Φ(i < j) and 1− δ to add linguistic terms to bji ∈ Φ(i < j), we can obtain a normalized IHFLPR,
B = (bij)n×n, satisfying

Lbij
= max{Lbij

∣∣∣i, j = 1, 2, · · · , n, i 6= j, bij ∈ Φ} (10)

where Lbij
is the number of linguistic terms in bij.

Example 3. Let δ = 1, a normalized IHFLPR is obtained for B given above

B =


{s0} x {s2, s3, s3} x

x {s0} x {s−4, s−3, s−2}
{s−2, s−3, s−3} x {s0} {s4, s4, s4}

x {s4, s3, s2} {s−4, s−4, s−4} {s0}


Definition 9. For an IHFLPR B = (bij)n×n, the elements bij and bkl are adjacent if (i, j) ∩ (k, l) 6= ∅.
For the missing element bij, if there exists adjacent complete elements bij1 , bj1 j2 , · · · , bjk j, then bij can be
obtained indirectly.

Definition 10. An IHFLPR B = (bij)n×n is acceptable if any missing elements of it can be obtained indirectly
through the given elements; otherwise, it is an unacceptable IHFLPR.

Theorem 3. A necessary condition for the acceptable IHFLPR is that, except for diagonal elements, there is at
least one element in each column or each row with at least n− 1 judgments.

Proof. Let bkl be a missing element in the IHFLPR B = (bij)n×n. When B is acceptable, based on
Definition 10, there exists a known complementary element sequence bkl1 , bl1l2 , . . . , blt l . Therefore, there
is at least one given element bkl1 in the kth row, and k 6= l1. Likewise, there exists at least one given
element blt l , and lt 6= l. Due to the arbitrariness of k and l, the necessary condition can be confirmed.
Thus, the upper (lower) triangle of incomplete HFLPR has at least n− 1 judgments. �

Definition 11. Let B = (bij)n×n be an IHFLPR and its normalized IHFLPR with δ is B = (bij)n×n. Then B
is called an additive consistent IHFLPR if the known elements of B satisfy

b
σ(s)
ij1 ⊕ b

σ(s)
j1 j2 ⊕ · · ·+ b

σ(s)
jt−1 jt ⊕ b

σ(s)
jt ji = s0, i < j1 < j2 < · · · < jt (11)

4.2. An Estimation Process for Acceptable IHFLPR with Only n− 1 Judgments

After obtaining the normalized IHFLPR, the next work is to estimate the missing elements of
it. Algorithm 1 is introduced to estimate the missing information of the IHFLPR with n− 1 known
judgments over all alternatives (one particular alternative is compared with all other alternatives
only once).



Int. J. Environ. Res. Public Health 2018, 15, 751 9 of 21

Algorithm 1. Estimating missing information of IHFLPR with n − 1 known judgments

Step 1. There are a set of alternatives X = {x1,x2, · · · , xn}. Because of various reasons, an expert only
compares one alternative with the other n− 1 alternatives. The comparison information of the other n− 1
alternatives is missing. Thus, n− 1 judgments related to all alternatives can be obtained. An acceptable
IHFLPR is constructed by these n− 1 judgments. Go to Step 2.

Step 2. Obtain the normalized IHFLPR based on Definition 8. Go to Step 3.
Step 3. Estimate the missing elements of the normalized IHFLPR by Theorems 1 and 2. We can obtain

a new additive consistent HFLPR B′ = (b
′
ij)n×n

. If there are linguistic terms that are not in {sα|α ∈ [−τ, τ]},
then the transformation function F(x) = τx/(τ + 2a) can be used to preserve the additive consistency and
reciprocity, resulting in a new consistent HFLPR B′′ = (b′′ij)n×n

.

Step 4. End.

Example 4. There are a set of five alternatives xi(i = 1, 2, · · · , 5). One expert compares the second alternative
with the other four alternatives and provides four judgments as follows: b21 = {s0, s1, s2}, b23 = {s−2, s−3},
b24 = {s1, s2, s3, s4} and b25 = {s−3, s−4}. Algorithm 1 is used to estimate the missing elements of
this IHFLPR.

Step 1. Obtain the acceptable IHFLPR B through the four judgements provided by the expert:

B =



{s0} {s−2, s−1, s0} x x x
{s2, s1, s0} {s0} {s−3, s−2} {s1, s2, s3, s4} {s−4, s−3}

x {s3, s2} {s0} x x
x {s−1, s−2, s−3, s−4} x {s0} x
x {s4, s3} x x {s0}


Step 2. Transform B = (bij)5×5 into a normalization IHFLPR based on Definition 8. Let δ = 1.

The normalized IHFLPR B = (bij)5×5 is derived as

B =


{s0} {s−2, s−1, s0, s0} x x x

{s2, s1, s0, s0} {s0} {s−3, s−2, s−2, s−2} {s1, s2, s3, s4} {s−4, s−3, s−3, s−3}
x {s3, s2, s2, s2} {s0} x x
x {s−1, s−2, s−3, s−4} x {s0} x
x {s4, s3, s3, s3} x x {s0}


Step 3. Estimate the unknown elements of the normalized IHFLPR B = (bij)5×5 based on

Theorems 1 and 2. For example, to estimate b31 and b13, the procedure is presented as follows:

I
(

b
σ(1)
31

)
= −I

(
b

σ(1)
12

)
− I
(

b
σ(1)
23

)
= 5, I

(
b

σ(2)
31

)
= 3, I

(
b

σ(3)
31

)
= 2, I

(
b

σ(4)
31

)
= 2,

I
(

b
σ(1)
13

)
= −5, I

(
b

σ(2)
13

)
= −3, I

(
b

σ(3)
13

)
= −2, I

(
b

σ(4)
13

)
= −2.

Using the same process the rest unknown elements of B and the complete HFLPR can be obtained as

B′ =


{s0} {s−2, s−1, s0, s0} {s−5, s−3, s−2, s−2} {s−1, s1, s3, s4} {s−6, s−4, s−3, s−3}

{s2, s1, s0, s0} {s0} {s−3, s−2, s−2, s−2} {s1, s2, s3, s4} {s−4, s−3, s−3, s−3}
{s5, s3, s2, s2} {s3, s2, s2, s2} {s0} {s4, s4, s5, s6} {s−1, s−1, s−1, s−1}
{s1, s−1, s−3, s−4} {s−1, s−2, s−3, s−4} {s−4, s−4, s−5, s−6} {s0} {s−5, s−5, s−6, s−7}
{s6, s4, s3, s3} {s4, s3, s3, s3} {s1, s1, s1, s1} {s5, s5, s6, s7} {s0}


It is observed that some linguistic terms are not in {sα|α ∈ [−4, 4]}. Thus, the transformation

function F(x) = τx/(τ + a) is used to construct a new complete HFLPR and here a = 7− 4 = 3.

B′′ =



{s0} {s−1.14, s−0.57, s0, s0} {s−2.86, s−1.71, s−1.14, s−1.14} {s−0.57, s0.57, s1.71, s2.29} {s−3.43, s−2.29, s−1.71, s−1.71}
{s1.14, s0.57, s0, s0} {s0} {s−1.71, s−1.14, s−1.14, s−1.14} {s0.57, s1.14, s1.71, s2.29} {s−2.29, s−1.71, s−1.71, s−1.71}
{s2.86, s1.71, s1.71, s1.71} {s1.71, s1.14, s1.14, s1.14} {s0} {s2.29, s2.29, s2.86, s2.86} {s−0.57, s−0.57, s−0.57, s−0.57}
{s0.57, s−0.57, s−1.71, s−2.29} {s−0.57, s−1.14, s−1.71, s−2.29} {s−2.29, s−2.29, s−2.29, s−3.43} {s0} {s−2.86, s−2.86, s−3.43, s−4}
{s3.43, s2.29, s1.71, s1.71} {s2.29, s1.71, s1.71, s1.71} {s0.57, s0.57, s0.57, s0.57} {s2.86, s2.86, s3.43, s4} {s0}
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4.3. An Estimation Process for Acceptable IHFLPR with More Than n− 1 Judgments

The process to estimate the missing elements of the IHFLPR with n − 1 judgments has been
discussed. In this subsection, we estimate the missing elements of the IHFLPR with more than n− 1
known judgments. First, the IHFLPR is transformed into a normalized IHFLPR based on Definition 8.
Then, a sequence of HFLEs bij1 , bij2 , · · · , bijt(i < j1 < j2 < · · · < jt) that includes only one HFLE bjk−1 jk
is found. If jk−1 < jk, then bjk−1 jk is in the middle of the sequence. In this case, based on Definition 11,
the missing element bjk−1 jk can be estimated as follows:

I
(

b
′σ(l)
jk−1 jk

)
= − 1

L ∑
i<j1<j2<···<jt

(
I
(

b
σ(l)
ij1

)
+ I
(

b
σ(l)
j1 j2

)
+ · · ·+ I

(
b

σ(l)
jk−2 jk−1

)
+ I
(

b
σ(l)
jk jk+1

)
+ · · ·+ I

(
b

σ(l)
jt−1 jt

)
+ I
(

b
σ(l)
jt i

))
(12)

where bij1 , bj1 j2 , · · · , bjk−2 jk−1
, bjk jk+1

, · · · , b
σ(l)
jt−1 jt , b

σ(l)
jti ∈ Φ and L is the number of eligible sequences

that include the missing element bjk−1 jk .

If jk−1 > jk, then bjk−1 jk is the last element in the sequence. In this case, bjk−1 jk is equal to b
σ(l)
jti ,

and thus, the missing element can be estimated by the following equation:

I
(

b
′σ(l)
jk−1 jk

)
= − 1

L ∑
i<j1<j2<···<jt

(
I
(

b
σ(l)
ij1

)
+ I
(

b
σ(l)
j1 j2

)
+ · · ·+ I

(
b

σ(l)
jt−1 jt

)
+ I
(

b
σ(l)
jti

))
(13)

Next, the above procedure is illustrated by an example:

Example 5. Assume that an IHFLPR with more than n− 1 known judgments is given as:

B =



{s0} {s2, s3, s4} {s−2, s−1} {s−1} x
{s−2, s−3, s−4} {s0} {s−3, s−2} x {s−2, s−1}
{s2, s1} {s3, s2} {s0} x {s1}
{s1} x x {s0} {s0, s1, s2, s3}

x {s2, s1} {s−1} {s0, s−1, s−2, s−3} {s0}


First, Definition 8 is used to transform B into a normalized IHFLPR B. Let δ = 1. We have

B =


{s0} {s2, s3, s4, s4} {s−2, s−1, s−1, s−1} {s−1, s−1, s−1, s−1} x

{s−2, s−3, s−4, s−4} {s0} {s−3, s−2, s−2, s−2} x {s−2, s−1, s−1, s−1}
{s2, s1, s1, s1} {s3, s2, s2, s2} {s0} x {s1, s1, s1, s1}
{s1, s1, s1, s1} x x {s0} {s0, s1, s2, s3}

x {s2, s1, s1, s1} {s−1, s−1, s−1, s−1} {s0, s−1, s−2, s−3} {s0}


We first estimate the missing element b24. There is only one sequence that includes only one

element b24:
{

b12, b24, b41

}
. b24 is in the middle of the sequence. Based on Equation (12), we

haveI
(

b
σ(1)
24

)
=−I

(
b

σ(1)
12

)
− −I

(
b

σ(1)
41

)
= −3, I

(
b

σ(2)
24

)
= −4, I

(
b

σ(3)
24

)
= −5, I

(
b

σ(4)
24

)
= −5,

I
(

b
σ(1)
42

)
= 3, I

(
b

σ(2)
42

)
= 4, I

(
b

σ(3)
42

)
= 5, I

(
b

σ(4)
42

)
= 5.

Next, we estimate the missing element b34. There are two sequences that include b34:{
b12, b23, b34, b41

}
and

{
b13, b34, b41

}
. b34 is in the middle of these two sequences. Based on Equation

(12), we have I
(

b
σ(1)
34

)
= 1

2

((
−I
(

b
σ(1)
12

)
− I
(

b
σ(1)
23

)
− I
(

b
σ(1)
41

))
+
(
−I
(

b
σ(1)
13

)
− I
(

b
σ(1)
41

)))
= 0.5,

I
(

b
σ(2)
34

)
= −1, I

(
b

σ(3)
34

)
= −0.5, I

(
b

σ(4)
34

)
= −0.5, I

(
b

σ(1)
43

)
= −0.5, I

(
b

σ(2)
43

)
= 1, I

(
b

σ(3)
43

)
= 0.5,

I
(

b
σ(4)
43

)
= 0.5.

For the missing element b51, there is only one sequence that include b51, i.e.,
{

b12, b25, b51

}
. b51

is the last element of this sequence. Based on Equation (13), we have I
(

b
σ(1)
51

)
= −I

(
b

σ(1)
12

)
−
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−I
(

b
σ(1)
25

)
= 0, I

(
b

σ(2)
51

)
= −2, I

(
b

σ(3)
51

)
= −3, I

(
b

σ(4)
51

)
= −3, I

(
b

σ(1)
51

)
= 0, I

(
b

σ(2)
51

)
= 2,

I
(

b
σ(3)
51

)
= 3, I

(
b

σ(4)
51

)
= 3. Then, we have

B′ =


{s0} {s2, s3, s4, s4} {s−2, s−1, s−1, s−1} {s−1, s−1, s−1, s−1} {s0, s2, s3, s3}

{s−2, s−3, s−4, s−4} {s0} {s−3, s−2, s−2, s−2} {s−3, s−4, s−5, s−5} {s−2, s−1, s−1, s−1}
{s2, s1, s1, s1} {s3, s2, s2, s2} {s0} {s0.5, s−1, s−0.5, s−0.5} {s1, s1, s1, s1}
{s1, s1, s1, s1} {s3, s4, s5, s5} {s−0.5, s1, s0.5, s0.5} {s0} {s0, s1, s2, s3}
{s0, s−2, s−3, s−3} {s2, s1, s1, s1} {s−1, s−1, s−1, s−1} {s0, s−1, s−2, s−3} {s0}

,

As some linguistic values in B′ are not in {sα|α ∈ [−4, 4]}, the transformation function F(x) =
τx/(τ + 2a) can be used to construct a new HFLPR B′′ with a = 5− 4 = 1.

B′′ =


{

s0
} {

s1.6, s2.4, s3.2, s3.2
} {

s−1.6, s−0.8, s−0.8, s−0.8
} {

s−0.8, s−0.8, s−0.8, s−0.8
} {

s0, s1.6, s2.4, s2.4
}{

s−1.6, s−2.4, s−3.2, s−3.2
} {

s0
} {

s−2.4, s−1.6, s−1.6, s−1.6
} {

s−2.4, s−3.2, s−4, s−4
} {

s−1.6, s−0.8, s−0.8, s−0.8
}

{
s1.6, s0.8, s0.8, s0.8

} {
s2.4, s1.6, s1.6, s1.6

} {
s0
} {

s0.4, s−0.8, s−0.4, s−0.4
} {

s0.8, s0.8, s0.8, s0.8
}{

s0.8, s0.8, s0.8, s0.8
} {

s2.4, s3.2, s4, s4
} {

s−0.4, s0.8, s0.4, s0.4
} {

s0
} {

s0, s0.8, s1.6, s2.4
}{

s0, s−1.6, s−2.4, s−2.4
} {

s1.6, s0.8, s0.8, s0.8
} {

s−0.8, s−0.8, s−0.8, s−0.8
} {

s0, s−0.8, s−1.6, s−2.4
} {

s0
}


4.4. A Strategy to Deal with Ignorance Situations

The situation in which each alternative is compared at least once has been discussed. However,
there may also be the case in which an expert does not give any preference information of the
alternatives as the expert does not have a precise understanding of the problem. The expert cannot
determine which options are superior to others. This case is called a total ignorance situation and it is
necessary for us to go further and manage such a situation. Alonso et al. [22] proposed five strategies to
estimate the missing elements in a total ignorance situation. Based on this, in this subsection, a strategy
which is called social strategy is introduced to address such a situation.

Let X = {x1, x2, · · · , xn} be a set of alternatives and E = {E1, E2, · · · , Em} be m experts. We
assume that Bh is an IHFLPR provided by the expert Eh with unknown evaluations for the alternative
xi, that is, b(h)ij and b(h)ji are unknown for all j = 1, 2, · · · , n. The first task we should do, is to compute
the distance between Bh and the other HFLPRs. Zhu and Xu [14] defined the distance between two
HFLEs as

d(bα, bβ) =
Sε

(
I(bα)− I

(
bβ

))
Lb(2τ + 1)

(14)

where Sε is a function denotes the sum of all linguistic terms in a set and Lb = Lbα
= Lbβ

is the number
of linguistic terms for the HFLEs. However, there is a flaw in Equation (14). For example, if two experts’
opinions are completely opposed, which can be represented in HFLE as b1 = {s−4} and b2 = {s4},
then the distance between them should be 1. While the result calculated by Equation (14) is 8

9 6= 1,
which is not logical. Thus, below a novel distance between two HFLEs is defined.

Definition 12. Let S be a LTS, bα and bβ (Lbα
= Lbβ

) be two HFLEs on S. The distance between bα and bβ is
defined as

d(bα, bβ) =
Sε

(
I(bα)− I

(
bβ

))
2τLb

(15)

where Sε is a function that denotes the sum of all values in a set and Lb = Lbα
= Lbβ

.

Based on Definition 12, a distance measure between two HFLPRs in Definition 13 is introduced.

Definition 13. Let Bη and Bµ be two HFLPRs, and their corresponding normalized HFLPRs are Bη = (bij)
η

n×n
and Bµ = (bij)

µ

n×n, respectively. The distance between Bη and Bµ is

d
(

Bη , Bµ

)
=

√√√√ 2
n(n− 1)

n

∑
i=1,i<j

(
d
((

bij

)
η
,
(

bij

)
µ

))2
(16)
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Theorem 4. For two HFLPRs Bη and Bµ, their distance d
(

Bη , Bµ

)
satisfies

(1) 0 ≤ d
(

Bη , Bµ

)
≤ 1;

(2) d
(

Bη , Bµ

)
= 0 if and only if Bη = Bµ;

(3) d
(

Bη , Bµ

)
= d

(
Bµ, Bβ

)
.

If there are unknown elements in the HFLPRs, the distance between an incomplete HFLPR and a
complete HFLPR is defined.

Definition 14. For an IHFLPR Bα and a complete HFLPR Bβ, and their corresponding normalized IHFLPR

Bα = (bij)
α

n×n and HFLPR Bβ = (bij)
β

n×n, the distance between Bα and Bβ is

d
(

Bα, Bβ

)
=

√√√√ 2
LΦ

n

∑
i=1,i<j

(
d
((

bij

)
α
,
(

bij

)
β

))2
(17)

where LΦ is the number of known elements in Bα excluding diagonal elements.

Given a value ζ(0 ≤ ζ ≤ 1), Equation (17) is used to find the experts with a distance less than or
equal to ζ from the expert Eh. The judgments of these experts are close to the expert Eh and thus their
HFLPRs can be used to estimate the unknown judgments of the alternative xi in Bh.

Example 6. Let Et(t = 1, 2, 3, 4) be four experts who are invited to solve a GDM problem over four alternatives
x1, x2, x3, and x4. The expert E1 provides his/her individual IHFLPR B1 but does not provide any information
about the alternative x2:

B1 =


{s0} x {s1, s2} {s2, s3}

x {s0} x x
{s1, s2} x {s0} {s2}
{s−2, s−3} x {s−2} {s0}


The experts E2, E3 and E4 provide the following HFLPRs:

B2 =


{s0} {s1, s2} {s−2, s−1} {s3}

{s−1, s−2} {s0} {s−2} {s0, s1}
{s2, s1} {s2} {s0} {s3, s4}
{s−3} {s0, s−1} {s−3, s−4} {s0}

,

B3 =


{s0} {s−2, s−1} {s−4} {s−1}
{s2, s1} {s0} {s−2, s−1} {s1}
{s4} {s2, s1} {s0} {s2, s3}
{s1} {s−1} {s−2, s−3} {s0}

,

B4 =


{s0} {s0, s1} {s2} {s3, s4}
{s0, s−1} {s0} {s−2, s−1} {s1}
{s−2} {s2, s1} {s0} {s2, s3}
{s−3, s−4} {s−1} {s−2, s−3} {s0}
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Then, these four HFLPRs are transformed into their corresponding normalized HFLPRs:

B1 =


{s0} x{s1, s2} {s2, s3}

x {s0} x x
{s1, s2} x {s0} {s2, s2}
{s−2, s−3} x {s−2, s−2} {s0}

,

B2 =


{s0} {s1, s2} {s−2, s−1} {s3, s3}

{s−1, s−2} {s0} {s−2, s−2} {s0, s1}
{s2, s1} {s2, s2} {s0} {s3, s4}
{s−3, s−3} {s0, s−1} {s−3, s−4} {s0}


B3 =


{s0} {s−2, s−1} {s−4, s−4} {s−1, s−1}
{s2, s1} {s0} {s−2, s−1} {s1, s1}
{s4, s4} {s2, s1} {s0} {s2, s3}
{s1, s1} {s−1, s−1} {s−2, s−3} {s0}

,

B4 =


{s0} {s0, s1} {s2, s2} {s3, s4}
{s0, s−1} {s0} {s−2, s−1} {s1, s1}
{s−2, s−2} {s2, s1} {s0} {s2, s3}
{s−3, s−4} {s−1, s−1} {s−2, s−3} {s0}


Based on Equation (17), we calculate d(B1, B2) = 0.2447, d(B1, B3) = 0.4719, d(B1, B4) = 0.0884.

Given ζ = 0.25, the unknown elements of B1 can be calculated as the arithmetic means of the
corresponding values in B2 and B4, and the value in B3 is not considered since the distance d(B1, B3) > ζ.

{s0} x {s1, s2} {s2, s3}
x {s0} x x

{s1, s2} x {s0} {s2, s2}
{s−2, s−3} x {s−2, s2} {s0}

→


{s0} {s0.5, s1.5} {s1, s2} {s2, s3}
{s−0.5, s−1.5} {s0} {s−2, s−1.5} {s0.5, s1}
{s1, s2} {s2, s1.5} {s0} {s2, s2}
{s−2, s−3} {s−0.5, s−1} {s−2, s−2} {s0}


5. A GDM Model with Incomplete HFLPRs

In this section, an algorithm for GDM with IHFLPRs is developed. To do so, a way to determine
the weights of experts is defined firstly. A selection process to rank alternatives and select the optimal
one is also proposed.

5.1. Determining the Weights of Experts

When determining the experts’ weights, the completeness of the IHFLPRs should be taken
into consideration. An expert should be endowed a larger weight if he can provide more known
information. Zhao et al. [23] introduced the concept of the quality of a linguistic preference relation
and proposed the experience and quality hybrid weight vector. To evaluate the experts’ weights in the
environment of IHFLPRs, the concept of the quality of an IHFLPR is introduced.

Definition 15. Let B = (bij)n×n be an IHFLPR. The quality of B is defined as

QB =
2LΦ

n(n− 1)
(18)

where LΦ is the number of known elements in the upper triangle of B.

For instance, in Example 6, the quality of B1 is QB1 = 2×3
4×3 = 1

2 . Obviously, QB ∈ [0, 1]. If all
elements are known, then QB = 1. If all elements are unknown, then QB = 0.
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Based on the quality of the IHFLPR, the weight ut of the expert Et regarding the qualities of
IHFLPRs associated to the group can be determined as

ut = Qt/
m

∑
t=1

Qt, t = 1, 2, · · · , m (19)

Definition 16. For a GDM problem with m experts, their subjective weight vector is λ = (λ1, λ2, . . . , λm)
T ,

m
∑

t=1
λt = 1. Their weight vector regarding to the quality of IHFLPR is u = (u1, u2, . . . , um)

T ,
m
∑

t=1
ut = 1.

The comprehensive weight ωt of the expert Et is defined as

ωt = λtut/
m

∑
t=1

λtut (20)

5.2. The Selection Process

After obtaining the complete HFLPRs and the weights of experts, we shall try to select the best
alternative. There are two main phases in the selection process. The first one is the aggregation phase
and the second one is the exploitation phase. The collective HFLPR from all the individual HFLPRs is
derived and the global preferences over the alternatives is obtained in the aggregation phase. In the
exploitation phase, a global ranking of the alternatives is determined.

5.2.1. The Aggregation Phase

Once the missing elements of each IHFLPR are estimated, a set of individual complete HFLPRs
can be derived. Then a collective HFLPR Bc = (b(c)ij )

n×n
can be obtained by the linguistic weighted

averaging operator [5]:

bσ(l)(c)
ij = ω1bσ(l)(1)

ij ⊕ω2bσ(l)(2)
ij ⊕ · · · ⊕ωmbσ(l)(m)

ij , for all i, j = 1, 2, . . . , n (21)

Theorem 5. If all the individual HFLPRs Bt = (b(t)ij )
n×n

(t = 1, 2, · · · , m) are additive consistent, then the

collective HFLPR Bc = (b(c)ij )
n×n

is additive consistent.

Proof. Assume that Bt = (b(t)ij )
n×n

(t = 1, 2, . . . , m) are m additive consistent HFLPRs. For any
i, j, k = 1, 2, . . . , n, i 6= j 6= k, we have

bσ(c)(2)
ij = ω1

(
bσ(l)(1)

ik ⊕ bσ(l)(1)
kj

)
⊕ω2

(
bσ(l)(2)

ik ⊕ bσ(l)(2)
kj

)
⊕ · · · ⊕ωm

(
bσ(l)(m)

ik ⊕ bσ(l)(m)
kj

)
=
(

ω1bσ(l)(1)
ik ⊕ω2bσ(l)(2)

ik ⊕ · · · ⊕ωmbσ(l)(m)
ik

)
⊕
(

ω1bσ(l)(1)
kj ⊕ω2bσ(l)(2)

kj ⊕ · · · ⊕ωmbσ(l)(m)
kj

)
which denotes that Bc = (b(c)ij )

n×n
is additive consistent. �

5.2.2. The Exploitation Phase

After fusing all the individual HFLPRs into a collective HFLPR, the preferences in the collective
HFLPR regarding each alternative can be aggregated. Then, the ranking of the alternatives is derived
by using the HFLWA operator [5].
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5.3. An Algorithm for GDM with IHFLPRs

GDM takes an important role in many fields [24–26]. Owing to the increasing randomness
and complexity of the decision-making environment, more and more organizations invite groups
of experts to make decision instead of a single expert. The GDM problem with HFLPRs can be
described as follows: Let X = {x1, x2, . . . , xn} be a set of alternatives, E = {E1, E2, . . . , Em} be a set of
m experts. The subject weight vector of experts is λ = (λ1, λ2, . . . , λm)

T , where λt > 0, t = 1, 2, . . . , m,

and
m
∑

t=1
λt = 1. The subject weight vector can be determined by the experts’ experience. One expert

compares each pair of alternatives and provides his/her preference relation over these alternatives.
Due to the lack of knowledge or the heavy workload, some information is missing. Then, an IHFLPR
B = (bij)n×n is constructed. Algorithm 2 is developed to address this problem.

Algorithm 2. GDM with IHFLPRs

Step 1. Determine the alternatives X = {x1, x2, . . . , xn}, the experts E = {E1, E2, . . . , Em}, the subjective

weight vector of the experts λ = (λ1, λ2, . . . , λm)
T, and the original IHFLPR Bt = (b(t)ij )

n×n
regarding each expert.

Step 2. Transform each IHFLPR Bt = (b(t)ij )
n×n

into the corresponding normalized IHFLPR

Bt
= (b

(t)
ij )

n×n
with δ based on Definition 8. Then, these normalized IHFLPRs are classified into three

categories: (1) the IHFLPRs with only n− 1 judgments; (2) the IHFLPRs with more than n− 1 known
judgments; and (3) the IHFLPRs including an alternative xi that has no information.

Step 3. Estimate the missing information of the normalized IHFLPRs Bt
= (b

(t)
ij )

n×n
and obtain the

complete HFLPRs B′t = (b
′(t)
ij )

n×n
. If there are values that are not in S = {sα|α ∈ [−τ, τ]}, the conversion

function F(x) = τx/(τ + 2a) is applied to convert all the linguistic terms in the complete HFLPRs to
new HFLPRs.

Step 4. Determine the comprehensive weight vector of the experts by Equation (20).
Step 5. Use the linguistic weighted averaging operator shown as Equation (21) to fuse all the individual

HFLPRs B′t = (b
′(t)
ij )

n×n
into a collective HFLPR B′c = (b

′(c)
ij )

n×n
.

Step 6. Use the HFLWA operator shown as Equation (2) to fuse all the preference degrees b
′(c)
ij in the ith

line of B′c and obtain the overall value of the ith alternative over all of other alternatives.
Step 7. Rank all the alternatives and choose the best one. Then, we end the algorithm.

6. Case Study and Comparative Analyses

In this section, a practical example in terms of flood disaster risk evaluation is used to illustrate
our algorithm. A comprehensive comparative analysis is presented to verify the advantage of our
GDM model.

6.1. Case Study about Flood Disaster Risk Evaluation

In recent years, with the change of the global environment and social and economic development,
the risks of various natural disasters are increasing. All kinds of natural disasters cause huge losses
and continue to threaten millions of people all over the world [27]. The United Nations International
Strategy for Disaster Reduction reported that people should establish social systems that coexist
with risks [28]. Against this background, natural disaster risk reduction management is the most
effective and active way for disaster prevention. Disaster risk assessment is an important means of
risk reduction management. This section selects flood disaster risk evaluation as the case study.

Up to now, some works related to the flood-risk evaluation have been carried out in China.
Lai et al. [29] proposed an assessment model based on fuzzy comprehensive evaluation to evaluate
flood disaster risk in the Dongjiang River Basin. Liu et al. [30] constructed a hydrological ensemble
flood forecasting system to evaluate flood disaster risk in the Lanjiang Basin. Qi et al. [31] established
a regional evaluation model of flood disasters based on the superposition theory.
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The existing flood evaluation system is based on specific tools. Few studies focus on expert
evaluation systems. In this paper, an expert evaluation model is established to evaluate flood disaster
risk. Risk assessment in different regions is the basic content of our system. Experts’ knowledge and
experience play a key role in the system. However, owing to the lack of comprehensive information,
the experts may be unable to provide complete judgments when they assess pairwise alternatives.
The unusually complex geographical and climatic conditions in China lead to the complexity of natural
disaster systems and the spatial incompleteness of the data. Thus, the method proposed in this paper
is suitable for disaster risk assessment. What is more, many disasters including floods need real-time
assessment. The lag of assessment may lead to disastrous consequences. The flexibility of expert
assessment can solve the problem of lag.

Suppose that there are five potentially flooded regionsX = {x1, x2, x3, x4, x5}. Four experts
E = {E1, E2, E3, E4} (whose subject weight vector is λ = (0.25, 0.25, 0.25, 0.25)T) are invited to assess
the flood disaster risks to make a purposeful precaution. The subject weight vector is determined
by some prior information. It is a comprehensive quantity representation that includes experts’
knowledge, experiences, abilities, and expectation. Let ζ = 0.20. Because of the lack of knowledge,
some information is missing when the experts compare alternatives. These four experts provide their
IHFLPRs as follows:

B1 =



{s0} x {s−1} x x
x {s0} {s1, s2} x x
{s1} {s−1, s−2} {s0} {s3} {s0, s1, s2}

x x {s−3} {s0} x
x x {s0, s−1, s−2} x {s0}



B2 =



{s0} {s−1} {s0, s1} {s1, s2, s3} {s2, s3}
{s1} {s0} x x x
{s0, s−1} x {s0} x x

{s−1, s−2, s−3} x x {s0} x
{s−2, s−3} x x x {s0}



B3 =



{s0} {s1, s2, s3} {s3, s4} {s1, s2} x
{s−1, s−2, s−3} {s0} {s1} x {s−2, s−1}
{s−3, s−4} {s−1} {s0} x {s−2}
{s−1, s−2} x x {s0} {s−1, s0}

x {s2, s1} {s2} {s1, s0} {s0}



B4 =



{s0} {s−2} {s−1} x {s0, s1, s2}
{s2} {s0} {s0, s1} x {s3, s4}
{s1} {s0, s−1} {s0} x {s3}

x x x {s0} x
{s0, s−1, s−2} {s−3, s−4} {s−3} x {s0}


Now, Algorithm 2 is used to select the area with the highest risk of flood. As Step 1 has been

given above, the calculation starts from Step 2.
Step 2. Transform the IHFLPRs into their corresponding normalized IHFLPRs based on

Definition 8. We assume δ = 1 and obtain

B1 =



{s0} x {s−1, s−1, s−1} x x
x {s0} {s1, s2, s2} x x

{s1, s1, s1} {s−1, s−2, s−2} {s0} {s3, s3, s3} {s0, s1, s2}
x x {s−3, s−3, s−3} {s0} x
x x {s0, s−1, s−2} x {s0}
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B2 =



{s0} {s−1, s−1, s−1} {s0, s1, s1} {s1, s2, s3} {s2, s3, s3}
{s1, s1, s1} {s0} x x x
{s0, s−1, s−1} x {s0} x x
{s−1, s−2, s−3} x x {s0} x
{s−2, s−3, s−3} x x x {s0}



B3 =



{s0} {s1, s2, s3} {s3, s4, s4} {s1, s2, s2} x
{s−1, s−2, s−3} {s0} {s1, s1, s1} x {s−2, s−1, s−1}
{s−3, s−4, s−4} {s−1, s−1, s−1} {s0} x {s−2, s−2, s−2}
{s−1, s−2, s−2} x x {s0} {s−1, s0, s0}

x {s2, s1, s1} {s2, s2, s2} {s1, s0, s0} {s0}



B4 =



{s0} {s−2, s−2, s−2} {s−1, s−1, s−1} x {s0, s1, s2}
{s2, s2, s2} {s0} {s0, s1, s1} x {s3, s4, s4}
{s1, s1, s1} {s0, s−1, s−1} {s0} x {s3, s3, s3}

x x x {s0} x
{s0, s−1, s−2} {s−3, s−4, s−4} {s−3, s−3, s−3} x {s0}


Obviously, B1 and B2 belong to the first category, B3 belongs to the second category, B4 belongs to

the third category.
Step 3. Estimate the missing information in B1, B2, B3, and B4. The complete HFLPR B′1 is obtained as

B′1 =



{s0} {s−2, s−3, s−3} {s−1, s−1, s−1} {s2, s2, s2} {s−1, s0, s1}
{s2, s3, s3} {s0} {s1, s2, s2} {s4, s5, s5} {s1, s3, s4}
{s1, s1, s1} {s−1, s−2, s−2} {s0} {s3, s3, s3} {s0, s1, s2}
{s−2, s−2, s−2} {s−4, s−5, s−5} {s−3, s−3, s−3} {s0} {s−3, s−2, s−1}
{s1, s0, s−1} {s−1, s−3, s−4} {s0, s−1, s−2} {s3, s2, s1} {s0}


Since B′1 has linguistic terms that fall outside {sα|α ∈ [−τ, τ]}, the transformation function

F(x) = τx/(τ + a) is applied to construct a new HFLPR B′′1 and a = 5− 4 = 1. Then, we have

B′′1 =


{s0} {s−1.6, s−2.4, s−2.4} {s−0.8, s−0.8, s−0.8} {s1.6, s1.6, s1.6} {s−0.8, s0, s0.8}

{s1.6, s2.4, s2.4} {s0} {s0.8, s1.6, s1.6} {s3.2, s4, s4} {s0.8, s2.4, s3.2}
{s0.8, s0.8, s0.8} {s−0.8, s−1.6, s−1.6} {s0} {s2.4, s2.4, s2.4} {s0, s0.8, s1.6}
{s−1.6, s−1.6, s−1.6} {s−3.2, s−4, s−4} {s−2.4, s−2.4, s−2.4} {s0} {s−2.4, s−1.6, s−0.8}
{s0.8, s0, s−0.8} {s−0.8, s−2.4, s−3.2} {s0, s−0.8, s−1.6} {s2.4, s1.6, s0.8} {s0}


Similarly, we can obtain

B′2 =


{s0} {s−1, s−1, s−1} {s0, s1, s1} {s1, s2, s3} {s2, s3, s3}

{s1, s1, s1} {s0} {s1, s2, s2} {s2, s3, s4} {s3, s4, s5}
{s0, s−1, s−1} {s−1, s−2, s−2} {s0} {s1, s1, s2} {s2, s2, s2}
{s−1, s−2, s−3} {s−2, s−3, s−4} {s−1, s−1, s−2} {s0} {s1, s1, s0}
{s−2, s−3, s−3} {s−3, s−4, s−5} {s−2, s−2, s−2} {s−1, s−1, s0} {s0}



B′′2 =


{s0} {s−0.8, s−0.8, s−0.8} {s0, s0.8, s0.8} {s0.8, s1.6, s2.4} {s1.6, s2.4, s2.4}

{s0.8, s0.8, s0.8} {s0} {s0.8, s1.6, s1.6} {s1.6, s2.4, s3.2} {s2.4, s3.2, s4}
{s0, s−0.8, s−0.8} {s−0.8, s−1.6, s−1.6} {s0} {s0.8, s0.8, s1.6} {s1.6, s1.6, s1.6}
{s−0.8, s−1.6, s−2.4} {s−1.6, s−2.4, s−3.2} {s−0.8, s−0.8, s−1.6} {s0} {s0.8, s0.8, s0}
{s−1.6, s−2.4, s−2.4} {s−2.4, s−3.2, s−4} {s−1.6, s−1.6, s−1.6} {s−0.8, s−0.8, s0} {s0}
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B′3 =



{s0} {s1, s2, s3} {s3, s4, s4} {s1, s2, s2} {s1, s−1, s−2}
{s−1, s−2, s−3} {s0} {s1, s1, s1} {s0, s0, s−1} {s−2, s−1, s−1}
{s−3, s−4, s−4} {s−1, s−1, s−1} {s0} {s−1.5, s−1.5, s−2} {s−2, s−2, s−2}
{s−1, s−2, s−2} {s0, s0, s1} {s1.5, s1.5, s2} {s0} {s−1, s0, s0}
{s−1, s1, s2} {s2, s1, s1} {s2, s2, s2} {s1, s0, s0} {s0}


It is noted that no element falls outside in {sα|α ∈ [−τ, τ]}. Thus, B′3 = B′′3 .
To estimate the missing information in B4, the distance between B4 to B′′1 , B′′2 , and B′′3 are first

calculated, respectively, and then we can obtain d
(

B′′1 , B4
)
= 0.1517, d

(
B′′2 , B4

)
= 0.1416, d

(
B′′3 , B4

)
=

0.4930. Given ζ = 0.20, the missing elements of B4 are calculated as the arithmetic mean of the
corresponding values in B′′1 and B′′2 , and thus, we have

B′4 = B′′4 =


{s0} {s−2, s−2, s−2} {s−1, s−1, s−1} {s1.2, s1.6, s2} {s0, s1, s2}

{s2, s2, s2} {s0} {s0, s1, s1} {s2, s3.2, s3.6} {s3, s4, s4}
{s1, s1, s1} {s0, s−1, s−1} {s0} {s1.6, s1.6, s2} {s3, s3, s3}

{s−1.2, s−1.6, s−2} {s−2, s−3.2, s−3.6} {s−1.6, s−1.6, s−2} {s0} {s−0.8, s−0.4, s−0.4}
{s0, s−1, s−2} {s−3, s−4, s−4} {s−3, s−3, s−3} {s0.8, s0.4, s0.4} {s0}


Step 4. By Equation (19) and Equation (20), we can obtain the objective weight of experts:

u = (0.19, 0.19, 0.33, 0.29)T and the comprehensive weight of experts: ω = (0.19, 0.19, 0.33, 0.29)T .
Step 5. Fuse all the individuals HFLPRs into a collective HFLPR:

Bc
=


{s0} {s−0.71, s−0.53, s−0.19} {s0.59, s1.03, s1.03} {s1.13, s1.52, s2.00} {s0.48, s0.42, s0.53}

{s0.71, s0.53, s0.19} {s0} {s0.63, s1.23, s1.23} {s1.45, s2.14, s2.08} {s0.82, s1.89, s2.20}
{s−0.59, s−1.03, s−1.03} {s−0.63, s−1.23, s−1.23} {s0} {s0.58, s0.58, s0.68} {s0.51, s0.67, s0.82}
{s−1.13, s−1.52, s−2.00} {s−1.45, s−2.14, s−2.08} {s−0.58, s−0.58, s−0.68} {s0} {s−0.87, s−0.27, s−0.27}
{s−0.48, s−0.42, s−0.53} {s−0.82, s−1.89, s−2.20} {s−0.51, s−0.67, s−0.82} {s0.87, s0.27, s0.27} {s0}


Step 6. The score values s(bc

i )(i = 1, 2, 3, 4, 5) of the alternatives are obtained as s(bc
1) = 0.0764,

s(bc
2) = 0.1573, s(bc

3) = −0.0198, s(bc
4) = −0.1414, and s(bc

5) = −0.0722. Therefore, the ranking of
alternative is x2 > x1 > x3 > x5 > x4. Thus, the best alternative is x2.

6.2. Comparisons and Analyses

Some studies have been carried out to address the GDM problems with HFLPRs. A comprehensive
comparison between the GDM model proposed in this paper and the existing models is provided.

(1) After defining the syntax, semantics and the context-free grammar related to HFLTSs,
Rodríguez et al. [6] transformed the HFLPRs provided by experts into HFLTSs and obtained their
envelopes to obtain the optimistic and pessimistic collective preference relations and establish
the vector of alternatives. Then the non-dominance choice degree was used to rank alternatives
and select the best one.

(2) Liu et al. [13] transformed the HFLPRs provided by experts into their corresponding 2-tuple
fuzzy preference relations. Afterwards, a consistency reaching method to make the 2-tuple
fuzzy preference relations acceptable was proposed. Finally, they utilized the linguistic 2-tuple
arithmetic mean operator to rank the alternatives and obtain the best one.

(3) Wu and Xu [16] first introduced a consistency measure of HFLPR. If a HFLPR was not additive
consistent, they developed an algorithm to improve the consistency degree. A consensus reaching
model based on the distances between experts was introduced. Finally, the HFLWA operator was
used to obtain the ranking of alternatives.

(4) Based on the envelope matrices of HFLPRs, Wang and Gong [19] constructed the equivalent
interval-valued fuzzy preference relations and transformed them into the normal distributed
preference relation. They ranked the alternatives and selected the best one based on the
chance-restricted model.
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(5) After calculating the weight vector of the experts, Gou et al. [24] calculated the synthetic
HFLPR and the averaging value of each alternative over the other alternatives. They obtained
a complementary matrix and summed all the elements in each line of it. Finally, the ranking of
alternatives in descending order was obtained.

(6) Zhang and Wu [18] proposed a method to obtain the acceptable multiplicative consistent HFLPRs.
Based on these, they used the HFLWA and hesitant fuzzy linguistic weighted geometric (HFLWG)
operator to aggregate the preferences and rank the alternatives.

Table 1 lists the differences between our GDM model and the other GDM models mentioned
above. The proposed method can deal with the problems with IHFLPRs, while the other methods can
only solve the problems with complete HFLPRs. As we all know, the experts often cannot provide
complete HFLPRs owing to various reasons, such as time restriction or workload. It is necessary for
us to construct a model to obtain the best alternative from IHFLPRs. Both incomplete and complete
HFLPRs can be solved by our proposed method.

Table 1. Comparison between the proposed model and the other models.

References Preference Relation Method Used Consistency Measure

Our method Complete or Incomplete HFLPR Additive consistency No
Rodríguez et al. [6] HFLPR Envelope No

Liu et al. [13] HFLPR Envelope Additive
Wu and Xu [15] HFLPR Interactive Yes

Wang and Gong [18] HFLPR Envelope No
Gou et al. [23] HFLPR Compatibility No

Zhang and Wu [17] HFLPR Normalization Multiplicative

Besides, there are also many other methods for flood disaster risk evaluation. Hall et al. [32]
proposed a large scale regional flood risk assessment method based on the system reliability theory,
and applied it to the assessment of future risk assessment in England and Wales. Apel et al. [33]
combined the probability model and deterministic simulation to assess regional flood disaster risk.
Utta et al. [34] systematically studied the direct economic losses assessment method by using an
empirical formula. Including the proposed model in this paper, these methods belong to the simulation
evaluation method. Owing to the fact that the flood control system is composed of many factors,
the risk assessment must take multiple factors into consideration. This makes the routine evaluation
usually care for one fact but lose the other. In particular, the real-time evaluation of flood disaster risk
has obtained much attention from society. The key to real-time risk assessment is the faster extraction
of information. Calculation efficiency should also be considered. However, there are few mature flood
disaster risk assessment systems. Because real-time data cannot be accurate enough, the reliability and
credibility of evaluative results cannot be guaranteed. As a result, the experiences and knowledge of
experts are particularly important. Fast risk assessment under uncertainty is a significant advantage of
our proposed GDM model.

7. Conclusions

In GDM, the experts often provide IHFLPRs with some missing information. In this paper, some
properties of the additive consistent HFLPR were first discussed. Then the definition of the IHFLPR,
the normalized IHFLPR, and the acceptable IHFLPR were introduced. Afterwards, three procedures
to estimate the missing information in the IHFLPRs were proposed. The first one was used to deal
with the situation in which the IHFLPR has only n − 1 judgments over all alternatives. The missing
information of the IHFLPR with more than n − 1 known judgments was estimated by the second
procedure. The third procedure was used to deal with ignorance situations. A method to determine the
experts’ weights and a selection process to derive the optimal ranking from a HFLPR was developed.
Based on this, an algorithm for GDM with IHFLPRs was established. A real-world case about flood
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disaster risk evaluation was used to verify the feasibility of our model. A comprehensive comparative
analysis to justify the advantage of our model was also presented.

This study still has some deficiencies. For instance, there are some other methods that can be
developed to estimate the missing information. Different methods may lead to different results, while
this paper only uses the linear estimation method. This is a topic that deserves further discussion.

In the near future, we will study the consistency improving process for an unacceptable consistent
IHFLPR and the consensus reaching method for IHFLPRs in GDM [35]. Given that the probabilistic
linguistic term set [36] and the probabilistic linguistic preference relation [37] is a hot research topic,
the GDM method with the incomplete probabilistic linguistic preference relations will be investigated.
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