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Abstract: Is nitrogen oxides emissions spatially correlated in a Chinese context? What is the
relationship between nitrogen oxides emission levels and fast-growing economy/urbanization?
More importantly, what environmental preservation and economic developing policies should
China’s central and local governments take to mitigate the overall nitrogen oxides emissions and
prevent severe air pollution at the provincial level in specific locations and their neighboring areas?
The present study aims to tackle these issues. This is the first research that simultaneously studies
the nexus between nitrogen oxides emissions and economic development/urbanization, with the
application of a spatial panel data technique. Our empirical findings suggest that spatial dependence
of nitrogen oxides emissions distribution exists at the provincial level. Through the investigation of
the existence of an environmental Kuznets curve (EKC) embedded within the Stochastic Impacts by
Regression on Population, Affluence, and Technology (STIRPAT) framework, we conclude something
interesting: an inverse N-shaped EKC describes both the income-nitrogen oxides nexus and the
urbanization-nitrogen oxides nexus. Some well-directed policy advice is provided to reduce nitrogen
oxides in the future. Moreover, these results contribute to the literature on development and pollution.

Keywords: nitrogen oxides emissions; urbanization; sustainable development; EKC; spatial effects

1. Introduction

China’s economy has developed at an incredibly fast pace for decades and received broad
attention. By 2010, China’s gross domestic product (GDP) reached 5.8 trillion dollars, making China
the world’s second largest economy (NBSC 2011b). The country is turning from an agricultural one
to a modernized one [1], with more than half of the population living in urban areas (NBSC 2011b).
In the meantime, the rapid economic growth and urbanization came with a rocketing consumption
of resources and a soaring emission of air pollutants, with nitrogen oxides (NOx) being the fastest
accelerating air pollutant in China in the last two decades [2,3]. NOx is an important air pollutant
because it contributes to the formation of photochemical smog, which can have significant impacts on
human health. The main adverse effects of NOx to public health is that it causes respiratory diseases.
Chronic exposure to NOx under ultraviolet radiation can cause respiration symptoms in people with
asthma, and bronchial symptoms (especially in children) and airway inflammation in healthy people.
In addition, NOx is the main source of nitrate aerosol (the important component of particulate matter
(PM) 2.5) in China [3–5].

The literature on the relationship between economic development and environmental quality
is extensive in the field of environmental economics. The present empirical study relies on the
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Environmental Kuznets Curve (EKC) hypothesis carried out by Grossman and Krueger [6] because its
expanded form has the potential to be a policy tool for sustainable development [7]. Some researchers
have examined NOx EKC through cross-sectional data [8,9] and panel data [10,11]. Most researchers
applied country-level data to explore sulfur dioxide (SO2) EKC, while only a few studies used
prefecture-level data in some specific countries.

So far, few studies have explored the relationship between nitrogen oxides emissions and
socioeconomic factors through quantitative empirical approaches in the context of China, even
though such empirical analyses are sorely urgent, because they can shed some new light on the
driving forces and precise regularities of pollutants emission levels, and the estimated parameters
and functions could be very helpful for policymakers to implement suitable policies for emission
reduction. Brajer, et al. [12] carried out the solely related study through panel data. Although panel
data have relatively more information and greater degrees of freedom than cross-sectional data, spatial
dependence is a problem in many panel datasets when the individuals are not sampled at random.
In reality, an observation in a cross-sectional sample is always related to some other observations
in the same sample [13]. Anselin and Griffith [14] illustrated this phenomenon as the existence of a
relationship between what occurs at one spot in space and what occurs somewhere else. However,
such a relation certainly violates the pre-assumption for standard regression analysis: the sampled
observations should generally be independent of each other.

Moreover, spatial effects are critical factors in assessing the impact of the economic development
on environmental conditions [15,16]. The spatial correlation of data is an inherent characteristic in many
environmental subjects. The spread of waste effluents, the diffusion of air pollutants, and the invasion
of new species all might bring about spatial autocorrelation that hinders statistical analysis [17].
According to some recent studies on air pollution, China’s air pollutants show a spatially correlated
pattern [18–21]. For the establishment of EKC, regional samples (towns, cities, or provinces) located
nearby may interact because of spillovers of economic factors and pollutant emission regulations [22].

Quite a few air pollution studies did find some evidence supporting an EKC hypothesis in
China; however, the shape is mixed and different depending on indices as well as sample characters.
Brajer, Mead, and Xiao [12] found evidence supporting an N-shaped sulfur dioxide (SO2) EKC.
They investigated the existence of an SO2 EKC through a Chinese annual panel dataset consisted of
128 cities from 1990 to 2004 and obtained the classical inverted U-shaped relationship and an N-shaped
EKC for SO2 emission. However, Song et al. [23] criticized that previous researchers failed to consider
the potentially non-stationary time series and panel data. Thus, they applied a panel cointegration
technic to improve the non-stationarity issue and obtained an inverse-U shape EKCs for exhaust gas,
wastewater, as well as solid wastes. Diao et al. [24] applied 11-year data (1995–2005) to search for EKC
for six kinds of pollutants (four of them are air pollutants) in Zhejiang province. They obtained an
inversely U-shaped trajectory for the emission of Industrial exhaust gas, smoke, and ash. They likewise
obtained a positive linear nexus for SO2 emission and income. Nevertheless, such a linear relation
did not necessarily eliminate an EKC, since this province might just have been going through the first
upward phase of the inverted-U shape.

Some recent studies adopted advanced econometric tools in China’s economic environment
analysis. On the basis of the examination of a provincial panel in the period 1990–2012, Wang et al. [25]
obtained an inverse U-shaped curve for the relationship between income and SO2 emission and a
positive linear relation between urbanization and SO2 emission by semi-parametric regression for
the first time. Zheng, Yu, Wang, and Deng [20], and Kang et al. [26] applied a spatial panel data
approach in order to control for variables’ spillover effects in their analysis of the connection between
carbon dioxide (CO2) emission and economic growth. They both found empirical evidence for an
inverse-N shaped curve. Hao and Liu [18] used spatial econometric tools to examine China’s current
severe air pollution, i.e., particulate matter (PM) 2.5 from cross-sectional data of 73 Chinese cities
in 2013; the outcome suggested a standard inverse-U shaped EKC for the relation between PM 2.5
concentration and income.
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Some supporters of modernization theories argue that a relationship of EKC exists between
environmental impact and urbanization rather than economic development [27–29]. However,
the important issue of urbanization’s impacts on nitrogen oxides emissions in China is left undiscussed
in the past literature.

Therefore, the objectives of our study are to systematically estimate the impacts of income
and urbanization (hereinafter referred to as “income/urbanization”) on nitrogen oxides emissions.
Since the nitrogen oxides emissions data and other socioeconomic indicators are all sampled at
the provincial level of contiguity, we naturally applied the spatial panel model as the grounding
technique in the following empirical analysis. We begin with a brief introduction to provide the
theoretical basis and methodology for the following empirical analysis. Then, this paper proceeds
with global Moran’s I test and conventional regression to get diagnostics for the description of spatial
dependence. In addition, we investigate the relation between the driving forces and the dependent
variable thoroughly with the spatial panel tool. The outcomes are presented and discussed; besides,
we offer some policy advice at the end of this study.

This research mainly contributes to the current literature in the following aspects. First,
we investigate the relation between nitrogen oxides emissions and economic development in the
context of China, especially the relationship between nitrogen oxides emissions and economic
growth/urbanization. As far as we know, this is the first empirical estimation of the impact of
socioeconomic influential factors on nitrogen oxides emissions in China with the EKC and the STIRPAT
(Stochastic Impacts by Regression on Population, Affluence, and Technology) model. Second, the
spatial panel data tools are applied for the empirical analysis, so that the spatial dependence of nitrogen
oxides emissions can be taken into account and the biased estimators caused by omitting the spatial
effects can be avoided. So far, no prior quantitative analysis of the nexus between socioeconomic
factors and nitrogen oxides emissions has utilized spatial econometric tools. Third, we rectify the
previous way of calculating the turning points used in those EKC studies that applied a spatial
econometric approach.

2. Theoretical Framework and Methodology

2.1. Environmental Kuznets Curve Hypothesis

EKC is originally an empirical hypothesis that characterizes an inversely U-shaped curve for
the relationship between economic development and environmental quality. Various indices of
environmental quality degenerate with economic growth. After reaching a threshold, the environment
deterioration starts to decrease [6]. Development may promote environmental quality as a result of
economies of scale from pollution reduction, technological upgrade, industrial structure escalation,
and public’s demand for a clean environment [22]. Generally, the considered model for the EKC is a
polynomial function type as follows:

Y = α + β1X + β2X2 + β3X3 + β4Z + ε (1)

Here, Y represents the indices of environmental degradation, while X refers to the economic
development level, usually measured by per capita GDP (Gross Domestic Product), and Z includes
other influential factors for the environment. The polynomial function form of EKC offers
to us an adequate tool to estimate the nonlinear relationship (if it exists) between economic
growth/urbanization and pollutants emission.

2.2. Stirpat Model

We use the STIRPAT model as our theoretical foundation to test the existence of an EKC for
nitrogen oxides emissions related to affluence. Ehrlich and Holdren [30] first proposed the concept of
IPAT (Impact, Population, Affluence, and Technology), a model describing the impacts of population,
affluence and technology on the environment, while Commoner et al. [31] applied it by algebraic
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formulation to data analysis. The IPAT identity is concise and well ecologically grounded. However,
the IPAT model is only an overly simplified function form and just indicates that the impact of human
activities on the environment can fully be differentiated into population, affluence, and technology
effects. Thus, the IPAT model cannot estimate to what extent a specific factor affects the environment
in such a framework, not to mention test any hypothesis. Another limitation is that it assumes that
only fixed proportionality changes happen between effects and factors. Therefore, Dietz and Rosa [32]
derived a stochastic version of IPAT, known as STIRPAT and later refined by York et al. [33], expressed
by the equation:

Ii = αiPi
b Ai

cTi
dεi (2)

Here, I represents the environmental impact, P, A, and T indicate human activities, i.e.,
respectively, population, affluence (per capita), and technological influences (per unit of economic
activity); α, b, c, d are coefficients to be estimated; ε is the error (the proportionality of IPAT pre-assume
α = b = c = d = ε = 1). The subscript i refers to the ith region, and as indicated by i, quantities of ,
and vary across observations. Its regression form for estimation and hypothesis test is obtained by
logarithmic transformation of the variables in Equation (1). In this case, the coefficients b, c, and d
stand for the Ecological Elasticity (EE) which measures the sensitivity of environmental impacts to a
change occurring in a driving force. It is defined as the proportion of change in environmental impacts
due to its significant determinants. Since it is highly flexible to various functional forms, a quadratic or
higher term of affluence can enter the STIRPAT equation [33]. Therefore, we applied an augmented
STIRPAT for our study purpose:

ln I = α + b1 ln A + b2(ln A)2 + b3(ln A)3 + c ln P + d ln T + e (3)

ln I = α + b1 ln A + b2(ln A)2 + c ln P + d ln T + e (4)

ln I = α + b ln A + c ln P + d ln T + e (5)

According to our study purpose and to modernization theories [27,29], per capita GDP and
the percentage of urban population (to reflect the modernization level) are utilized as the proxies
of affluence; energy intensity is defined as the indicator of technology impacts/damages [28].
Environmental impact refers to the amount of nitrogen oxides emissions.

2.3. Spatial Panel Data Model

Before the statistical inference for spatial model specifications is carried out, we make a brief
introduction to the models. Three currently prevailing spatial panel models were considered:
the spatial Durbin model (SDM), the spatial lag model (SLM), and the spatial error model (SEM).
The SDM model can be written in matrix form as:

Y = δ(IT ⊗WN)Y + Xβ + γ(IT ⊗WN)X + (τT ⊗ IN)µ + (IT ⊗ τN)η + u, u ∼ N
(

0, σ2 INT

)
(6)

The SLM model can be written as:

Y = δ(IT ⊗WN)Y + Xβ + (τT ⊗ IN)µ + (IT ⊗ τN)η + u, u ∼ N
(

0, σ2 INT

)
(7)

The SEM model can be written as:

Y = Xβ + (τT ⊗ IN)µ + (τN ⊗ IT)η + u

u = ρ(IT ⊗WN)u + υ

υ ∼ N
(
0, σ2 INT

) (8)
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In this study, the dependent variable Y is substantively an NT × 1 vector of nitrogen oxides
emissions amount at China’s provincial level, and X is an NK × K matrix composed of independent
variables (also known as explanatory variables) in Equations (3)–(5); µ controls for the unknown
individual effects or heterogeneities (each individual province’s features that might affect emissions
level but never changes over time. For example, the geographical distribution of provinces) of the
30 provinces in the study, since omission can lead to biased estimates, while η controls for the time
effects, i.e., the constant whole trend of nitrogen oxides emissions levels; δ is the spatial autocorrelation
and ρ is the spatial autocorrelation that exists in the error term u (the error term in regression analysis
is usually assumed as a random variable of normal distribution); υ is the random term existing
in the spatially correlated u. Both δ and ρ reflect the strength of the dependent variable’s spatial
autocorrelation. Each parameter indicates the responsiveness of the dependent variable to a change
in the independent variables; γ is the coefficient showing the spillover effects of the independent
variables on the dependent variable; τN is a column vector of all vectors in the length of N, while τT
represents a column vector of all vectors in the length of T; IN and IT are N × N and T × T dimension
identity matrixes, respectively.

WN is the N × N weight matrix, in which the elements represent the contiguity of provinces.
The element on the ith row and jth column equals 1 if the ith province and jth province have a mutual
border, otherwise, it equals 0. As a routine, WN is always row-normalized in spatial econometric
analysis, and the elements in normalized WN are between 0 and 1 [34]. To capture the spatial
autocorrelation and spillover effects in the model with panel datasets, the weight matrix is constructed
as WNT = IT ⊗WN , where ⊗ indicates the Kronecker product.

To show the necessity and the advantage of applying the spatial panel model rather than the
traditional panel data methodology, we report the results of the non-spatial panel data model as well.
The classical Lagrange Multiplier (LM) and robust LM tests come along with these results because the
LM tests can offer inferences for adopting the SLM or SEM. After the LM tests, the estimated results of
the SDM, SLM, and SEM are analyzed by the Wald as well as the LR statistics. If the null hypothesis
of the Wald test (H0: γ = 0) cannot be rejected, then the SDM can be simplified to the SLM, and if
null hypothesis of the LR test (H0: γ + δβ = 0) cannot be rejected, then the SDM can be simplified to
the SEM [35]. If both null hypotheses are rejected, then the SDM remains reasonable. On the other
hand, if H0: γ = 0 holds true and the LM/LM robust tests of the SLM rejects its null hypothesis H0:
no spatial lag effects, then the SLM can be considered. Similarly, if H0: γ + δβ = 0 is not rejected,
while the LM/LM robust test of the SEM rejects its null hypothesis H0: no spatial lag effects in error
term, then the SEM should be adopted. Otherwise, the SDM is still preferred because of its relatively
better flexibility. For example, if the Wald/LR tests suggests a model different from the one suggested
by the LM tests/robust LM tests, the SDM should still be preferred [34]. Lastly, the Hausman test is
to be conducted to determine whether fixed individual effects or random individual effects should
be adopted.

3. Data and Variables

This paper investigates the nexus of income/urbanization to nitrogen oxides emissions through a
balanced panel dataset of 30 provinces in China, spanning from 2010 to 2015 (data of Tibet autonomous
province, Taiwan province, Hong Kong, and Macau special administrative regions were not available.).
The data on 2010–2015 nitrogen oxides emissions, income (per capita GDP), urban population, and
total population all originate from the National Bureau of Statistics of China. The nitrogen oxides
emissions amount in 2010 was obtained from the webpage of the Ministry of Environmental Protection
of the People’s Republic of China. Energy consumption (kg of coal equivalent) data were collected
from the China Energy Statistical Yearbook. The per capita GDP data was converted into the 2003
constant price. Table 1 lists all the definitions and descriptive statistics of the variables. All variables
were processed with natural logarithm transformation. Logarithm transformation can diminish the
potential estimation bias caused by the large scope of data values.



Int. J. Environ. Res. Public Health 2018, 15, 725 6 of 20

Table 1. Definitions and descriptive statistics of the variables.

Variable Definition Mean Std.Dev Min Max

log NOX Nitrogen oxides emissions (ton) 13.292 0.703 11.294 14.404

log GDP Real GDP per capita (RMB) 10.332 0.560 9.016 11.760

log URB Percentage of urban population in the total
population (%) 3.9793 0.221 3.521 4.495

log POP Total Population 8.188 0.739 6.333 9.292

log EI Energy intensity (Energy use per unit GDP,
kg of coal equivalent/10000 GDP) 7.052 0.486 6.084 8.260

Note: The real GDP per capita was measured by the 2003 constant price; RMB refers to Renminbi, the official
currency of the People’s Republic of China; log NOx, log POP, and log EI are the proxies of environmental impact,
population size, and technical impacts in Equations (3)–(5); log GDP and log URB (urbanization) are the proxies of
affluence in Equations (3)–(5).

4. Empirical Results and Discussion

4.1. Spatial Distribution of Nitrogen Oxides in China

We first explore the possible existence of a nitrogen oxides emissions’ spatial autocorrelation
during the data interval. Global Moran’s I statistics is a widely applied index for spatial autocorrelation
detection. It reflects the spatial autocorrelation of whole areas of interest with a solo value and depends
on the spatial weight matrix that shows the geographic relationship among samples in adjacent regions.
In that way, it assesses the observations’ distribution pattern: random, clustered, or dispersed. Here,
the Equation (9) is the formula of Global Moran’s I:

I =

N
∑

i=1

N
∑
i 6=j

wij(xi − x)
(
xj − x

)
(∑

i
xi − x)2 N

∑
i=1

N
∑
i 6=j

wij

(9)

where x = 1
N

N
∑

i=1
xi; wij is the element on the ith row and jth column of the spatial weight matrix W,

and N is 30 in our study (the number of provinces); x is the indicator of interest. In this research, W is
characterized by the commonly accepted specification, i.e., fist-order Rook Adjacency (China’s spatial
weight matrix of rook contiguity is the same as the matrix of queen contiguity). The significance of
Global Moran’s I is usually testified by the Z-score (the comparison of Moran’s I and its expectation).
The calculation of Z statistics was done through Equations (10)–(12) (wi and wj are the sum of the ith
row and jth column of the spatial weight matrix W, respectively). All the empirical results in this study
are generated through Matlab and ArcGIS. Table 2 illustrates the Global Moran’s I of nitrogen oxides
emissions from 2010 to 2015.

Z =
I − E(I)√

Var(I)
(10)

E(I) = − 1
n− 1

(11)

Var(I) =
n2w1 + nw2 + 3w0

2

w2
0(n

2 − 1)
− E2(I) (12)

w0 =
n

∑
i=1

n

∑
j=1

wij w1 =
1
2

n

∑
i=1

n

∑
j=1

(wij + wji)
2 w2 =

n

∑
i=1

n

∑
j=1

(wi + wj)
2
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Table 2. NOx emissions’ Global Moran’s I statistics.

2010 2011 2012 2013 2014 2015

Moran’s I 0.212 0.190 0.186 0.173 0.173 0.182
Z-Score 2.327 2.121 2.080 1.959 1.963 2.052
p-value 0.020 0.034 0.038 0.050 0.050 0.040

Note: For consistency with the regression analysis, the spatial weight matrix W for the Moran’s I test was
also row-normalized.

The statistical significances of the Moran’s I are presented by their Z score and corresponding
p values. As shown above, the Z scores and p values clearly state that the spatial autocorrelation effects
in nitrogen oxides emissions are significant at a 5% level over six years. The positive Moran’s I values
indicates that the areas with high nitrogen oxides emissions (provinces in the high-high groups) tend
to locate together, like the low emission areas (provinces in the low-low groups). During 2010–2015,
the decreased Global Moran’s I suggests a declining tendency of the agglomeration on nitrogen oxides
emissions in China.

In order to visualize and depict the spatial clustering pattern of nitrogen oxides emissions at a
provincial level more intuitively, Figure 1 demonstrates the emission distribution in provinces in 2010,
2012, and 2015.

As shown below, the high-high (HH) cluster is mostly located in the eastern and northern regions
of China and can be classified into two categories. One category is located in areas with dense
population, high urbanization level, and developed economy, mostly in the eastern part of China
(Henan, Shandong, Jiangsu, Shanghai, Zhejiang, etc.). The other category located in areas that heavily
rely on heavy and mining industries, especially in the northeastern regions (Jilin, Liaoning, Hebei,
Shanxi provinces, etc.). The low-low (LL) cluster regions of nitrogen oxides emissions are mainly
located in undeveloped areas and areas of low population density, particularly in the north, middle,
and south parts of China (Gansu, Ningxia, Shanxi, Chongqing, Guizhou, Guangxi, Yunnan, etc.).

To sum up, the geographical agglomeration of nitrogen oxides emissions is statistically significant
during our study period, and the discharge of pollutants seemingly correlate with economic
development and population effects. Specifically, wealthy provinces/cities with a large population
generally have a higher emissions levels. This phenomenon corresponds to the STIRPAT model’s
theory. In the next sub-section, we will explore the specific quantitative relationship between nitrogen
oxides emissions and their driving forces.

Figure 1. Cont.
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Figure 1. China’s NOx emissions distribution in (a) 2010, (b) 2012, and (c) 2015, respectively (Units: tons).

4.2. Econometric Results and Analysis

4.2.1. Non-spatial Panel Data Results

To determine the most appropriate model specification, this part firstly applies the non-spatial
panel model to calculate classical LM and robust LM statistics for model specification (SLM or SEM).
If the (robust) LM tests reject the non-spatial models, we will further determine which spatial panel
model is the most appropriate one by the procedure discussed in Section 2.2: the estimated results for
the SDM will testify if it can be simplified to the SLM or SEM. Once the most appropriate model is
specified, we will estimate the driving forces’ direct and indirect marginal influences (if they exist) on
pollutant’s emission, and then explain and discuss the results obtained.

Table 3 depicts the statistical results of regression models that control for both spatial fixed
and time-fixed effects (two-way fixed effects) in two fields: GDP–nitrogen oxides and urbanization
(URB)–nitrogen oxides. In each field, the estimated results of three different model specifications
(M1–M3 indicating cubic, quadratic, and first terms of affluence models, respectively) are shown in
three separated columns. The likelihood ratio (LR) test is conducted to verify the incorporation of
two-way fixed effects against the incorporation of either spatial fixed or time-fixed effects. As we can
see, the LR test results in Table 3 overwhelmingly reject the null hypothesis of spatial fixed effects as
well as that of time period-fixed effects. Therefore, the two-way fixed effects are preferred over the
spatial/time fixed effects in both GDP–nitrogen oxides and URB–nitrogen oxides models.
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Table 3. Parameter estimates of the non-spatial panel model.

Dependent Variable: logNOx Per Capita GDP as the Index of Affluence Urbanization as the Index of Affluence

M1 M2 M3 M1 M2 M3
log A −15.272 *** 1.972 *** 0.745 *** −17.495 2.789 0.448 ***

(−3.041) (5.108) (6.453) (−0.535) (1.513) (3.109)
(log A)2 1.601 *** −0.074 *** 4.943 −0.318

(3.288) (−3.322) (0.584) (−1.274)
(log A)3 −0.054 *** −0.454

(−3.443) (−0.622)
Log POP 0.271 −0.284 −0.988 *** −0.402 −0.444 * −0.434 *

(0.810) (−0.940) (−4.460) (−1.556) (−1.785) (−1.741)
Log EI 0.393 *** 0.444 *** 0.503 *** 0.471 *** 0.480 *** 0.481 ***

(7.291) (8.309) (9.706) (8.157) (8.579) (8.598)
LM test no spatial lag 6.3766 ** 7.1485 *** 10.4617 *** 15.8132 *** 15.3210 *** 16.8318 ***

robust LM test no spatial lag 0.0136 0.2819 0.0079 2.2739 2.7814 * 1.1501
LM test no spatial error 8.0278 *** 7.7327 *** 13.1395 *** 13.5398 *** 12.5722 *** 15.9735 ***

robust LM test no spatial error 1.6647 0.8661 2.6858 0.0005 0.0326 0.2917
LR-test spatial fixed effects 749.7847 *** 740.0405 *** 747.0445 *** 713.5834 *** 715.3909 *** 732.1524 ***
LR-test time fixed effects 186.7664 *** 175.4269 *** 179.2426 *** 154.7254 *** 155.5018 *** 157.1568 ***

N 180 180 180 180 180 180
Rbar-squared 0.4877 0.4561 0.4253 0.3268 0.3291 0.3268

Note: Numbers in the parentheses are t-stat; * p < 0.1; ** p < 0.05; *** p < 0.01. M1, M2, and M3 refer to the
models corresponding to Equations (3)–(5), respectively; log A: logarithm of affluence; log POP: logarithm of total
population; log EI: logarithm of energy intensity; LM test: Lagrange Multiplier test; LR-test: likelihood ratio test

The LM tests significantly reject the null hypothesis of no spatially lagged dependent
variable (nitrogen oxides) and no spatially auto-correlated error for the GDP–nitrogen oxides and
Urbanization–nitrogen oxides models; however, the robust LM tests do not. This gives very ambiguous
evidence for the validity of the spatial model. As mentioned in Section 2.2, for the final determination
of which spatial panel model fits our data best, we need to consider the LR and Wald tests results.
We illustrate these tests results in the following section.

4.2.2. Spatial Panel Data Results

We will now turn to the spatial econometric analysis. Tables 4 and 5 report the estimated results
of the SDM model that controls for both spatial and time effects. Two fields (fixed effects estimates and
random effects estimates) with triple columns contain these results in each table. In Table 4, the three
columns in each field list and compare the results of three model specifications: the model with a cubic
term of GDP (M1), the model with a quadratic term of GPD (M2), and the model with a linear term of
GDP (M3). In a similar way, Table 5 compares the estimated results of the three models incorporating
urbanization’s cubic, quadratic, and linear terms.

Table 4. Parameter estimates of the spatial panel model (GDP as the indicator of affluence).

Dependent Variable: logNOx Fixed Effects Estimates Random Effects Estimates

M1 M2 M3 M1 M2 M3
logGDP −14.886 *** 2.146 *** 0.715 *** −16.737 *** 2.513 *** 0.306 ***

(−2.796) (4.083) (5.002) (−3.395) (5.583) (2.983)
(logGDP)2 1.587 *** −0.088 *** 1.761 *** −0.108 ***

(3.047) (−3.151) (3.678) (−5.098)
(logGDP)3 −0.055 *** −0.060 ***

(−3.225) (−3.894)
logPOP 0.257 −0.197 −0.891 ** 0.787 *** 0.768 *** 0.773 ***

(0.592) (−0.466) (−2.532) (9.760) (9.596) (9.721)
log EI 0.272 *** 0.345 *** 0.455 *** 0.320 *** 0.355 *** 0.461***

(3.541) (4.523) (6.403) (4.834) (5.206) (6.376)
WlogGDP 13.293 0.667 −0.402 * 2.723 −0.199 −0.045

(1.064) (0.784) (−1.752) (0.252) (−0.276) (−0.265)
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Table 4. Cont.

Dependent Variable: logNOx Fixed Effects Estimates Random Effects Estimates

(WlogGDP)2 −1.354 −0.088 * −0.320 −0.006
(−1.110) (−1.734) (-0.304) (-0.161)

(WlogGDP)3 0.042 0.011
(1.069) (0.321)

WlogPOP 0.441 0.644 0.211 −0.320 * −0.394 ** −0.627 ***
(0.613) (0.923) (0.343) (−1.945) (−2.411) (−3.978)

Wlog EI 0.144 0.074 −0.080 0.079 0.021 −0.149
(1.006) (0.501) (−0.547) (0.587) (0.150) (−1.003)

W*log NOx 0.376 *** 0.350 *** 0.426 *** 0.313 *** 0.318 *** 0.425 ***
(4.536) (4.120) (5.291) (3.731) (3.810) (5.614)

teta 0.043 *** 0.045 *** 0.051 ***
(5.481) (5.481) (5.482)

Hausman 26.9213 *** 40.1047 *** 75.0638 ***
N 180 180 180 180 180 180

Rbar−squared 0.5397 0.5163 0.4263 0.7208 0.7131 0.7429
Wald_spatial_lag 16.0228 *** 13.3801 *** 3.3914 15.3446 *** 15.3468 *** 17.7147 ***

LR_spatial_lag 16.9816 *** 15.3136 *** 2.7463 13.1342 *** 13.5632 *** 15.6328 ***
Wald_spatial_error 12.5273 ** 11.9753 ** 1.2424 8.5388 8.9657 * 5.5823

LR_spatial_error 15.2257 *** 14.8212 *** 1.3204 12.8486 *** 13.0801 *** 9.6508 **

Note: Numbers in the parentheses are t-stat; * p < 0.1; ** p < 0.05; *** p < 0.01. M1, M2, and M3 refers to the models
corresponding to Equations (3)–(5), respectively.

Table 5. Parameter estimates of the spatial panel model (urbanization as the indicator of affluence).

Dependent Variable: logNOx Spatial Fixed Effects Spatial Random Effects

M1 M2 M3 M1 M2 M3

logURB −86.326 ** 1.505 0.523 *** −71.725 ** 1.868 0.589 ***
(−2.269) (0.799) (2.687) (−2.475) (1.076) (3.446)

(logURB)2 22.580 ** −0.154 18.711 ** −0.172
(2.278) (−0.609) (2.508) (−0.751)

(logURB)3 −1.958 ** −1.610 **
(−2.276) (−2.520)

logPOP −0.333 −0.395 0.104 0.737 *** 0.766 *** 0.817 ***
(−1.022) (−1.189) (0.314) (8.598) (9.083) (10.402)

log EI 0.215 *** 0.277 *** 0.374 *** 0.311 *** 0.379 *** 0.425 ***
(2.792) (3.705) (4.978) (4.222) (5.132) (5.939)

WlogURB 44.950 20.596 *** −0.454 119.975 * 5.661 −0.319
(0.530) (4.604) (−1.522) (1.944) (1.541) (−1.166)

(WlogURB)2 −8.769 −2.881 *** −30.056 * −0.813 *
(−0.396) (−4.707) (−1.891) (−1.643)

(WlogURB)3 0.464 2.485 *
(0.241) (1.821)

WlogPOP −0.758 −0.889 −0.864 −0.541 *** −0.565 *** −0.594 ***
(−1.351) (−1.545) (−1.461) (−3.346) (−3.504) (−3.811)

Wlog EI 0.173 0.145 0.020 −0.017 −0.079 −0.080
(1.196) (0.974) (0.131) (−0.120) (−0.538) (−0.541)

W*log NOx 0.343 *** 0.328 *** 0.469 *** 0.444 *** 0.410 *** 0.430 ***
(4.068) (3.827) (6.094) (5.975) (5.318) (5.695)

teta 0.044 *** 0.047 *** 0.050 ***
(5.481) (5.481) (5.482)

N 180.000 180.000 180.000 180.000 180.000 180.000
Rbar-squared 0.512 0.485 0.337 0.632 0.657 0.719

Hausman 26.426 *** 32.269 *** 22.014 ***
Wald_spatial_lag 35.5964 *** 26.9514 *** 4.1150 27.9652 *** 21.0943 *** 18.6102 ***

LR_spatial_lag 39.2325 *** 30.8808 *** 4.5914 24.5783 *** 19.0932 *** 16.1401 ***
Wald_spatial_error 35.2548 *** 28.3682 *** 5.1504 13.3523 ** 9.2156 * 5.7002

LR_spatial_error 39.5535 *** 32.8361 *** 6.1206 16.9972 *** 12.0617 ** 8.6987 **

Note: Numbers in the parentheses are t-stat; * p < 0.1; ** p < 0.05; *** p < 0.01. M1, M2, and M3 refer to the models
corresponding to Equations (3)–(5), respectively.



Int. J. Environ. Res. Public Health 2018, 15, 725 11 of 20

As shown in Tables 4 and 5, Hausman tests (against fixed effects) under the three model
specifications all reject the null hypothesis: the unobserved individual effects in the provinces are
not correlated with the independent variables in the models. Thus, we only focus on the results of
the GDP–nitrogen oxides and urbanization–nitrogen oxides models with two-way fixed effects in the
following discussion.

When including two-way fixed effects in M1 and M2, all the Chi-square statistics of all LR
and Wald tests of the GDP–nitrogen oxides and urbanization–nitrogen oxides models reject both
hypotheses, H0: γ = 0 and H0: γ + δβ = 0. In other words: the SDM cannot be simplified to either the
SLM or the SEM if one of the polynomial models is adopted. On the other hand, the Wald and LR tests
in M3 (Tables 4 and 5) do not reject their null hypothesis.

It is noteworthy that the coefficients’ estimates in the non-spatial model indicate the
marginal effects of the driving forces (population and energy intensity) on the dependent variable
(nitrogen oxides emissions), whereas the parameters’ estimates in the SDM or SLM do not. Instead,
the independent variables’ direct and indirect (spillover) effects on the SDM need to be calculated by
Equation (13), and the estimate results are reported in Tables 6 and 7. Equation (13) is derived from
Equation (14), and Equation (14) from Equation (6). The reciprocal term (I − δW)−1 is calculated by
Equation (15). All the parameters that need to be brought into Equations (13) and (15) are already
estimated and reported in Tables 4 and 5. The diagonal elements of the partial derivatives matrix
in Equation (13) indicates the direct effects (elasticity) of the kth explanatory variable, and all the
off-diagonal elements refer to its spillover effects. Consequently, if γ = 0 and δ = 0, then spillover
effects do not exist. The difference between the driving forces’ direct effects and their estimated
coefficients is due to the feedback effects that travel through adjacent provinces and then back to the
provinces themselves. The feedback effects consist of two parts: the value of the spatially lagged
dependent variable (W*ln NOx) and the coefficients of the spatially lagged explanatory variables
(population and energy intensity). Some prior EKC studies that applied the spatial econometric
approaches either mistakenly reported the coefficient estimates as the direct and spillover effects,
or avoided to report these effects in the SDM/SLM [18,20,36].

[
∂E(Y)
∂X1k

. . . ∂E(Y)
∂Xnk

]
t
=


∂E(Y1)
∂X1k

. . . ∂E(Y1)
∂Xnk

...
. . .

...
∂E(Yn)

∂X1k
. . . ∂E(Yn)

∂Xnk

 = (I − δW)−1


βk w12γk · · · w1nγk

w21γk βk · · · w2nγk
...

...
. . .

...
wn1γk wn2γk · · · βk

 (13)

Yt = (I − δW)−1(µ + η) + (I − δW)−1(Xtβ + γWXt) + (I − δW)−1εt (14)

(I − δW)−1 = I + δW + δ2W2 + δ3W3 + · · · (15)

Another issue that has never been correctly discussed is the calculation of the turning points in the
environmental Kuznets curve estimated by the SDM/SLM. Kang, Zhao, and Yang [26] applied a spatial
econometric approach and found an inverse N-shaped CO2 EKC in China. However, they derived the
turning points directly from the estimates of the GDP coefficients, which is invalid. The same problem
occurred in Zhou, Ye, and Ge’s [19] study. In most situations, the EKC function is smooth, thus the
limit points of the EKC function are the turning points. As for the SDM, its right-hand side contains
the dependent variable, thus one needs to first derive the Equations (6)–(14) and then let the first-order
derivative to be zero, so that the parameters for calculating EKC’s turning points can be obtained
(here, we assume the EKC as a single variable function, since the EKC hypothesis solely focuses on the
affluence’s impact). Thus, we argue that, when fitting the EKC by the SDM, one needs to apply the
direct effects estimated through Equation (14), instead of using parameter estimates of the spatially
lagged variable, to calculate the turning points.
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Tables 6 and 7 report the direct and spillover effects estimated according to Tables 4 and 5
(fixed effects estimates). Model 1 (M1), Model 2 (M2), and Model 3 (M3) are respectively the
GDP–nitrogen oxides/urbanization–nitrogen oxides models with cubic, quadratic, and linear terms of
GDP/urbanization.

Table 6. Direct and spillover effects estimation (gross domestic product as the indicator of affluence).

M1 M2 M3

Direct Spillover Direct Spillover Direct Spillover

logGDP −14.122 ** 11.353 2.281 *** 2.104 * 0.697 *** −0.155
(−2.530) (0.603) (4.629) (1.885) (4.988) (−0.493)

(logGDP)2 1.512 *** −1.117 −0.100 *** −0.174 **
(2.772) (−0.610) (−3.636) (−2.386)

(logGDP)3 −0.052 *** 0.032
(−2.965) (0.540)

logPOP 0.296 0.856 −0.123 0.822 −0.901 *** −0.272
(0.702) (0.858) (−0.315) (0.935) (−2.865) (−0.329)

log EI 0.297 *** 0.375 * 0.359 *** 0.303 0.468 *** 0.187
(4.322) (1.939) (5.008) (1.635) (7.247) (0.908)

Note: Numbers in the parentheses are t-stat; * p < 0.1; ** p < 0.05; *** p < 0.01; the direct and spillover effects of linear,
square, and cubic terms of log GDP are practically meaningless; M1, M2, and M3 refer to the models corresponding
to Equations (3)–(5), respectively.

Table 7. Direct and spillover effects estimation (Urbanization as the indicator of affluence).

M1 M2 M3

Direct Spillover Direct Spillover Direct Spillover

logURBEN −83.932 * 22.233 3.404 * 29.880 *** 0.501 *** −0.377
(−1.904) (0.164) (1.775) (4.319) (2.749) (−0.850)

(logURBEN)2 22.240 * −1.504 −0.416 −4.156 ***
(1.930) (−0.042) (−1.603) (−4.353)

(logURBEN)3 −1.956 * −0.297
(−1.948) (−0.096)

logPOP −0.415 −1.268 −0.464 −1.477 * −0.019 −1.404
(−1.364) (−1.680) (−1.490) (−1.979) (−0.062) (−1.524)

log EI 0.240 *** 0.355 * 0.301 *** 0.333 * 0.403 *** 0.349
(3.223) (1.919) (4.207) (1.744) (5.930) (1.478)

Note: Numbers in the parentheses are t-stat; * p < 0.1; ** p < 0.05; *** p < 0.01; the direct and spillover effects of linear,
square, and cubic terms of log URB are practically meaningless. M1, M2, and M3 refer to the models corresponding
to Equations (3)–(5), respectively.

Turning our attention to the GDP–nitrogen oxides model results, the cubic, quadratic, and linear
terms of the GDP’s coefficient (Table 4, M1) and direct effects (Table 6, M1) are statistically significant
at a 5% level. Besides, the greater adjusted R2 and log likelihood (Table 4, M1) of the cubic model
suggests that Model 1 (Table 6) fits the data better than Models 2 and 3 (Table 6). The significant effect
estimates of energy intensity have the expected signs in Model 1. As we mentioned in Section 4.2.2,
if we adopt the polynomial model, the SDM should not be simplified to the SLM or SEM. Therefore,
the cubic form of the GDP–nitrogen oxides model is the appropriate specification for empirical analysis
(the linear and quadratic models are inherently nested in the cubic model, therefor the cubic model
should be adopted when parameters of linear and polynomial terms are significant at the same time).
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This finding shows that the estimated direct and spillover effects (elasticity) of energy intensity
are highly significant at the 1% and 10% level respectively, and their signs are positive as expected.
The effect of 1% growth in local energy intensity will lead to an increase in local nitrogen oxides
emissions by 0.297%, other conditions being constant. LeSage and Pace [37] pointed out that the
spillover effects are defined as the impact that a specific region exerts on all adjacent regions or vice
versa. Thus, the impact of a 1% growth in local energy intensity will, on average, cause a 0.375%
increase in nitrogen oxides emissions in neighboring provinces, all else being equal. On the other hand,
both the direct and the spillover effects of the population are not significantly different from zero,
which implies that a specific province’s population barely affects local and other provinces’ emissions.
The highly significant linear, quadratic, and cubic terms of GDP per capita (Table 6, M1) point to
an inversely N-shaped EKC for the nexus between NOx emission and economic growth (Figure 2),
which is consistent with the findings in prior China’s CO2 and SO2 EKC studies [19,20,26]. Moreover,
two turning points of the inverse N-shaped trajectory are approximately 2551 Renminbi (RMB) and
102,775 RMB, respectively (these two turning points are estimated on the basis of the polynomial
equation log NOx = −0.052(log GDP)3 + 1.512(log GDP)2 − 14.122 log GDP). Based on our sample,
most of the economically developing provinces/cities (e.g., Guangxi, Xinjiang, and Qinghai provinces)
are in the upward phase after the first turning point. There exists a general uptrend in nitrogen oxides
emissions in such areas, and the personal incomes in the areas are between these two turning points.
On the contrary, several developed cities with GDP per capita over 102,775 RMB (Beijing, Tianjin,
and Shanghai) are experiencing a persisting decline in nitrogen oxides emissions. None of the observed
per capita GDP is below 2551 RMB. The lowest one is 8237 RMB, in Guizhou province in 2010.

We will now turn to the Urbanization–nitrogen oxides model results. Similar to the GDP-nitrogen
oxides model outcomes, all the polynomial terms of the urbanization’s coefficient (Table 5, M1)
and direct effects (Table 7, M1) are statistically significant. Besides, the greater adjusted R2 and log
likelihood (Table 5, M1) of the cubic model suggest that this model has the best explanatory power.
Other than that, the energy intensity estimates remain positive, significant, and almost unchanged
(0.240 and 0.355). Statistically, the population’s direct and spillover effects on emission are still not
different from zero. Thus, the cubic Urbanization–nitrogen oxides model results are consistent with
the cubic GDP–nitrogen oxides model results.

Because of the significant linear and polynomial terms of urbanization (Table 7, M1), we infer that
there exists an inversely N-shaped EKC for the Urbanization–nitrogen oxides nexus (Figure 2), which
is somewhat different from a prior study of China’s urbanization and industrial pollution [38]. This
is probably because this prior study did not apply the EKC model as the theoretical foundation for
its empirical analysis and applied different pollution indicators. Two turning points of the inverse
N-shape trajectory are approximately 34.56% and 56.67%, respectively (these two turning points are
estimated on the basis of the polynomial equation ln NOx = −1.956(log URB)3 + 22.240(log URB)2 −
83.932 log URB). In our sample, the urbanization levels of Beijing, Tianjin, Shanghai, and Guangdong
and Jiangsu provinces are already over 56.67% at the beginning, and their local nitrogen oxides
emissions indeed experienced downward trends as urbanization proceeded in the whole study period.
Conversely, emissions in the rest of the provinces in the sample firstly experienced upward trends and
then declined after approximately reaching 56.67%.

Unlike the population term, the autoregressive parameters of W log NOx in the SDM
(Tables 4 and 5) are positive and statistically significant at the 1% level, which further testifies and
demonstrates the spillover effects of nitrogen oxides emissions among the neighboring provinces.
Specifically, a 1% increase and decrease of local nitrogen oxides emissions would lead to about a 0.3%
corresponding variation in neighboring provinces and vice versa.
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Figure 2. The partial fit of the GDP–NOx, Urbanization–NOx emissions nexuses (logarithm
transformed). Note: These two graphs aim to reveal the GDP–NOx and Urbanization–NOx relations,
but not to predict NOx emissions levels. Thus, the values on Y-axis are omitted. The turning points
(marked with red dots) in the GDP–NOx nexus are 7.8443 (2551 RMB) and 11.5403 (102,775 RMB),
whereas in the Urbanization–NOx nexus they are 3.5428 (35%) and 4.0373 (57%).
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4.3. Discussion

The empirical findings in this research provide firm evidence of the spatial dependence of nitrogen
oxides emissions and spillover effects of energy intensity at a provincial and municipal level in China.
The highly significant global Moran’s I suggests HH and LL spatial clustering patterns of nitrogen
oxides emissions. Overall, the eastern coastal and economically developed areas with higher levels
of urbanization suffer more from nitrogen oxides emissions than the less developed regions with
sparse population in urban areas. With the introduction of the spatial econometric analysis, this study
empirically validates the economic development, urbanization progress, and energy intensity as the
driving forces of nitrogen oxides emissions in China.

We tentatively put forward that the nitrogen oxides emissions spillover effects occur because of
the imitation of neighbors’ economic and environmental policies. Some literature pointed out that
such spatial patterns might originate from the government’s economically guided manipulation of
environmental standards for attracting investment or for trade demand [39,40]. Thus, the implementation
of environmental policies can be influenced by changes in neighboring countries and vice versa.
Specifically, governors, officials, and bureaucrats might keep assessing their own policies by keeping an
eye on the neighboring countries to simplify decision-making and shrink its costs. In this way, they can
also legitimize their decisions, especially in the case that their policies might bring uncertain outcomes.
As a result, the imitation of environmental policies by neighboring countries possibly leads to similar
environmental standards and protection measures. In all these cases, externalities can transmit over the
boundaries of countries/cities and contribute to the spatial effects on economic–environmental issues.
The spillover in environmental policies among adjacent regions finds evidence also in the sociological
literature [41,42].

In China, the central government assigns the national achievements of annual economic growth
and pollution abatement at the provincial and county levels. The evaluation of such achievements
is processed in each province and county. It is reasonable that competition arises among provinces
for political performance in terms of economic development and emission abatement. If a local
government implements rigorous controls on air pollution, the adjacent provinces may follow and
implement similar ways to reduce emissions. On the contrary, if a local area still has a series of loose
regulations on environmental protection and take the economic growth as its primary goal regardless
of the air pollution, its neighbors would probably implement a similar strategy to catch up in terms
of economic development. In this way, one can interpret the spillover effects as “demonstration
effects” [36].

The GDP–nitrogen oxides model with the inclusion of the cubic term of GDP per capita has
the best fit. In addition, the cubic-specified Urbanization–nitrogen oxides model is considered as
the proper model. Based on these results, the enlightening and worthwhile finding of this study
is that there exists an inversely N-shaped EKCs for both the GDP–nitrogen oxides nexus and the
Urbanization–nitrogen oxides nexus. The former conclusion (inversely N-shaped EKC) is inconsistent
with findings on nitrogen oxides emissions of a similar prior study. Brajer, Mead, and Xiao [12]
asserted that there existed an inversely U-shaped EKC rather than an inversely N-shaped one for
the nexus nitrogen oxides emissions–GDP per capita in China. We find two major reasons for the
inconsistency: (a) our study applied the STIRPAT theory and control for the energy-related factors that
significantly contribute to NOx emission, while Brajer, Mead, and Xiao [12] did not; (b) we put forward
the application of spatial panel data approaches to explore the relationship between nitrogen oxides
emissions and economic development for the first time, whereas Brajer, Mead, and Xiao [12] did not
control for the potential spatial autocorrelation among regional emissions even though their samples
were also obtained from administrative areas that are usually spatially correlated. The combustion of
fossil fuels from heating, power generation processes, and motor vehicles’ internal combustion engines
is mainly responsible for the ambient NOx emission. The introduction of the energy consumption
term into the regression model is necessary and provides results that are more reasonable. This might
explain the low fit (R2) in Brajer, Mead, and Xiao [12]. Moreover, Anselin and Rey [43] argued that this



Int. J. Environ. Res. Public Health 2018, 15, 725 16 of 20

kind of spillover effect is essential, and incorrect omission would invalidate the inferences from a study,
although it is difficult to practically designate the exact causes for spatial autocorrelation in the data
examined. The existence of spatial relationships, after all, offers a potential explanation of instability
in the parameters of the EKC. One of the speculations is that the behavior of neighboring countries
would influence a country’s own action, which causes the spatial spillovers. Failure to control for
spatially lagged variables may result in biased parameters of the EKC [22].

Our results are also similar to some recent findings on air pollution–economic
growth/urbanization nexuses. After studying carbon emission and urbanization in 88 developing
countries, Martínez-Zarzoso and Maruotti [29] found empirical evidence supporting the CO2

emission–urbanization EKC hypothesis. CO2 emission–urbanization EKC was also confirmed in
Wang, Zhang, Kubota, Zhu, and Lu’s [25] study of The Organization for Economic Co-operation
and Development (OECD) countries. In a dynamic spatial econometric panel analysis of carbon
dioxide intensity, Zheng, Yu, Wang, and Deng [20] found evidence supporting the inversely N-shaped
CO2 emission–income EKC hypothesis in China. Other than that, the CO2 emission–income EKC
was also demonstrated to be inversely N-shaped in Kang, Zhao, and Yang’s [26] research on the
relationship between CO2 emission and GDP per capita, as well as other potential driving forces in
China. Wang et al. [44] and Zhou, Ye, and Ge [19] established inversely U- and inversely N-shaped
EKCs, respectively, for the SO2 emission–GDP relation at China’s provincial level. On the other hand,
the insignificant population impacts on pollutant emission suggested by our empirical results is
inconsistent with the conclusions of these prior studies. This is probably because the CO2 emission is a
comprehensive pollution indicator and it is broadly related to socioeconomic activities. Therefore, CO2

emission can reflect the direct influence of human factors. Different from CO2 emission, anthropogenic
NOx emissions mainly originate from the high-temperature combustion process of fossil fuels in
industrial and automotive internal combustion engines, which can hardly be directly inferred from the
total population size. This is because a province/region can have a large population but a very low
individual vehicle occupancy volume. In this case, people are more dependent on public transport,
which can improve energy efficiency in the transport sectors. Furthermore, if the public transport in
such a city/region widely adopts environmental-friendly energy, the emissions level could decline.
In short, a larger population generally means increased demand of transportation, but there is no
absolute connection between NOx emissions and total population. The energy efficiency and structure
in the transport sectors are also key factors determining NOx emissions levels.

What is the substantial mechanism behind the phase after the second turning point of the inverse
N-shaped EKC in this analysis? There are several facts contributing to the impact on nitrogen oxides
emissions related of economic development and urban sprawl. In an early stage, the economy
developed speedily with a considerable consumption of energy, which caused a large air pollutants
emission. As the social wealth accumulated to a certain point, pollution issues arouse wide media
attention and broad concerns in the public. In order to deal with these pressures and reduce pollutants
emission, the Chinese government has increased investments to decrease end-of-pipe emissions and tail
gas pollution, and has promoted the use of alternative energy sources to fuels since the 11th Five-Year
(2006–2010) Plan [45]. In the 12th Five-Year (2011–2015) plan, it was proposed that, in 2015, the total
amount of NOx emissions in the whole country should not have exceeded 20.462 million tons, which
is 10% lower than the 22.736 million tons of 2010. To achieve this, the government has taken measures
and launched a series of projects, such as the elimination of vehicles which did not reach the exhaust
pollution control standard for motor vehicles, vehicle fuel replacement, low NOx combustion retrofits
in electric power and cement industries, etc. On the basis of the REN21 [46] report, China has a large
amount of new energy sources, such as wind power, biofuels, solar power, and hydropower. As for the
EKC of the urbanization effects, an early rapid urban sprawl leads to large amounts of building material
consumption to upgrade and construct new infrastructures (e.g., drainage systems, road networks)
which increase the energy use and the pollutant emissions in local areas. In addition, new immigrants
to urban areas give rise to increasing demands for electricity, and China heavily relies on thermal power
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generation, which drives the rise of nitrogen oxides emissions. Once the urbanization level reaches
a certain threshold, the higher population density in urban areas enables more efficient utilization
of the public infrastructures, such as public transport, which may lower the energy consumption
and consequently mitigate emission issues [47,48]. A relatively higher urbanization also comes with
environmental improvements by economies of scale in terms of sanitation services and environmental
protection [49]. Therefore, the “up-and-down” phase of the inverted N-shaped curve nexus of nitrogen
oxides emissions and economic growth/urbanization is consistent with the EKC hypothesis. We need
to remind the reader that, constrained by the sample interval, the mechanism of the first downward
phase in the inverse N-shaped curve remains unclear.

5. Conclusions

This study, for the first time, examines the quantitative relationship between income/urbanization
and nitrogen oxides emissions for China within the EKC hypothesis and the STIRPAT framework
through a spatial panel data regression estimation. In comparison with conventional econometric
approaches, spatial econometric techniques were never used before in the exploration of the nexus
between nitrogen oxides emissions and income/urbanization. The parameters estimated by the
spatial panel data model are more reliable than those obtained using conventional panel models
because of the introduction of nitrogen oxides emissions’ spatial dependence on the characteristics
of nearby provinces. Our results provide evidence suggesting that the relationships between
income/urbanization and nitrogen oxides emissions shape inverse N curves that are different from the
classical inverted U-shaped EKC curves at the current stage.

According to the findings of this analysis, the following policy suggestions are brought up for
further mitigation of China’s nitrogen oxides emissions. In general, most provinces are in the second
upward phase, while the rest few well-developed provinces are in the third downward phase in the
inversely N-shaped trajectory. In other words, the rapid economic growth and urban sprawl with
great nitrogen oxides emissions will not last for a long time in China, since the personal income in
most provinces is either approaching or has already passed the second turning poins of per capita
GDP and urbanization (102,775 RMB, 56.67%). Even though the society’s affluence accumulation could
enable the government to invest more on pollution control and on the development of new types of
energy to reduce pollutants emission, it is not wise to wait until the turning point is reached in the
less developed provinces, because the environmental system cannot withhold pollution influences if
pollution accumulation exceeds the threshold of total nitrogen oxides. Therefore, it is imperative for
both the central and the local governments to implement policies and measures to limit the amount of
local nitrogen oxides emissions instead of favoring the EKC hypothesis, so that economic development
and urbanization will eventually benefit the environment. In addition, to deal with the adverse effects
of the current rapid and continuous urban expansion, local governments should take steps to decelerate
the sprawl of cities, encourage residents to take green commutes (e.g., promote the use of bicycles
for short journeys), and invest more in technologies and facilities to treat air pollutants emission and
improve energy consumption efficiency.

The significant spatial spillover effects of nitrogen oxides emissions suggest that policymakers,
especially local governments, should not only focus on the local emission level but also consider
the influence of the neighboring provinces. Meanwhile, China’s central government should make
nationwide plans on emissions mitigation and define targeted nitrogen reduction goals for prefecture
administrators, according to the different characteristics of each province. If necessary, the local
governments should break administrative boundaries and associate for the enhancement of nitrogen
oxides abatement and economic growth at the same time.

Although our findings in this study are illuminating, we tend to have a cautious attitude toward
them because there are still some limitations related to them. First, given the fact that we applied a
relatively short panel of the sample in the analysis, the time span of the data is limited and does not
cover the first turning point of the inversely N-shaped KEC. In this regard, further research with longer
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panel data can enhance the knowledge of the fluctuation at the beginning of the inversely N-shaped
curve. Second, in developed countries (e.g., Europe, North America, Japan), the average level of
urbanization already reached 77.7% in 2011 [50]. This figure in China is just over 52%. Further studies,
including data of the recent years, could provide more evidence for the relation between urbanization
and emissions. Third, this research used the NOx emissions as the pollutant index and made some
conclusions on the relationship between development and NOx emissions. However, these conclusions
are not directly applicable to the relationship between development and NOx concentration. This is
another issue worth studying, because the concentration index is closely related to people’s health
(morbidity and mortality) in daily life.
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