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Abstract: The relationship between pollutant discharge and economic growth has been a major
research focus in environmental economics. To accurately estimate the nonlinear change law of
China’s pollutant discharge with economic growth, this study establishes a transformed nonlinear
grey multivariable (TNGM (1, N)) model based on the nonlinear least square (NLS) method.
The Gauss–Seidel iterative algorithm was used to solve the parameters of the TNGM (1, N) model
based on the NLS basic principle. This algorithm improves the precision of the model by continuous
iteration and constantly approximating the optimal regression coefficient of the nonlinear model.
In our empirical analysis, the traditional grey multivariate model GM (1, N) and the NLS-based
TNGM (1, N) models were respectively adopted to forecast and analyze the relationship among
wastewater discharge per capita (WDPC), and per capita emissions of SO2 and dust, alongside GDP
per capita in China during the period 1996–2015. Results indicated that the NLS algorithm is able to
effectively help the grey multivariable model identify the nonlinear relationship between pollutant
discharge and economic growth. The results show that the NLS-based TNGM (1, N) model presents
greater precision when forecasting WDPC, SO2 emissions and dust emissions per capita, compared
to the traditional GM (1, N) model; WDPC indicates a growing tendency aligned with the growth of
GDP, while the per capita emissions of SO2 and dust reduce accordingly.

Keywords: pollutant discharge; economic growth; NLS method; GM (1, N) model; TNGM
(1, N) model

1. Introduction

China has witnessed rapid economic development, acknowledged globally since political reform
and opening-up of trade and communications in the last three decades. China’s GDP in 2016 was
201.5 times greater than that of 1978, when calculation is based on a constant price, which was
the second largest following the USA. However, such growth leads to severe issues related to
environmental pollution. According to the China National Environmental Protection Plan, in the 13th
Five-Year Plan issued by the State Council of China, China has seen heavy environmental pollution and
large areas containing great amounts of pollutant discharge. Data obtained until 2016 showed that the
discharge of the pollutants including chemical oxygen demand (COD) and sulfur dioxide had reached
approximately 20 million tons. The air quality of the cities, of which the environmental carrying
capacity exceeded or approached upper limit (78.4%), failed to reach the environmental standard,
and according to the public survey, days with severe or even worse pollution degree accounted for
3.2% of the whole year. Environmental pollution has been seriously affecting our daily lives [1,2] and
is expected to restrain economic development [3]. In recent years, the relationship between economic
development and pollutant discharge has been widely researched. As China now confronts both
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issues—slow economic growth and decreasing environmental quality—it is significant for China to
realize its economic transition in The Thirteenth Five-Year Plan, by exploring the relationship between
economic growth and pollutant discharge (two variables) as well as their changing trends.

The rest of this paper is organized as follows: Section 2 is the literature review which introduces
and reviews current literature concerning the relationship between pollution discharge and economic
growth, forecasted using the grey multivariable models (GM (1, N)). Section 3 introduces the GM (1, N)
model, the transformed nonlinear grey multivariable (TNGM) (1, N) and the parameter estimation
using nonlinear least square (NLS)-based TNGM (1, N) (NLS-TNGM (1, N)). Section 4 illustrates
the empirical research of the relationship between the emissions of the three pollutants (wastewater
discharge per capita (WDPC), SO2 and dust) and the GDP per capita in China using the GM (1, N)
and NLS-TNGM (1, N), and compares the empirical results of the two models. Section 5 presents
a conclusion.

2. Literature Review

2.1. Literature Concerning the Relationship between Pollutants and Economic Growth

The relationship between pollutant emissions and economic growth has been a major research
subject in energy economics. Most existing studies focus on the hypothesis on whether the
environmental Kuznets curve (EKC) exists or not. Grossman and Krueger—two economists from
the USA—verified the relationship between environment quality and per capita income for the first
time, and they confirmed that the relationship between environmental quality and economic growth
agrees with the inverted U-shaped correlation of Kuznets curves. Subsequently, many studies carried
out empirical validations on the existence of the EKC; unfortunately, they failed to obtain consistent
conclusions. Furthermore, some research validated the existence of the inverted U-shaped EKC [4];
however, other studies verified the absence of the EKC [5–8]. Moreover, some scholars verified that
there is an N shape or an inverted N-shape EKC curve [9–12]. As a matter of fact, whether the
EKC is verified to exist or not, the varying shapes of the EKC curves are largely dependent on the
selection of pollution indexes and research approaches. Some scholars have utilized different methods
to research the relationship between the emissions of pollutants including SO2, dust and NOx and
economic growth, for instance, with linear quadratic and cubic regressions [13–15], the panel data
regression model [16,17], the Panel Smooth Transition Regression [18], etc. However, most of the
studies explored the linear relationship between pollutant discharge and economic growth based on
large-scale samples, with little attention paid to the nonlinear relationship between the emissions of
pollutants and economic growth.

2.2. Research Progress of the GM(1, N) Model

Grey system theory was proposed by Prof. Deng Julong in 1982 [19]. Grey system model
forecasting is generated by accumulation to generate randomness in a weakening series, and to
determine the relationships governing changes in a system. The simulation and accuracy of the grey
model would be higher when modeling based on qualitative analysis. In recent years, it has been
an indispensable tool for academic research and solving practical problems and has been widely
applied in the energy field [20–22]. The improvement of grey model mainly focuses on improving
the generation of sequences [23], the background value [24,25], optimizing the initial condition [21]
and time response formula [26], and improving the method of parameter estimation [27]. The GM
(1, N) forecasting model, as an important branch of grey forecasting theory, can preferably reflect
the relationships (mutual influences and restrictions) among different variables in the system by
researching the relationship between sequence features of time series and driving factors of the system.
The GM (1, N) has gradually become a research focus of grey theory predication as it is more consistent
with real development law of the grey system. Existing GM (1, N) studies mainly include the following:
(1) Improving the structure of the GM (1, N) model: Tien [28] found that the solution for the whitening
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differential equation of the traditional GM (1, N) model exhibits a greater error and used convolution
integral to improve the solving approach to further propose a novel grey prediction model with
convolution integral GMC (1, N). Moreover, Tien verified the correctness of the novel solving method
of the GMC (1, N) model. Afterwards, GMC (1, N) was modified and applied in different fields,
achieving favorable performance [29–31]. To satisfy different application demands, Tien put forward
three modified models—the deterministic grey dynamic model with convolution integral-DGDMC
(1, N) [32], the interval grey dynamic model by convolution integral-IGDMC (1, N) [33] and the
First-pair-of-data based on GMC (1, N)-FGMC (1, N) [34]—Zeng et al. [35] introduced a linear correction
item and grey action quantity into GM (1, N) to improve its structural defects, and then the improved
model was applied to forecast the amount of Beijing’s motor vehicles, the effectiveness of which was
validated. (2) The optimization of parameters for GM (1, N): Hsu [29] and Pei et al. [36] used genetic
algorithms to optimize the interpolated coefficients of the background values in GM (1, N), and then
the optimized predication model was employed to forecast the Taiwanese-integrated circuit output
and the input–output system of China. Deng Julong conducted a detailed validation of different
aspects [37,38]. Ding et al. [39] proposed an optimized grey model by modifying the background value
to predict the trends of the driving variables, and optimize the adjustment coefficient in the new model,
the efficacy of which was verified by predicting the Chinese CO2 emissions from fuel combustion.
Guo et al. [40] proposed a novel comprehensive adaptive grey model (CAGM) (1, N) with three
improvements. (3) The issues regarding time delay of the GM (1, N) model: Hao et al. [41] improved
the forecasting precision of the GM (1, N) model by determining time-delay parameters of driving
factors using grey correlation analysis; Mao et al. [42] extended time-delay GM (1, N) into a fractional
GM (1, N) model by introducing a fractional-order accumulation operator. Furthermore, they used
particle swarm optimization (PSO) to determine the orders generated by the optimal fractional order
accumulation of the model. Their research expanded the application range of the GM (1, N) model;
Wang [43] demonstrated a derived time-delay GM (1, N) model by using the time-delay coefficients
of driving factors to reflect the influences of the data at different time series on the system behavior
sequence of the system; Dang et al. [44] introduced the regulation coefficient and effect coefficient
for controlling items of driving factors to build a new discrete time-delay multivariate grey model
(DTMGM (1, N). They adopted a fractal dimension extension identification method based on a grey
system to identify the regulation coefficient and determine the time-delay parameters and different
driving factors; furthermore, PSO was used to solve the effect coefficient using PSO so as to reflect the
influences of driving factors for data at a previous period on the system behavior sequence for the data
at the current period. Lastly, they validated the effectiveness of the proposed model by taking energy
consumption data of Jiangsu Province in China as an example. These studies increased the adaptability
and fitness of the proposed grey models to a certain degree; however, they neglected the nonlinear
features of the models. The exponent at the right side of the grey differential equation of GM (1, N) can
present the nonlinear relationship of the system behavior sequence. Ma and Liu et al. [45] proposed the
kernel-based GM (1, N) model to use kernel functions to estimate the unknown function of the model.
By doing so, the nonlinear relationship between input and output series can be described. Additionally,
they made an empirical comparison between existing linear multivariate grey models and the LSSVM
with an aim to improve the forecasting precision of the kernel-based GM (1, N) model. Wang [46]
introduced nonlinear parameters into the GMC (1, N) model to establish a novel NGMC (1, N) which
can preferably reflect the causal relationship between input and output variables. They applied this
model to reveal the relationship between China’s economic output and SO2 emission, validating
the effectiveness of the proposed model. Meanwhile, with an aim of minimizing the mean error of
the model and relationship between the parameters of the model as constraints, solving unknown
parameters of the model by using two constructed nonlinear programming models can also promote
the forecasting precision of the model [47].

As a matter of fact, the relationship between pollutant discharge and economic development
is usually shown to be nonlinear instead of linear. Therefore, econometrics models adopted by
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most scholars are only able to describe linear problems and cannot be used in research of nonlinear
relationships. Given that the least square method (LSM) is inapplicable to the solution of nonlinear
problems, this research employed the LSM-based TNGM (1, N) to estimate the parameters of the
model and used the Gauss–Seidel iteration approach to continuously approximate the optimal
regression coefficient of the nonlinear model so as to improve the forecasting precision of the model.
Lastly, NLS-TNGM (1, N) was utilized to research the relationship between the per capita emissions of
pollutants (WDPC, SO2 and dust) and GDP per capita in China. This study is expected to provide the
Chinese government with decision-making references for environmental control and improvement, as
well as energy saving and emissions reduction.

3. Methodology

3.1. Theoretical Hypotheses

Since China’s reform and opening up, the country’s economy has developed rapidly, but it
simultaneously led to a sharp decline in environmental quality—all kinds of pollutant emissions
are increasing. The government has formulated relevant policies, but the intensity of remediation
is different in relation to different pollutants. Therefore, for the study of the relationship between
pollutants and economic growth, this paper proposes the following three assumptions:

Hypothesis 1. There is a monotonically increasing relationship between WDPC and GDP per capita.

Hypothesis 2. There is a decreasing relationship between SO2 emissions per capita and GDP per capita.

Hypothesis 3. There is a relationship between dust emissions per capita and GDP per capita firstly decreasing
and then increasing.

3.2. Grey Multivariable Models (GM (1, N))

The GM (1, N) model is a first-order multivariate grey model which contains a system behavior
variable and N-1 influencing variables; the model can analyze the effect of multiple influencing
variables on system behavior. The system behavior variables can be predicted in the case of knowing
the changing trend of influencing variables. The specific modeling process is as follows:

Definition 1. X(0)
1 =

(
x(0)1 (1), x(0)1 (2), · · · , x(0)1 (n)

)
is assumed to be the data series of system features, while

X(0)
2 =

(
x(0)2 (1), x(0)2 (2), · · · , x(0)2 (n)

)
X(0)

3 =
(

x(0)3 (1), x(0)3 (2), · · · , x(0)3 (n)
)

...

X(0)
N =

(
x(0)N (1), x(0)N (2), · · · , x(0)N (n)

) ,

They are the data series of relevant factors. X(1)
i is the series (i = 2, 3, · · · , N) generated by

first-order accumulation (1-AGO), while Z(1)
1 represents the data series for the nearest-neighbor mean

of X(1)
1 and is expressed as

x(0)1 (k) + az(1)1 (k) =
N

∑
i=2

bix
(1)
i (k) (1)

which is the grey multivariable model, and abbreviated as GM (1, N) [48,49].



Int. J. Environ. Res. Public Health 2018, 15, 471 5 of 17

Definition 2. In the GM (1, N) model, −a is the system development coefficient, bix
(1)
i (k) refers to driving

items, bi represents the driving coefficient and α̂ = [a, b2, . . . , bN ]
T is the series of parameters.

Theorem 1. Supposing X(0)
1 =

(
x(0)1 (1), x(0)1 (2), · · · , x(0)1 (n)

)
is the data series of system features,

X(0)
i (i = 2, 3, . . . , N) is the data series of relevant factors, while X(1)

i is the 1-AGO series of X(0)
i and Z(1)

1 is

the data series of nearest-neighbor means of X(1)
1 .

The series of parameters α̂ = [a, b2, . . . , bN ]
T can be solved by the least square method (LSM) [50]

and written as:
α̂ = [a, b2, . . . , bN ]

T =
(

BT B
)−1

BTY (2)

where

B =


−z(1)1 (2) x(1)2 (2) · · · x(1)N (2)

−z(1)1 (3) x(1)2 (3) · · · x(1)N (3)
...

...
...

...

−z(1)1 (n) x(1)2 (n) · · · x(1)N (n)

Y =


x(0)1 (2)

x(0)1 (3)
...

x(0)1 (n)



Definition 3. Supposing α̂ = [a, b2, . . . , bN ]
T , we obtain

dx(1)1
dt

+ ax(1)1 = b2x(1)2 + b3x(1)3 + . . . + bN x(1)N (3)

which is the whitening differential equation of the traditional GM (1, N) model.

Theorem 2. Supposing X(0)
i and X(1)

i (i = 2, 3, . . . , N), B, Y are described as Theorem 1.

α̂ = [a, b2, . . . , bN ]
T =

(
BT B

)−1
BTY (4)

The solution of the whitening differential equation dx(1)1
dt + ax(1)1 =

N
∑

i=2
bix

(1)
i is expressed as

x(1)1 (t) = e−at
{

N
∑

i=2

∫
bi

(
x(1)i (t)

)
eatdt + x(1)1 (0)−

N
∑

i=2

∫
bi

(
x(1)i (0)

)
dt
}

= e−at
{

x(1)1 (0)− t
N
∑

i=2
bi

(
x(1)i (0)

)
+

N
∑

i=2

∫
bi

(
x(1)i (t)

)
eatdt

} (5)

when X(1)
i (i = 2, 3, . . . , N) changes slightly,

N
∑

i=2
bi

(
x(1)i (k)

)
is seen as a grey constant, while the

approximate time response of x(0)1 (k) + az(1)1 (k) =
N
∑

i=2
bix

(1)
i (k) is written as [51].

x̂(1)1 (k + 1) =

[
x(1)1 (0)− 1

a

N

∑
i=2

bi

(
x(1)i (k + 1)

)]
e−ak +

1
a

N

∑
i=2

bi

(
x(1)i (k + 1)

)
(6)

where x(1)1 (0) is set to be x(1)1 (1).
By conducting an inverse accumulated generating operation (IAGO), the predicated values

are obtained
x̂(0)1 (k + 1) = x̂(1)1 (k + 1)− x̂(1)1 (k) (7)
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3.3. Transformed Model of Nonlinear Grey Multivariable Models (TNGM (1, N))

Definition 4. The data series of the system sequence is

X(0)
1 =

(
x(0)1 (1), x(0)1 (2), · · · , x(0)1 (n)

)

The data series of relevant factors are

X(0)
2 =

(
x(0)2 (1), x(0)2 (2), · · · , x(0)2 (n)

)
X(0)

3 =
(

x(0)3 (1), x(0)3 (2), · · · , x(0)3 (n)
)

...

X(0)
N =

(
x(0)N (1), x(0)N (2), · · · , x(0)N (n)

)
Z(1)

1 represents the data series of the nearest-neighbor mean of X(1)
1 and is expressed as

x(0)1 (k) + az(1)1 (k) =
N

∑
i=2

bi

(
x(1)i (k)

)γi
(8)

which is a nonlinear grey multivariable model, abbreviated as NGM (1, N) [52].
In the aforementioned model, γi is the exponent of the i correlative variable, which can

reflect the nonlinear influence of the i correlative variable on the variables of system behaviors.
When γi = 1, (i = 2, 3, · · · , N), NGM (1, N) is the GM (1, N) model.

In real application, the basic conditions of constructing NGM (1, N) agree with the traditional GM
(1, N) model in the research [49], namely, the 1-AGO for the raw data of the system behavior series
has to follow grey exponential law, which can be satisfied in most of cases. Compared to the single
variable grey predication model, the GM (1, N) model is more likely to show a drift of the data matrix
in the recognition process of the parameters. Hence, it is better to preprocess raw data series with a
large sample size before building the NGM (1, N) model. Concretely, data transformations based on
initialization or mean quantization can be performed.

Definition 5. In the NGM (1, N) model, −a is the coefficient of system development, bi

(
x(1)i (k)

)γi
denotes the

driving item, bi is the driving factor coefficient, while â = [a, b2, b3, · · · , bN ]
T is the data series of parameters.

Theorem 3. Assuming that the data series of the system feature of X(0)
1 , X(0)

i (i = 2, 3, · · · , N) is the data

series of correlative factors, X(1)
i is the 1-AGO series of each X(0)

i value, and Z(1)
1 is the data series of the

nearest-neighbor mean of X(1)
1 .

B =


−z(1)1 (2)

(
x(1)2 (2)

)γ2 · · ·
(

x(1)N (2)
)γN

−z(1)1 (3)
(

x(1)2 (3)
)γ2 · · ·

(
x(1)N (3)

)γN

...
...

...
...

−z(1)1 (n)
(

x(1)2 (n)
)γ2 · · ·

(
x(1)N (n)

)γN

,Y =


x(0)1 (2)

x(0)1 (3)
...

x(0)1 (n)



The estimates of the LSM for the parameter series â = [a, b2, b3, · · · , bN ]
T satisfy the

following conditions:

When n = N + 1, α̂ = B−1Y and |B| 6= 0;
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When n > N + 1, α̂ = (BT B)−1BTY and
∣∣BT B

∣∣ 6= 0;

When n < N + 1, α̂ = BT(BT B)−1Y and
∣∣BT B

∣∣ 6= 0.

Proof. by substituting k = 2, 3 · · · , n into the NGM (1, N) model, x(0)1 (k) + az(1)1 (k) =
N
∑

i=2
bi

(
x(1)i (k)

)γi
,

we obtain the following equations:

x(0)1 (2) = −az(1)1 (2) +
N
∑

i=2
bi

(
x(1)i (2)

)γi
;

x(0)1 (3) = −az(1)1 (3) +
N
∑

i=2
bi

(
x(1)i (3)

)γi
;

...

x(0)1 (n) = −az(1)1 (n) +
N
∑

i=2
bi

(
x(1)i (n)

)γi
.

(9)

The matrix form is written as:
Y = Bâ (10)

When n = N + 1, and |B| 6= 0, α̂ = B−1Y;

When n > N + 1 and
∣∣BT B

∣∣ 6= 0, α̂ = (BT B)−1BTY;
When n < N + 1, and B is a row-full-rank matrix, the full-rank decomposition of B is

B = DC (11)

the generalized inverse matrix B+ of B is

B+ = CT
(

CCT
)−1(

DDT
)−1

DT (12)

α̂ = CT
(

CCT
)−1(

DDT
)−1

DTY (13)

by taking D as the identity matrix In−1, we obtain α̂ = BT(BT B)−1Y.

Definition 6. Assuming that â = [a, b2, b3, · · · , bN ]
T ,

dx(1)1 (t)
dt

+ ax(1)1 (t) =
N

∑
i=2

bi

(
x(1)i (t)

)γi
(14)

is obtained which is the whitening differential equation of the NGM (1, N) model.

Theorem 4. Supposing that X(0)
i , X(1)

i (2, 3, . . . , N) and Z(1)
1 are presented as B, Y Theorem 1, and the solution

of the whitening differential equation dx(1)1 (t)
dt + ax(1)1 (t) =

N
∑

i=2
bi

(
x(1)i (t)

)γi
is

x(1)1 (t) = e−at
{

N
∑

i=2

∫
bi

(
x(1)i (t)

)γi
eatdt + x(1)1 (0)−

N
∑

i=2

∫
bi

(
x(1)i (0)

)γi
dt
}

= e−at
{

x(1)1 (0)− t
N
∑

i=2
bi

(
x(1)i (0)

)γi
+

N
∑

i=2

∫
bi

(
x(1)i (t)

)γi
eatdt

} (15)
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N
∑

i=2
bi

(
x(1)i (k)

)γi
can be seen as a grey constant, when X(1)

i (i = 2, 3, . . . , N) changes slightly, while the

approximate time response of NGM (1, N) is expressed as

x̂(1)1 (k + 1) =

[
x(1)1 (1)− 1

a

N

∑
i=2

bi

(
x(1)i (k + 1)

)γi

]
e−ak +

1
a

N

∑
i=2

bi

(
x(1)i (k + 1)

)γi
(16)

By conducting IAGO, the predicated values are obtained

x̂(0)1 (k + 1) = x̂(1)1 (k + 1)− x̂(1)1 (k) (17)

which is the approximate solution of the time response function for the whitening differential equation
in the aforementioned NGM (1, N) model. In real application, X(1)

i (i = 2, 3, . . . , N) may present a

great change,
N
∑

i=2
bi

(
x(1)i (k)

)γi
; therefore, it cannot be seen as a grey constant. Hence, Equation (16)

is applicable to the real case, as it may cause a large error. To address this problem, a derived model
based on NGM (1, N) is used to replace [52]. Equation (16) is applied in simulation and predication.

Theorem 5. The derived model based on the definition of NGM (1, N) is deduced and abbreviated as
TNGM (1, N):

x(0)1 (k) =
N

∑
i=2

βi

(
x(1)i (k)

)γi − αx(1)1 (k− 1) (18)

where βi =
bi

1+0.5a , α = a
1+0.5a .

Proof. Due to the background value of x(0)1 (k), it is obtained as

z(1)1 (k) = 0.5x(1)1 (k− 1) + 0.5x(1)1 (k− 1) + 0.5x(0)1 (k)
= x(1)1 (k− 1) + 0.5x(0)1 (k)

(19)

by substituting Equation (11) into the defined NGM (1, N), we obtain

x(0)1 (k) + a
[

x(1)1 (k− 1) + 0.5x(0)1 (k)
]
=

N

∑
i=2

bi

(
x(1)i (k)

)γi
(20)

that is

(1 + 0.5a)x(0)1 (k) =
N

∑
i=2

bi

(
x(1)i (k)

)γi − ax(1)1 (k− 1) (21)

the solution is

x(0)1 (k) =
N

∑
i=2

bi
1 + 0.5a

(
x(1)i (k)

)γi − a
1 + 0.5a

x(1)1 (k− 1) (22)

In the case of γi = 1, (i = 2, 3, · · · , N), TNGM (1, N) is degenerated to be a derived model of GM
(1, N) in the research [49].

3.4. Parameter Estimation of the Transformed Model of the Nonlinear Grey Multivariable Model Based on
NLS(NLS-TNGM (1, N))

According to the aforementioned deduction process, Equation (8) presents a nonlinear relationship
between the grey derivative and unknown parameters. The first-order condition of the nonlinear
model remains, considered as the nonlinear function of estimate parameters, so the conventional
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LSM does not fit for solving the parameters in this equation; they need to be solved using a complex
optimized algorithm. NLS is a parameter estimation approach that uses square error and minimum
error as benchmarks to estimate the parameters of a nonlinear static model [53]. It is used to fit a group
of m measuring values, which involves the nonlinear model containing unknown parameters (m > n).
This approach approximates the solution of the model using a linear method. By continuous iteration
to extract parameters, it is able to continuously approximate the optimal regression coefficient of the
nonlinear regression model. Hence, the transformed nonlinear grey multivariable based on Nonlinear
least squares method-(NLS-TNGM (1, N)) is proposed for estimation of the parameters by using
the Gauss–Seidel iteration method as the iteration approach [54]. Each iteration of the Gauss–Seidel
iterative algorithm makes full use of the current iteration value, that is, when the component is
calculated, the newest components x(k+1)

1 , x(k+1)
2 , . . . , x(k+1)

i−1 , are used to replace the old components

x(k)1 , x(k)2 , . . . , x(k)i−1, so as to save storage space and accelerate the iteration process. The main steps are
described as follows:

Step 1: Determination of the initial vector

The conduction of the iteration estimation requires the initial values of the coefficients to be solved
in the model. The parameters sequence to be estimated in TNGM (1, N) is α̂ = [a, b2, r2]

T . As there
is no general rule to determine the initial values of parameters, the initial values of the parameters
sequence to be solved in this research are set as a = 0, b2 = 0 and r2 = 0.

Step 2: Calculation and estimation of parameters

The parameter vectors of TNGM (1, N) can be estimated using Equation (8):

x(0)1 (k) = −az(1)1 (k) +
N

∑
i=2

bi

(
x(1)i (k)

)γi

(i = 2, 3, . . . , N) (23)

Based on this equation, a new component x(0)1 (k) can be calculated, which is further calculated

for a newly generated iterated value x(0)1 (k + 1).

Step 3: Iteration

The parameters of Step 2 can be estimated using Equation (23). If the parameter vector obtained
by the j iteration is αj, the corresponding linear model acquired by the (j + 1) iteration is expressed as:

αj+1 = αj + ∆j (24)

According to the same method, this process is repeated until the condition of the stopping iteration
is satisfied.

Step 4: The law of iteration stopping

The stopping rule of the iteration calculation in this work is based on the change after each iteration
of the parameters to be estimated—the deviation of the results for two neighboring iterations—and is
calculated as

e = max
1≤i≤n

∣∣∣x(k+1)
i − x(k)i

∣∣∣ (25)

When the maximum change of the parameters to be estimated is smaller than that of a preset
value, the iteration stops: the iteration stops when the deviation e is below preset forecasting precision
values. The above improved modeling process can be expressed by the flow chart shown in Figure 1.
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Figure 1. The calculation steps using the transformed nonlinear grey multivariable TNGM (1, N) based
on Nonlinear least squares method.

4. Empirical Analysis

To verify the feasibility and accuracy of the predication models, the nonlinear model is
constructed to predicate the nonlinear relationship between WDPC, SO2 and dust emissions per capita,
and economic growth based on China’s domestic data. Furthermore, GM (1, N) and NLS-TNGM (1, N)
models are built respectively to predicate the same data. The predicated results of three types of the
model are compared and analyzed as follows.

4.1. The Explanation of Variables and Data

This research selects three pollutants (WDPC, SO2 and dust) during the period 1996–2015 to
perform an empirical analysis. The data of GDP per capita, and the wastewater discharge per capita
(WDPC), SO2 and dust emissions per capita are sourced from National Bureau of Statistics of China
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(http://www.stats.gov.cn/tjsj). To overcome the influence of inflation, real GDP per capita is obtained
by processing GDP indexes and corresponding data are shown in Table 1.

Table 1. The actual value of GDP per capita and emissions of three pollutants from 1996 to 2015.

Year GDP per
Capita (Yuan)

Wastewater Discharge per
Capita—WDPC (Ton)

SO2 Emissions per
Capita (Ton)

Dust Emissions
per Capita (Ton)

1996 5539.01 32.2193 0.0161 0.0062
1997 6375.74 33.6343 0.0164 0.0103
1998 6921.71 32.4432 0.0168 0.0117
1999 7319.62 32.5936 0.0148 0.0092
2000 7778.40 32.7592 0.0157 0.0092
2001 8545.59 33.9270 0.0153 0.0084
2002 9449.23 34.2148 0.0150 0.0079
2003 10,399.56 35.5421 0.0167 0.0081
2004 11,679.27 37.1111 0.0173 0.0085
2005 13,823.11 40.1511 0.0195 0.0090
2006 16,106.53 40.8527 0.0197 0.0083
2007 19,014.37 42.1558 0.0187 0.0075
2008 22,370.96 43.0716 0.0175 0.0068
2009 26,267.77 44.1439 0.0166 0.0064
2010 28,870.42 46.0359 0.0163 0.0062
2011 33,654.84 48.9251 0.0165 0.0095
2012 39,060.42 50.5717 0.0156 0.0091
2013 42,887.50 51.1085 0.0150 0.0094
2014 46,833.94 52.3589 0.0144 0.0127
2015 50,223.99 53.4928 0.0135 0.0112

Note: As China’s wastewater discharge data in 1996, 1998 and 1999 and the SO2 per capita emissions data in 1994,
1996 and 1998 are absent, they were obtained using the mean substitution method. To eliminate issues regarding
different dimensional variables, the authors initialized the raw data in Section 4.

4.2. The Establishment and Solution of the Predication Models

4.2.1. GM (1, N) Model

Equations (1)–(7) are employed to build the GM (1, N) model based on three groups of data and
corresponding parameters are displayed in Table 2.

Table 2. The coefficients of GM (1, N) for three pollutants.

Coefficients WDPC SO2 Emissions per Capita Dust Emissions per Capita

a −0.1971 −0.18712 −0.14073
b2 −0.04553 −0.04268 −0.03109

Each initial value is set as x(1)1 (1) = 1; the equations of the corresponding time response can be
written as

WDPC:
_
x
(1)
1 (k + 1) =

(
1− 0.231× x(1)2 (k + 1)

)
× e0.1971×k + 0.231× x(1)2 (k + 1)

SO2 emissions per capita:
_
x
(1)
1 (k + 1) =

(
1− 0.228× x(1)2 (k + 1)

)
× e0.1871×k + 0.228× x(1)2 (k + 1)

Dust emissions per capita:
_
x
(1)
1 (k + 1) =

(
1− 0.2201× x(1)2 (k + 1)

)
× e0.1407×k + 0.2201× x(1)2 (k + 1)

The predicated and actual values obtained based on the aforementioned time response equations
are shown in Table 3.

http://www.stats.gov.cn/tjsj
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Table 3. Forecasting values and errors of three pollutants using two models.

WDPC SO2 Emissions per Capita

Year Actual
Value

GM (1, N) NLS-TNGM (1, N)
Year Actual

Value
GM (1, N) NLS-TNGM (1, N)

Model Value Error Model Value Error Model Value Error Model Value Error

1996 1.00 1.00 0.00 1.00 0.00 1996 1.00 1.00 0.00 1.00 0.00
1997 1.04 0.20 80.65 1.01 3.49 1997 1.02 0.19 81.31 1.02 −0.05
1998 1.01 0.35 65.51 1.01 −0.24 1998 1.04 0.33 68.29 1.04 0.62
1999 1.01 0.49 51.96 1.02 −1.19 1999 0.92 0.46 50.17 1.04 −13.59
2000 1.02 0.62 38.83 1.04 −2.74 2000 0.98 0.58 41.25 1.05 −6.83
2001 1.05 0.76 28.23 1.07 −1.62 2001 0.95 0.69 27.34 1.05 −10.21
2002 1.06 0.89 16.52 1.10 −3.47 2002 0.93 0.79 14.99 1.05 −12.04
2003 1.10 1.01 8.05 1.13 −2.47 2003 1.04 0.90 13.62 1.04 −0.33
2004 1.15 1.14 0.97 1.16 −1.14 2004 1.08 1.01 6.78 1.04 3.82
2005 1.25 1.26 −1.37 1.20 3.48 2005 1.21 1.11 8.16 1.03 14.93
2006 1.27 1.38 −8.73 1.24 1.92 2006 1.23 1.22 0.59 1.02 16.40
2007 1.31 1.48 −12.83 1.29 1.71 2007 1.16 1.30 −11.44 1.02 12.44
2008 1.34 1.55 −16.18 1.33 0.50 2008 1.09 1.33 −22.59 1.01 6.95
2009 1.37 1.60 −17.07 1.38 −0.42 2009 1.03 1.33 −28.75 1.01 2.42
2010 1.43 1.64 −14.95 1.42 0.31 2010 1.01 1.30 −28.05 1.00 1.09
2011 1.52 1.66 −9.08 1.48 2.77 2011 1.02 1.23 −20.06 1.00 2.51
2012 1.57 1.64 −4.46 1.53 2.42 2012 0.97 1.12 −14.65 0.99 −2.20
2013 1.59 1.60 −0.74 1.59 −0.17 2013 0.93 0.96 −3.12 0.99 −6.00
2014 1.63 1.53 5.88 1.65 −1.42 2014 0.90 0.77 13.76 0.99 −9.91
2015 1.66 1.44 13.24 1.71 −2.97 2015 0.84 0.55 34.62 0.98 −16.86

MAPE 20.80 1.72 25.77 7.33

Dust Emissions per Capita Dust Emissions per Capita

Year Actual
Value

GM (1, N) NLS-TNGM (1, N)
Year Actual

Value
GM (1, N) NLS-TNGM (1, N)

Model Value Error Model Value Error Model Value Error Model Value Error

1996 1.00 1.00 0.00 1.00 0.00 2006 1.34 1.52 −13.69 1.33 0.84
1997 1.66 0.19 88.52 1.91 −14.74 2007 1.21 1.59 −32.08 1.34 −11.50
1998 1.88 0.40 78.68 1.59 15.43 2008 1.10 1.63 −48.59 1.36 −24.14
1999 1.49 0.60 59.83 1.45 2.78 2009 1.03 1.63 −59.01 1.38 −34.24
2000 1.48 0.76 48.60 1.37 7.96 2010 1.00 1.61 −61.44 1.40 −39.87
2001 1.35 0.91 32.42 1.32 2.34 2011 1.53 1.60 −4.47 1.43 6.57
2002 1.27 1.05 17.80 1.30 −1.82 2012 1.47 1.59 −8.12 1.48 −0.59
2003 1.31 1.17 10.72 1.29 1.79 2013 1.52 1.56 −3.05 1.54 −1.28
2004 1.37 1.29 5.37 1.29 5.46 2014 2.05 1.55 24.50 1.61 21.73
2005 1.46 1.41 3.19 1.31 10.58 2015 1.81 1.54 14.69 1.69 6.41

MAPE 32.36 11.06

Error = x(0)1 (k)−x̂(0)1 (k)

x(0)1 (k)
× 100%.

4.2.2. The NLS-TNGM (1, N) Model

Based on three groups of data, the NLS-TNGM (1, N) model is built and solved using Eviews8
software. The corresponding parameters of the model are shown in Table 4.

Table 4. The coefficients of NLS-TNGM (1, N) for three pollutants.

Coefficients WDPC SO2 Emissions per Capita Dust Emissions per Capita

a −0.042633 0.017207 −0.052495
b2 1.016804 0.995608 2.776413
r2 −0.098991 0.06658 −0.557439

Each initial value is set as x(1)1 (1) = 1, and the equations of the corresponding time response are
expressed as

WDPC:
_
x
(1)
1 (k + 1) =

(
1 + 23.85×

(
x(1)2 (k + 1)

)−0.099
)
× e0.0426×k − 23.85×

(
x(1)2 (k + 1)

)−0.099

SO2 emissions per capita:
_
x
(1)
1 (k + 1) =

(
1− 57.86×

(
x(1)2 (k + 1)

)0.06658
)
× e−0.0172×k + 57.86 ×(

x(1)2 (k + 1)
)0.06658
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Dust emissions per capita:
_
x
(1)
1 (k + 1) =

(
1 + 52.889×

(
x(1)2 (k + 1)

)−0.5574
)
× e0.0525×k − 52.889×(

x(1)2 (k + 1)
)−0.5574

The results compared between the actual values and predicated values based on the time response
equations are shown in Table 3.

4.3. Comparison of Modeling Results

The compared results of the actual values and predicated values using the aforementioned GM
(1, N) and NLS-TNGM (1, N) models are displayed in Table 4. For the sake of comparison, four groups
of predicated and actual values are illustrated in Figures 1–3.
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Table 4 displays the simulated and forecasted data concerning WDPC, and the per capita emissions
of SO2 and dust using the GM (1, N) and NLS-TNGM (1, N) models. As shown in Table 4, the forecasted
mean absolute percent errors (MAPEs) of WDPC, and the per capita emissions of SO2 and dust using
NLS-TNGM (1, N) are 1.72%, 7.33% and 11.06% respectively, while the forecasted MAPEs for those
using GM (1, N) are 20.8%, 25.77% and 32.36% respectively. The results indicated that NLS-TNGM (1, N)
presents greater forecasting precision compared to GM (1, N). As illustrated in Figure 2, the forecasted
results of WDPC using GM (1, N) do not agree with actual values. As seen from the figure, the actual
value of WDPC is shown to be a monotonously increasing curve, while the fitting curve of GM (1, N) is
characterized by an initial increase followed by a decrease. In contrast, the fitting curves of NLS-TNGM
(1, N) generally agree with actual values, and the prediction results of the model are in line with the
assumptions in the previous section; there is a monotonically increasing relationship between GDP per
capita and WDPC.

As shown in Figure 3, the curve of forecasted per capita SO2 emissions based on GM (1, N)
presents an inverted U shape; however, the curve of actual per capita SO2 emissions is shown to
fluctuate slightly and then gradually decrease. The curve of the fitted values of NLS-TNGM (1, N) is
smooth. Although the fitted values are inconsistent with the shapes of actual values, the forecasting
precision of NLS-TNGM (1, N) is far better than that of the GM (1, N) model by integrating the
MAPEs predicated based on NLS-TNGM (1, N). This is because the fitted value ranges between 0.9–1.1,
showing a small fluctuation, which is therefore unobvious in the curve. Overall, the model predictions
agree well with the assumptions in the previous section; there is a decreasing relationship between
SO2 emissions per capita and GDP per capita.

As illustrated in Figure 4, forecasted per capita SO2 emissions using GM (1, N) initially increase
and then tend to be steady, while the actual values fluctuate violently. In general, the actual values
initially decline and then increase; the curve of fitted values of NLS-TNGM (1, N) presents the same
change, which is more in agreement with the nonlinear feature of actual values. The predicted values
of the model are consistent with the above assumptions; there is a relationship between dust emissions
per capita and per capita GDP, i.e., initially decreasing and then increasing.Int. J. Environ. Res. Public Health 2018, 15, x    15 of 18 
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Comprehensive empirical results show that WDPC indicates a growing tendency aligned with
the growth of GDP, while the per capita emissions of SO2 and dust reduce accordingly. In the
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Fifth Plenary Session of the 18th CPC Central Committee, green development is ranked as one of
the five development concepts during the 13th Five-Year Plan period: the goals to achieve overall
eco-environmental sustainability and largely reduce the total pollutant discharges are stipulated.
Pollutant discharge has been an important measure and represents a breakthrough for controlling the
eco-environment. Nowadays, China is experiencing a key stage in its transformation and development;
therefore, environmental governance has been a major focus of the Chinese government and has
witnessed some achievements. To further promote the green development concept, the Chinese
government has suggested the implementation of corresponding policy to achieve pollutant reductions
according to real cases. Furthermore, the Chinese government also needs to comprehensively accelerate
the zero-pollutant discharge and pollutant reduction, as well as slow down the degree of environmental
pollution while ensuring the sustainable growth of economic development.

5. Conclusions

Considering that the conventional LSM is applicable to solving nonlinear issues, the Gauss–Seidel
iteration algorithm is used to propose a new approach for solving the parameters of TNGM (1, N)
based on the basic principle of NLS. By conducting continuous iteration to constantly approximate
the optimal regression coefficient of the nonlinear model, the forecasted precision of the model can
be improved. WDPC and the per capita emissions of SO2 and dust are empirically analyzed and
the results are compared with the traditional GM (1, N) model, so as to verify the effectiveness and
superiority of the proposed new model. The model’s predictions for the emissions of three pollutants
are in line with the previous assumptions. There is a monotonically increasing relationship between
GDP per capita and WDPC, and a decreasing relationship between SO2 emissions per capita and GDP
per capita, and a relationship between dust emissions per capita and per capita GDP which initially
decreases and then increases. NLS-TNGM (1, N) is able to effectively recognize the parameters of
TNGM (1, N), which can be applied in the research of nonlinear time series of a small sample size.
However, the method has limitations in the predication of nonlinear time series of a large sample
size. The applicability of this model warrants further analysis. This is mainly because a large sample
series is likely to generate more turning points, and the form of exponents is not favorably applicable
in the fluctuating data series. In the context of solving parameters based on NLS, TNGM (1, N)
needs to be further comprehensively analyzed, including the modeling method of background values,
initial conditions and structural variables.
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