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Abstract: Short-term health effects of ambient PM2.5 have been established with numerous studies,
but evidence in Asian countries is limited. This study aimed to investigate the short-term effects of
PM2.5 on acute health outcomes, particularly all-cause, cardiovascular, respiratory, cerebrovascular
and neuropsychological outcomes. We utilized daily emergency ambulance dispatches (EAD) data
from eight Japanese cities (2007–2011). Statistical analyses included two stages: (1) City-level
generalized linear model with Poisson distribution; (2) Random-effects meta-analysis in pooling
city-specific effect estimates. Lag patterns were explored using (1) unconstrained-distributed lags
(lag 0 to lag 7) and (2) average lags (lag: 0–1, 0–3, 0–5, 0–7). In all-cause EAD, significant increases
were observed in both shorter lag (lag 0: 1.24% (95% CI: 0.92, 1.56)) and average lag 0–1 (0.64% (95%
CI: 0.23, 1.06)). Increases of 1.88% and 1.48% in respiratory and neuropsychological EAD outcomes,
respectively, were observed at lag 0 per 10 µg/m3 increase in PM2.5. While respiratory outcomes
demonstrated significant average effects, no significant effect was observed for cardiovascular
outcomes. Meanwhile, an inverse association was observed in cerebrovascular outcomes. In this
study, we observed that effects of PM2.5 on all-cause, respiratory and neuropsychological EAD were
acute, with average effects not exceeding 3 days prior to EAD onset.

Keywords: air pollution; ambient PM2.5; emergency ambulance dispatches; short-term exposure

1. Introduction

Compared to studies of mortality, there are fewer studies examining the association between
short-term exposure to ambient fine particulate matter (PM2.5) and morbidity, such as hospitalization
and emergency visits [1–6]. Multi-city studies, particularly, are scarce in the Asian region [7].
More studies in Asia, especially multi-city studies, would contribute to the comparability of air
pollution-related health effects with previous studies conducted in western countries [8].
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Hospitalization and emergency visits are commonly-used health indicators in reporting the
association of acute morbidity and ambient air pollution. However, the database which records
daily morbidity information over multiple areas for epidemiological studies has not been fully
established in some countries. The use of emergency ambulance dispatches (EAD) as a morbidity
indicator in studies investigating health effects of ambient air pollutants has been increasing in recent
years [9–14]. This has the potential to act as a proxy for health outcomes, especially in countries
without detailed health databases. Only a few studies have examined PM2.5 health effects using EAD
data [10,12–14]; the others examined the health effects with PM10 [9] and suspended particulate matter
(SPM) [11]. In addition, most of the studies estimated the association in single-city settings [10,13,14].
Although currently published studies using EAD data, including a study from Japan with a limited
study period [12], have suggested that there are associations between PM2.5 and all-cause, respiratory,
and cardiovascular outcomes [13,14], there is limited evidence examining the association between
PM2.5 and EAD due to various health outcomes in a multi-city setting.

Recent studies have reported on the effects of PM2.5 on cardiopulmonary outcomes [7], with the
possible causal pathway linked to the underlying mechanism of systemic inflammatory responses
and oxidative stress [15]. Previous studies carried out in Japan [10,12], however, reported weak
evidence of PM2.5 effects on cardiovascular outcomes. In addition, it was previously observed that the
effects of PM2.5 on neuropsychological outcomes can either be acute [4,16,17] or prolonged [18–20],
with a majority of these effects largely underestimated [21]. Pathological pathways linked to the
associated PM2.5 effects were suggested to be facilitated through inflammatory responses, oxidative
stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood–brain barrier
(BBB) [22].

In light of these findings, this study aimed to investigate the association of short-term exposure to
ambient PM2.5 on EAD among different types of diagnoses in Japan. The included types of diagnoses
were all-cause, cardiovascular, respiratory, cerebrovascular, and neuropsychological EAD outcomes.

2. Materials and Methods

2.1. Study Area

This study included data from eight cities in Japan (Figure 1), spanning from 2007 to 2011.
The eight cities are located distinctly across the northern to the southern regions. The study period of
each city is shown in Table 1.Int. J. Environ. Res. Public Health 2018, 15, x    3 of 11 
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Table 1. Daily average number of emergency ambulance dispatches (EAD) in each city during the
study period.

Characteristics Sapporo Sendai Saitama Nagoya Osaka Hiroshima Fukuoka Kumamoto

Study period

1 January
2007–31
March
2010

1 January
2007–31
March
2010

1 April
2009–31
March
2011

1 January
2008–31

December
2011

1 January
2008–31

December
2011

1 April
2010–31

December
2011

1 January
2009–31

December
2011

1 April
2010–31

December
2011

Population * 1,913,545 1,045,986 1,222,434 2,263,894 2,665,314 1,173,843 1,463,743 734,474

Sex

Male 53 (9) 28 (6) 46 (9) NA NA NA 46 (8) 21 (5)
Female 58 (9) 27 (6) 41 (8) NA NA NA 47 (8) 22 (5)

Age

Children 8 (4) 4 (2) 8 (4) 9 (5) 21 (7) 6 (3) 7 (3) 3 (2)
Adult 53 (9) 24 (5) 37 (8) 66 (12) 142 (18) 31 (7) 43 (8) 18 (4)
Elderly 51 (8) 27 (6) 41 (9) 84 (15) 142 (19) 38 (7) 43 (8) 23 (5)

Diagnosis type

All acute illness 111 (14) 55 (9) 86 (14) 159 (22) 305 (33) 74 (11) 93 (13) 43 (8)
Cardiovascular 14 (4) 4 (2) 4 (2) 15 (4) 31 (6) 10 (3) 9 (3) 3 (2)
Respiratory 12 (5) 5 (2) 5 (2) 18 (5) 32 (7) 10 (3) 12 (4) 3 (1)
Cerebrovascular 18 (6) 5 (2) 5 (2) 11 (4) 25 (5) 12 (4) 24 (5) 3 (2)
Neuropsychology 12 (4) 5 (2) 6 (3) 14 (4) 53 (9) 10 (3) 5 (2) 3 (2)

* Population based on Japanese census in 2010. Values are shown as the daily mean (standard deviation). Note:
Data on the sex category were not available in Nagoya, Osaka, nor Hiroshima.

2.2. Health Data: Daily EAD

In Japan, EAD is a free-of-charge service provided by the local fire departments, whereby the
public are able to utilize the service by calling the emergency number “119” [23]. Data on daily
EAD were obtained from the Fire and Disaster Management Agency of the Ministry of Internal
Affairs and Communications in Japan. EAD data for Kumamoto city were later obtained from
its city office. The data contained information on sex, age category, cause of dispatches, type of
diagnoses, and the severity of the patient’s condition. To avoid the inclusion of health outcomes
irrelevant to the main exposure, among the 14 categories for the cause of dispatches, only the category
“acute illnesses” (referring to non-traumatic or non-accidental health outcome) was extracted and
used for the analyses in this study. Meanwhile, primary diagnoses were determined by emergency
medical doctors upon arrival at the hospital and were coded into 10 major categories (cardiovascular,
respiratory, cerebrovascular, digestive, psychiatric, nerves and sensory, urological, neoplasms, others,
and unknown), defined by the International Classification of Diseases, Tenth Revision (ICD-10).
We further examined the association between ambient PM2.5 and EAD for all-cause acute illnesses
(i.e., all diseases except traumatic cases), and included only EAD for cardiovascular (ICD-10: I10–I15,
I20–I25, I01–I02.0, I05–I09, I27, I30–I52), respiratory (ICD-10: J00–J99), cerebrovascular (ICD-10: I63,
I69.3, I60–I62, I64–I68, I69.0–I69.2, I69.4–I69.8) and neuropsychological (ICD-10: F00–F99, G00–G99,
H00–H59, H60–H95) outcomes for cause-specific analyses. This study was approved by the Ethics
Committee of the Kyoto University Graduate School of Engineering (No. 201410).

2.3. Environmental Data

Hourly concentrations of ambient PM2.5 and gaseous pollutants (nitrogen dioxide (NO2),
photochemical oxidants (Ox) and sulfur dioxide (SO2)) monitored at one background monitoring
station of each city, were obtained from the National Institute for Environmental Studies (NIES).
Ambient PM2.5 were measured using monitors that employ tapered element oscillating microbalances
(TEOM) in all cities except Osaka and Saitama. Data for Osaka were based on a combination of
beta ray attenuation (1 January 2008–31 March 2009) and TEOM (1 April 2009–31 December 2011).
Ambient PM2.5 data for Saitama were obtained from the Center for Environmental Science in
Saitama, based on daily filter sampling. Ox comprises ozone and peroxyacetyl nitrate generated
by photochemical reactions (only those capable of isolating iodine from neutral potassium iodide,
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excluding nitrogen dioxide). Weather data (ambient temperature and relative humidity) were
obtained from the Japan Meteorological Agency. Daily 24-h average concentration was calculated for
each pollutant. We excluded the days which consisted of more than four missing hourly concentrations
of PM2.5.

Data on influenza epidemics were obtained from the Japan National Institute of
Infectious Diseases. A week was defined as an influenza epidemic week, when the influenza cases
within that week were more than the 90th percentile of the total distribution throughout the study
period [24].

2.4. Statistical Analyses

A two-stage analysis was conducted to estimate the relative risks of EAD associated with exposure
to PM2.5. This included all-cause and cause-specific (cardiovascular, respiratory, cerebrovascular,
and neuropsychological) EAD, and consisted of a sensitivity analysis stratifying all-cause EAD by
different age groups. During the first stage, we investigated the city-specific association between
ambient PM2.5 and daily EAD for acute illnesses, using a generalized linear model (GLM) based on a
Poisson distribution. We included the following covariates, tested as per the following order: calendar
date, daily mean temperature, relative humidity, public holiday, day-of-week, and influenza epidemic.
The models were decided based on a model simplification approach, whereby the simpler model
would be retained if the p-value from the Chi-square test of ANOVA in comparing the models was
less than 0.05. A natural cubic spline was applied to calendar time to allow smooth modelling for
the long-term and seasonal patterns, with 7 degrees of freedom (df) per year [25], as well as for the
daily mean ambient temperature (averaged from the current day to 3 days before), with 3 df [26].
Public holidays and day-of-week were adjusted for all cities as indicator variables. Since there was no
significant difference between the models with or without relative humidity, it was not included in the
model for all cities. The same applied for the influenza epidemics; it was adjusted only in Sapporo and
Osaka as an indicator variable.

The lagged effect of ambient PM2.5 was examined via an unconstrained, distributed structure,
with an extension of 7 days (lag 0 to lag 7), and average structure (using average of PM2.5 over lag-days:
lag 0–1, lag 0–3, lag 0–5 and lag 0–7) (hereafter referred to as “average lag”). The models were used to
estimate the relative risk of EAD for acute illnesses per 10 µg/m3 increase in ambient PM2.5.

During the second stage, a random-effects meta-analysis was utilized to obtain the pooled
effect estimates of ambient PM2.5 on EAD. An I2 statistic was used to estimate the amount of
heterogeneity, while applying the Chi-square test from Cochran’s Q statistic to test the significance of
heterogeneity [27].

To examine the robustness of the association, we applied two-pollutant models and included each
gaseous pollutant in the main model one at a time. We also changed the df for calendar time (df ranged
from 3 to 13) and temperature (df ranged from 4 to 8). An additional analysis was conducted with
bootstrapping, utilizing 10,000 simulations to obtain the empirical estimates and confidence intervals
of our results, using the estimates of all-cause EAD at lag 0–1.

All statistical analyses were conducted in R (version 3.1.1, The R Foundation for Statistical
Computing, Vienna, Austria) utilizing the R packages splines [28] and metafor [29]. All results were
presented as the percent change (Equation (1)) of EAD with 95% confidence interval (95% CI) per
10 µg/m3 increase in ambient PM2.5. Statistical significance was considered when the p-value was less
than 0.05.

Percent change =
(

expestimate − 1
)
× 100% (1)

3. Results

A total of 1,114,515 cases of EAD for acute illnesses in the eight cities from 2007 to 2011 were
included in this study. Table 1 shows the daily average number of EAD in each city during each
study period, with the lowest in Kumamoto (
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in Nagoya, Osaka, and Hiroshima were not available. Males and females were found to be almost
equally distributed. The number of EAD for acute illnesses generally consisted of more elderly than
children and adults. Table 2 shows the daily average value of environmental variables. The daily
mean PM2.5 concentration ranged from 11.3 µg/m3 (Sapporo) to 20.8 µg/m3 (Hiroshima). The daily
mean temperature was lowest in Sapporo (8.4 ◦C), while in other cities it ranged from 12.2 ◦C (Sendai)
to 18.3 ◦C (Kumamoto). Tukey’s test showed that there were significant differences between cities,
particularly lower PM2.5 concentrations and temperature in the northern cities (such as Sapporo and
Sendai), compared to the other cities (Table S3).

Figure 2 shows the city-specific estimates of all-cause EAD associated with PM2.5 from lag 0
to lag 7. In general, the highest risks of all-cause EAD were mostly observed on the current day
(lag 0), especially in the cities with a larger population, i.e., Saitama, Nagoya, Osaka and Fukuoka.
Pooled results for the single-day lags showed an increased risk at lag 0 (1.24% (95% CI: 0.92, 1.56))
followed by a decline at lag 1 (−0.47% (95% CI: −0.80, −0.14)) (Figure 3a). As for the average lags,
an increase in EAD risk was observed at lag 0–1 (0.64% (95% CI: 0.23, 1.06)) while the effect estimates
decreased at the latter lags (Figure 3b).

Table 2. Daily average concentration of environmental variables in each city during the study period.

Environmental
Variable Sapporo Sendai Saitama Nagoya Osaka Hiroshima Fukuoka Kumamoto

PM2.5 (µg/m3)
11.27
(5.71)

12.41
(6.59)

17.86
(11.76)

16.00
(8.42)

18.58
(9.90)

20.84
(12.32)

18.14
(10.31)

18.73
(12.96)

SO2 (ppb) 2.27
(1.57)

0.59
(0.58)

1.33
(0.62)

1.83
(1.18)

5.22
(2.97)

1.24
(0.86)

1.77
(1.19)

3.41
(1.56)

NO2 (ppb) 15.53
(9.78)

13.83
(6.09)

18.78
(7.58)

20.83
(7.72)

20.23
(9.09)

13.82
(6.44)

13.46
(7.35)

9.77
(4.92)

Ox (ppb) 27.58
(11.15)

29.17
(11.62)

28.47
(13.34)

24.70
(12.86)

29.00
(13.21)

27.60
(12.98)

29.45
(13.44)

26.37
(12.15)

Temperature (◦C) 8.64
(9.31)

12.19
(8.00)

15.52
(8.62)

16.43
(8.56)

17.08
(8.35)

17.69
(8.57)

17.35
(8.05)

18.34
(8.31)

Relative humidity (%) 67.92
(10.23)

71.48
(13.00)

65.06
(13.84)

63.50
(12.35)

62.76
(10.98)

64.53
(10.33)

65.58
(11.96)

69.33
(10.84)

Values are shown as daily mean (standard deviation).
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Cause-specific EAD outcomes due to short-term exposure to ambient PM2.5 are shown
in Table 3. Our study showed significant increases of respiratory (1.88% (95% CI: 1.00, 2.76)) and
neuropsychological (1.48% (95% CI: 0.69, 2.28)) EAD, both at lag 0. On the other hand, significant
average lag effects were observed only in the respiratory outcomes (extending up to 5 days), but not
in the neuropsychological outcomes. The risk of respiratory outcomes was highest at lag 0–3 (2.79%
(95% CI: 1.31, 4.29)). There was no significant effect on cardiovascular outcomes, while an inverse
association was observed in cerebrovascular outcomes. We observed heterogeneity at some lags but
not for all categories (Table S4).

Table 3. Pooled effect of ambient PM2.5 on cause-specific EAD outcomes.

Lag Structure Cardiovascular Respiratory Cerebrovascular Neuropsychology

Lag 0 a 0.36 (−1.30, 2.05) 1.88 (1.00, 2.76) * 0.24 (−0.62, 1.11) 1.48 (0.69, 2.28) *

Average lags
Lag 0–1 −0.10 (−0.92, 0.73) 2.47 (1.69, 3.26) * −1.76 (−2.80, −0.72) * 0.59 (−1.09, 2.30)
Lag 0–3 −0.19 (−1.47, 1.11) 2.79 (1.31, 4.29) * −1.27 (−2.22, −0.32) * 1.03 (−1.71, 3.84)
Lag 0–5 −0.20 (−1.37, 0.98) 1.86 (0.23, 3.51) * −1.13 (−2.23, −0.02) * 0.06 (−2.50, 2.68)
Lag 0–7 −0.60 (−1.90, 0.72) 1.53 (−0.07, 3.16) −1.05 (−2.29, 0.19) −0.30 (−2.71, 2.17)

Values were shown as percent change (95% CI). a Lag 0 of unconstrained, distributed lag model. * Statistical
significance at p < 0.05.

Age-stratified results (Table 4) showed significantly increased effect estimates of all-cause EAD
associated with PM2.5 at lag 0 in all age categories which did not differ largely among each other
(children: 1.24% (95% CI: 0.21, 2.27); adults: 1.29% (95% CI: 0.87, 1.71); elderly: 1.19% (95% CI: 0.75,
1.62)). The effect estimates became smaller at the latter lags. Significantly increased effect estimates
were observed in average lags for the adults (0.78% (95% CI: 0.25, 1.32) at lag 0–1) and for the elderly
(0.65% (95% CI: 0.20, 1.11) at lag 0–1 and 0.61% (95% CI: 0.16, 1.07) at lag 0–3). The effect estimates of
EAD for all acute illnesses remained robust in models using different df on calendar date (Table S1) and
on temperature (Table S2), as well as in the two-pollutant model (Figure 4). Although there was a drop
in the +SO2 model, the estimate remained within the 95% confidence interval of the single pollutant
model, thus the drop was not significant. Nonetheless, the drop might suggest a confounding effect of
SO2 on the association between PM2.5 and EAD outcomes. After bootstrapping with 10,000 simulations,
the empirical estimates showed that the association between PM2.5 and health outcomes would always
remain positive (all-cause EAD at lag 0–1: 0.49% (95% CI: 0.02, 0.98)).
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Table 4. Pooled effect of ambient PM2.5 on all-cause EAD by age category.

Lag Structure Children (Age below
18 Years)

Adult (Age 18 to
64 Years)

Elderly (Age 65 Years and
above)

Lag 0 a 1.24 (0.21, 2.27) * 1.29 (0.87, 1.71) * 1.19 (0.75, 1.62) *

Average lags
Lag 0–1 0.89 (−0.09, 1.89) 0.78 (0.25, 1.32) * 0.65 (0.20, 1.11) *
Lag 0–3 1.09 (−0.14, 2.32) 0.55 (−0.37, 1.48) 0.61 (0.16, 1.07) *
Lag 0–5 0.45 (−0.96, 1.88) 0.16 (−0.99, 1.33) 0.34 (−0.36, 1.05)
Lag 0–7 0.03 (−1.53, 1.61) 0.26 (−0.93, 1.47) 0.05 (−0.73, 0.84)

Values are shown as percent change (95% CI). a Lag 0 of unconstrained, distributed lag model. * Statistical
significance at p < 0.05.Int. J. Environ. Res. Public Health 2018, 15, x    7 of 11 
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4. Discussion

In this multi-city study, we found that short-term exposure to ambient PM2.5 was associated
with increased risks of all-cause EAD in immediate lags (lag 0 and lag 0–1). Cause-specific
analyses showed that significant associations were observed in the EAD for respiratory and
neuropsychological outcomes. While the positive association persisted for longer lags and was
largest at lag 0–3 for respiratory EAD, the association for neuropsychological outcomes disappeared at
the latter lags.

Across cities, the PM2.5 levels were significantly different. PM2.5 levels in the northern part
of Japan (Sapporo and Sendai) were generally lower than those of other cities, with the daily
mean concentrations below the Japanese air quality standards for PM2.5 (15 µg/m3). Increases in
EAD were observed mostly in cities with daily PM2.5 levels exceeding 15 µg/m3. However,
whether the differences in PM2.5 levels across cities explain heterogeneity across cities requires
further investigations.

It has been suggested that exposure to ambient PM2.5 contributes to increased risk of all-cause
EAD [10,13], cardiovascular, and cerebrovascular hospitalizations [1–3,30]. However, we observed
non-conventional yet noteworthy results, such as the statistically insignificant association of PM2.5 on
cardiovascular EAD outcomes, and an inverse association with cerebrovascular EAD outcomes. Also,
the effect estimates of PM2.5 on EAD did not vary largely among age categories.

We found that the effect of ambient PM2.5 was significant in respiratory outcomes but not in
cardiovascular outcomes. This is consistent with findings reported in previous studies [2,31,32],
though one paper emphasized the effect modification by PM2.5 components [31]. Another paper
reported that ambient PM2.5 increased the risk for various acute respiratory outpatient visits, including
upper respiratory tract infections, acute bronchitis, community-acquired pneumonia, and acute
exacerbation of bronchiectasis [32]. Since the respiratory system is among the first to be exposed
and injured upon exposure to ambient PM2.5, the pathophysiological pathway of its effects may
lead to systemic damages. Earlier studies suggested that particulate exposure could lead to cell
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injury due to oxidative stress [33], inflammatory responses [34], and imbalanced intracellular calcium
homeostasis [35]. These pro-inflammatory conditions due to exposure to air pollutant could be
underlying mechanisms for other diseases such as cardiovascular and neuropsychological outcomes.

The number of studies focusing on the association of air pollution with neuropsychological
outcomes have increased in recent years, as inflammation and oxidative stress caused by air pollution
are thought to cause neurotoxic effects [17,18,20]. There are several possible pathways to the brain:
(1) direct transportation of pollutant via circulatory pathway to the brain, passing through the BBB;
(2) systemic inflammation whereby cytokines were circulated to the brain; and (3), the nose-to-brain
route that bypasses the protective BBB whereby pollutants are transported along the olfactory nerve
to the brain [36], prior to the underlying toxicity mechanisms such as inflammation, microglial
activation [37], oxidative stress, and neuronal death [38]. A few recent studies found that long-term
exposure to ambient PM2.5 was associated with increased risks in Alzheimer’s disease, Parkinson’s
disease [18], dementia [18,19] and memory loss [20]. There are also studies reporting the positive
association between short-term exposure to PM2.5 and Parkinson’s disease [4,16] and headache [17].
Interestingly, Chen et al. (2015) [39] found increased clinic visits for migraine associated with ambient
PM2.5 on warm days but not on cold days.

The statistically insignificant result exhibited by the cardiovascular outcomes in our study is
similar to those reported in the previous studies carried out in Japan [10,12]. Pulmonary inflammation
leads to pathways, including systemic inflammatory responses, an increase in blood coagulation
factors, and an imbalanced autonomic reflex which interferes with the hearth rhythm control [15].
Ichiki et al. (2016) suggested that the possibility of the effect attenuation was due to the inclusion of a
wide range of age or a lower incidence of underlying ischemic heart diseases in Japan, compared to
Western countries [12]. In Sajani et al. (2014), PM10-related all-cause EAD was higher when compared
with all-cause mortality, with cardiovascular and respiratory EAD being lower when compared to
that of mortality and hospital admissions [9]. Further investigations would be necessary to determine
whether the use of EAD underestimates certain types of disease or misclassifies study populations.

In contrast with previous findings regarding the effects of ambient PM2.5 on cerebrovascular
outcomes [40,41], our study observed inverse associations, especially on average lags. There are
three possibilities which could explain this situation. The first possibility is that the effect was too
acute, or that the frail population was too weak, that the incidence rate was lower than the fatality
rate, causing a low prevalence in the study population [42]. On the other hand, it could be due to
the harvesting effect, which is also known as the displacement of a health outcome (in this study,
EAD displacement). Wellenius et al. (2012) [30] reported a 12-h lag in PM2.5 on stroke onset, instead
of a per-day lag. If stroke is triggered within 24 h, the use of a per-day lag might attenuate the
effect estimates (Figure S1). The third possibility is the displacement of the frail population into
other categories. In mortality studies, double-counting of cases is not a concern. Thus, in observing
mortality displacement, category displacement would not be an issue. In the utilization of EAD as
a health indicator, category displacement could be an issue, in addition to the over-time morbidity
displacement. This is possible as cerebrovascular patients could have complications, such as recurrent
stroke, seizure, pain, anxiety depression, or infection [43,44]. Assuming that long-term exposure
to ambient PM2.5 has predisposed an individual to a morbid condition, the partial effects observed
here might be due to the harvesting effect, even if it is not a total attribute. This would also explain
the insignificance of observations in cardiovascular outcomes in our study. These, however, require
further investigation.

The lag pattern observed in the current study is consistent with the hypothesized pattern of the
harvesting effect, whereby a drop follows an initial increase. Although the drops were significant,
as observed in Figure 3a and Figure S1, the pattern of a drop following the initial increase reflected
the possibility that health outcomes were brought forward in time. In other words, if the initial
increase was counterbalanced by the drop, there is a harvesting effect in the association being observed.
Otherwise, a second increase would follow for the drop, whereby all three parts throughout the lags
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could provide an overview of the association—air pollution does not only harvest (displace) frail
populations, but also increases the pool size of frail populations [45].

This study has several strengths. First, the multi-city analysis allowed a representative overview
of the association between ambient PM2.5 and various health outcomes. There were significant
differences of environmental variables between cities (Table S3), thus pooling the effect estimates
covering the geologically distinct locations improved the representativeness of the observed health
effects of PM2.5. Although another study focusing on cardiovascular disease in Japan included over
30 prefectures, it only included data over 9 months [12], whereas our study spanned a longer period.
Evidence of adverse effects of short-term exposure to ambient PM2.5 on EAD for all-cause, respiratory,
and neuropsychological outcomes in Japan was added to the literature. Second, we explored the
7-day lag structure, which allowed us to observe potential harvesting effects as well as average
effects in different health outcomes. Third, our study indicated the usefulness of EAD as an indicator,
which reflects an acute onset of medical conditions. Although EAD has not been used until recently,
establishing the consistency and reliability of EAD as a health indicator is important for future studies
in countries where other health data are difficult to obtain.

Nonetheless, we would like to acknowledge some limitations in our study. First, the diagnosis
for each dispatch was confirmed by a medical doctor upon arrival of the dispatch. This might
misclassify the exact medical condition which would be diagnosed afterwards. It is not possible for us
to detect the misclassification, if there is any, as our data did not include any individual information.
Second, exposure to ambient PM2.5 might have been misclassified as our data could not represent the
actual personal exposure for each individual. Furthermore, air pollutant data was obtained from one
monitoring station in each city. Third, the EAD data contained general categories of diagnoses.
Although it is useful in providing a generalizable and representative observation on the study
population, it could not show the effect on specific types of disease from each category of diagnoses.
For example, the EAD data could provide a population within the category of respiratory outcomes,
but it could not distinguish between specific types of respiratory outcomes, such as bronchitis, asthma,
or chronic obstructive pulmonary disease. Finally, more recent data were not available, despite efforts
trying to update it. More recent data might contribute additional information, although it may not
significantly alter the slope of the risk.

5. Conclusions

In conclusion, short-term exposure to ambient PM2.5 increased the risk of EAD for all-cause,
respiratory, and neuropsychological outcomes. The effects observed were generally acute, occurring
within the first 2 days. Average lag effects were observed only in respiratory outcomes, extending
up to lag 0–3. No significant association was observed in cardiovascular outcomes, while inverse
associations were observed in cerebrovascular outcomes.

Supplementary Materials: The following are available online at www.mdpi.com/1660-4601/15/2/307/s1,
Table S1: Sensitivity analysis using different df on calendar date, Table S2: Sensitivity analysis using different df
on temperature, Table S3: p-values of Tukey’s test for environmental variables between cities, Table S4: Amount
of heterogeneity (I2) (%) for each diagnosis at different lags. Figure S1: Percent change of EAD associated with
10 µg/m3 increase in PM2.5 in unconstrained, distributed lag model.
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