
International  Journal  of

Environmental Research

and Public Health

Article

Distribution, Sources, and Water Quality Assessment
of Dissolved Heavy Metals in the Jiulongjiang River
Water, Southeast China

Bin Liang , Guilin Han * , Man Liu, Kunhua Yang , Xiaoqiang Li and Jinke Liu

School of Scientific Research, China University of Geosciences (Beijing), Beijing 100083, China;
liangbin@cugb.edu.cn (B.L.); lman@cugb.edu.cn (M.L.); kunhuayang@cugb.edu.cn (K.Y.);
xiaoqli@cugb.edu.cn (X.L.); liujinke@cugb.edu.cn (J.L.)
* Correspondence: hanguilin@cugb.edu.cn; Tel.: +86-10-8232-3536; Fax: +86-10-8232-1115

Received: 25 October 2018; Accepted: 3 December 2018; Published: 5 December 2018
����������
�������

Abstract: In this study, the concentration of eight dissolved heavy metals (Ti, Cr, Mn, Fe, Ni, Mo,
Sb, and Ba) in 42 water samples from the Jiulongjiang River, southeast China, were determined by
inductively coupled plasma mass spectrometry (ICP-MS). Multivariate statistical methods, including
correlation analysis (CA) and factor and principal component analysis (FA/PCA), were analyzed to
identify the sources of the elements. Water quality index (WQI) and health risk assessment, including
hazard quotient (HQ) and hazard index (HI), were used to evaluate water quality and the impacts on
human health. Our results were compared with the drinking water guidelines reported by China,
the World Health Organization (WHO), and the United States Environmental Protection Agency
(US EPA), revealing that Ti, Mn, and Sb were not within approved limits at some sites and might be
the main pollutants in the drainage basin. Based on the spatial distributions, Ti, Mn, Fe, Ni, and Mo
showed good similarity, indicating that they might come from similar sources along the river. The CA
results also showed that Ti, Mn, Fe, Ni, and Mo had a high correlation coefficient. The FA/PCA
results identified three principal components (PC) that accounted for 79.46% of the total variance.
PC 1 suggested that a mixed lithogenic and urban land source contributed to Ti, Mn, Fe, Ni, and Mo;
PC 2 showed that Cr, Ni, and Mo were influenced by the discharge of industrial effluents; Sb had a
strong loading on PC 3, which was controlled by mining activities. The results of the WQI indicated
that the water in the Jiulongjiang River was basically categorized as excellent water, but the water
quality levels in site W5 and N4 were poorer due to urban land use. Hazard quotient and HI values
showed that Sb was a potential threat to human health, indicating that preventive actions should be
considered in regard to mining activities in the upper reaches of Beixi stream.

Keywords: dissolved heavy metals; the Jiulongjiang River; correlation analysis; factor and principal
component analysis; water quality index; health risk assessment

1. Introduction

Globally, heavy metals are one of the most hazardous pollutants in water [1–6], and can be
observed in dissolved phase [7–10], suspended particle phase [11–13], and sedimentary phases [14,15]
in water systems. Dissolved heavy metals are generally more toxic than other phases [7,16].
Many heavy metal elements, such as Ti, Cr, Mn, Fe, Ni, Cu, Zn, Mo, Cd, Sb, Ba, Pb, etc., used to be
detected in dissolved form due to industrial and domestic discharge without treatments [17–19]. Due to
the toxicity, non-degradation, and bio-accumulation of heavy metals, an overbalance of concentrations
can make water unsuitable for drinking and even cause severe risks to human bodies [4,20–22].
Statistically, about 80% of human disease is caused by water pollution, according to the World Health
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Organization (WHO) [23]. Therefore, continued research on dissolved heavy metals may be key in
order to shed further light on some of the effects of pollution. Moreover, evaluating the effects of
dissolved heavy metals on human health and water systems is considered as one of the most direct
and important ways in which to judge the pollution present in water [1,10,23–25]. Thus, it is of great
significance to understand the concentration, distribution, and sources of dissolved heavy metals,
to assess water quality and health risks, to control water pollution, and to protect water resources [25].

Dissolved heavy metals can be released into the aqueous system by natural processes, such as
bedrock weathering or volcanism [26,27], and element concentrations can be largely increased
through anthropogenic factors, such as industrial wastes, sewage discharge, coal combustion, mining,
and vehicle transportation [24,28,29]. Unfortunately, it is almost inevitable that water quality will
be degraded with the rapid development of urban, industrial, and agricultural activities in a city.
The Jiulongjiang River is the second longest river in Fujian Province, southeast China, and is
also the source of irrigation and drinking water for many riverside towns [30]. In recent years,
the drainage basin has received considerable attention in regard to its environmental problems, such as:
(i) the discharge of industrial and domestic sewage [31]; (ii) the effects of local mining activities,
given that mining and coal resources are widely distributed in the upper reaches of Beixi stream [32];
(iii) the inputs of chemical fertilizers and nutrients [32]; (iv) the extensive development of hydro power
plants in the drainage basin [8,33]; (v) the effects of a large-scale livestock operation on the bank of
the river [34], etc. These situations may have contributed to the increasing metal pollution of the
Jiulongjiang River, and appropriate measures must be taken in order to ensure the protection of local
human and environmental health. However, information on source identification and assessment of
water quality has rarely been discussed in previous studies.

In this study, a geochemical survey on eight selected elements (Ti, Cr, Mn, Fe, Ni, Mo, Sb, and Ba)
in 42 water samples has been conducted with the objectives to (i) investigate the spatial distribution
characteristics of dissolved heavy metals in the river water; (ii) identify the sources of dissolved
heavy metals with multivariate statistical methods, including correlation analysis (CA) and factor
and principal component analysis (FA/PCA); (iii) evaluate water quality and distinguish the hazard
impacts on human health by calculating the water quality index (WQI) as well as the hazard quotient
(HQ) and hazard index (HI). This paper is aiming to help develop local water management strategies
for preventing hazardous contamination.

2. Materials and Methods

2.1. Regional Geography

The Jiulongjiang River is located in the south of Fujian Province (24◦13′–25◦51′ N,
116◦47′–118◦02′ E) (Figure 1), and consists of the Beixi stream, Xixi stream, Nanxi stream, and the
regional estuary. The Beixi stream is the main stream in the drainage basin, and the Xixi stream and
Nanxi stream flow towards the estuary. The drainage basin has an area of 14,700 km2 [35], and the
length of the river is approximately 1723 km, with an average annual runoff of 1.4 × 1010 km3 [33,36].
The study area is situated in the subtropical oceanic monsoon climate zone, with an average annual
temperature around 21 ◦C and annual precipitation of 1200–2000 mm [31,33].

The drainage basin is an important area where the Eurasian plate interacted with the Pacific
plate [37]. Multi-stage magmatic activities took place in the Mesozoic, and the medium-acidic magmatic
rocks were widely distributed. Intrusive rocks and volcanic rocks are mainly distributed in the central
and southern parts of the basin, accounting for about two-thirds of the total drainage area [33].
Sedimentary rocks and coal-bearing interlayers are exposed in the northeastern part of the drainage
basin and the source of the Xixi stream. The downstream of the Xixi stream deposits a series of alluvial
stratum. Carbonates are distributed in the upper reaches of the Beixi stream [38].
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2.2. Sample Collection and Preparation

Sampling was conducted from downstream to upstream of each stream on the basis of
hydrological conditions, lithology, and land use. Water samples were collected from 42 sites along the
Beixi stream, Xixi stream, Nanxi stream, and estuary of the Jiulongjiang River, labeled N1–23, W1–10,
S1–4, and E1–5 (Figure 1), respectively, during 24–29 July 2017. Before collection, all instruments
were rinsed three times with river water. Samples were collected using a water sampler and stored
in pre-cleaned high-density polyethylene (HDPE) plastic bottles. For subsequent determination of
dissolved heavy metals, water samples were filtered through a 0.22-µm filter membrane on site.
Then, water temperature and pH were immediately determined using a YSI water quality monitoring
meter (Xylem Inc., Yellow Springs, OH, USA). Finally, the filtrate was acidified to pH ≤ 2 using
ultra-pure concentrated nitric acid and stored at approximately 4 ◦C before element determination.

2.3. Dissolved Heavy Metals Determination

The dissolved heavy metals, including Ti, Cr, Mn, Fe, Ni, Mo, Sb, and Ba, were analyzed using
inductively coupled plasma-mass spectrometry (ICP-MS, Elan 9000, Perkin Elmer Optima, Waltham,
MA, USA) in Tianjin Key Laboratory of Water Resources and Environment, China. The uncertainty
of the standard reference material (GSB 04-1767-2004) was below 0.7%. Procedural blanks were
determined between every 10 water samples to control the accuracy. Method precision was controlled
by re-determining randomly replicate samples between every 10 water samples. Good agreement
was obtained between the determined concentrations and standard reference material. The relative
standard deviations (RSDs) of elements were below 6.1%. For comparing the distribution and
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exploring the possible sources of dissolved heavy metals in this study, all of the data were processed
using Microsoft Office 2019 (Microsoft Corporation, Redmond, Seattle, WA, USA) and SPSS 19.0
(IBM Corporation, Armonk, NY, USA).

2.4. Water Quality Index

The WQI has been emerging as a powerful tool to assess water quality. The impacts caused by
different water quality variables were calculated with the following equation:

WQI = Σ [Wi × (Ci/Si)] × 100, (1)

where Wi represents the weight of each parameter and is calculated on the basis of the eigenvalues
for each principal component and factor loading for each parameter from the FA/PCA results [29,39];
Ci represents the concentrations of each dissolved heavy metal; and Si represents the guideline values
of Chinese drinking water (GB 5749-2006) for each element. The WQI values were classified into
five categories: (i) excellent water quality (0 ≤WQI < 50); (ii) good water quality (50 ≤WQI < 100);
(iii) poor water quality (100 ≤WQI < 200); (iv) very poor water quality (200 ≤WQI < 300); and (v)
water unsuitable for drinking (WQI ≥ 300) [24].

2.5. Health Risk Assessment

Hazard quotient and HI are calculated to evaluate the toxicity of hazardous substances and factors
in aqueous systems with quantitative assessments [40,41]. The ingestion of elements through the mouth
and nose and absorption through the skin are the three most common exposure pathways [16]. Hazard
quotient is the ratio between exposure through individual pathways and the reference dose [42].
Hazard index is the sum of the HQs for individual elements from both the applicable pathways
mentioned previously, which is used to analyze the total potential non-carcinogenic risk [43,44].
Non-carcinogenic risk or adverse effects on human health exist when HQ or HI is ≥ 1; no deleterious
effects exist when HQ or HI is < 1. Equations to calculate HQ and HI values are as follows:

ADDingestion = (Cw × IR × EF × ED)/(BW × AT), (2)

ADDdermal = (Cw × SA × Kp × ET × EF × ED × 10−3)/(BW × AT), (3)

HQ = ADD/RfD, (4)

RfDdermal = RfD × ABSGI, (5)

HI = ΣHQs, (6)

where the meanings and their units in these equations are as follows: ADDingestion and ADDdermal
represents the average daily dose from ingestion and dermal absorption, respectively (µg/kg/day);
Cw is the average concentration of each element in water (µg/L); BW is the average body weight
(70 kg for adults and 15 kg for children); IR is the ingestion rate (2 L/day for adults and 0.64 L/day
for children); EF is the exposure frequency (350 days/year); ED is the exposure duration (30 years
for adults and 6 years for children); AT is the average time (=ED × 365 days/year); SA represents
the exposed skin area (18,000 cm2 for adults and 6600 cm2 for children); ET is the exposure time
(0.58 h/day for adults and 1 h/day for children); Kp represents dermal permeability coefficient in
water (cm/h); RfD is the reference dose (µg/kg/day); ABSGI is the gastrointestinal absorption factor
(dimensionless). The reference values were obtained from the United States Environmental Protection
Agency (US EPA) [42].
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3. Results and Discussion

3.1. Water Parameters and Distribution of Dissolved Heavy Metals

The parameters of water samples and concentrations of dissolved heavy metals are listed in Table 1.
The Kolmogorov-Smirnov (K-S) test was used to compare a sample with a reference probability
distribution, and the results showed that temperature, pH, Ti, and Fe were normally distributed
(bilateral significance > 0.100). The coefficient of variation (CV) for the elements indicated that the
mean concentration values might have been affected by abnormal interference, resulting in extremely
high values. Thus, median values would be better than arithmetic mean values in this study. However,
the results reported in the guidelines and other rivers were given as mean values for comparison.

The temperature of water ranged from 21.5 ◦C to 31.8 ◦C, with an average of 26.0 ◦C. Samples
collected from Beixi stream had a lower temperature than those from the Nanxi stream and Xixi stream.
The pH values varied between weak acidic and weak alkaline (6.42 to 7.60), basically within the
guideline (6.5–8.5) reported by GB 5749-2006 [45]. The values of dissolved heavy metals decreased
in the following order: Ti > Fe > Ba > Mn > Sb > Mo > Ni > Cr. Based on the average concentrations,
the selected elements in water were classified into three categories: (1) Cr, Ni, and Mo (<1 µg/L); (2)
Mn and Sb (1–10 µg/L); (3) Ti, Fe, and Ba (>10 µg/L) (Table 1). Cr, Fe, Ni, Mo, and Ba complied with
guidelines for drinking water recommended by China (GB 5749-2006), the WHO, and the US EPA,
while Ti, Mn, and Sb were not within approved limits at some sites and might be affected by intensive
anthropogenic activities along the river. Based on the heavy metals in major world rivers, Ti and Sb
were relatively higher, and Ni and Ba were similar to the mean values [46]. Compared with recent
published works, the results of Cr, Mn, and Ni were similar to those from the Yangtze River [9] and
slightly lower than those from the Pearl River [47]; the concentrations of Ba were similar to those from
the Douro River, Portugal [48]; the concentrations of Mo were similar to the water from the Calore
River, southern Italy [19]; and the value of Fe in the Jiulongjiang River was similar to that in the Han
River [16].

The distribution of each element is individually plotted in Figure 2, and the original data is shown
in the Supplementary Materials (Table S1). Based on the distribution characteristics of eight elements,
we concluded that the pattern of Ti concentrations were highly similar with that of Fe concentrations
in terms of spatial distribution across the whole drainage basin. Ba was slightly similar with Ti and Fe
in the Xixi stream. In the Beixi stream, Mn, Ni, and Mo showed a good homogeneity in the upper and
middle reaches (N1–17), similar to Ti and Fe. In the Nanxi stream, Ti, Fe, and Mo were distributed
in a similar pattern, and Cr, Mn, and Ni were distributed in another pattern with a peak value in the
sample from site S4. Sb had a flat pattern, except for sample W1. Overall, the distributions of Ti, Mn,
Fe, Ni, and Mo showed a good similarity, indicating that they might be affected by similar natural and
anthropogenic activities along the river.
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Table 1. Physicochemical parameters and concentrations of dissolved heavy metals in the Jiulongjiang River and from other places.

Min Max Median Mean SD 1 CV 2 K-S Test 3
Guidelines for Drinking Water World Douro Calore Le’an Pearl Yangtze Han

China 5 WHO 6 US PEA 7 River 8 River 9 River 10 River 11 River 12 River 13 River 14

Water parameters
T (◦C) 21.5 31.8 26.0 26.5 2.17 0.08 0.452
pH 6.42 7.60 7.19 7.16 0.27 0.04 0.985 6.50–8.50

Dissolved heavy metals (µg/L)
Ti nd 4 135.03 47.34 44.39 24.76 0.56 0.487 100 3 2.69
Cr 0.05 6.25 0.17 0.45 1.08 2.41 0 50 50 100 1 2.12 19.7 1.70 0.26 8.14
Mn 0.06 473.70 1.42 40.25 86.59 2.15 0 100 400 7 1035 1.06 2.53 30.72
Fe 0.83 86.03 28.18 27.47 15.73 0.57 0.653 300 300 40 12.53 30.64
Ni 0.05 10.05 0.38 1.17 1.93 1.65 0.001 20 70 0.3 5.93 24.6 1.89 0.18 1.71
Mo 0.22 4.60 0.79 0.85 0.71 0.83 0.015 70 6 15.09 0.89
Sb 0.25 9.67 1.09 1.26 1.34 1.06 0 5 20 6 0.07 1.98 0.33 41.58
Ba 4.14 231.42 20.12 29.64 35.20 1.19 0 700 1300 2000 20 19.24 194 44.55 87.47

1 SD: standard deviation; 2 CV: the coefficient of variation; 3 K-S test: the Kolmogorov-Smirnov (K-S) test; 4 nd: no data. Data sources: 5 Chinese Ministry of Health [45]; 6 WHO (the World
Health Organization) [49]; 7 US EPA (the United States Environmental Protection Agency) [50]; 8 Li [46]; 9 Ribeiro et al. [48]; 10 Zuzolo et al. [19]; 11 Jiang et al. [10]; 12 Wang [47];
13 Li et al. [9]; 14 Li and Zhang [16].
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3.2. Source Identification of Dissolved Heavy Metals

3.2.1. Correlation Analysis

A Pearson correlation matrix was used to investigate the relations and interactions of dissolved
heavy metals in the Jiulongjiang River water [19,25,29]. Strong correlation coefficients might result
from similar hydro-geochemical characteristics in the different sites of the study area [51]. The results
are shown in Table 2. Strong positive correlation coefficients were observed ranging from 0.630 to 0.996
between each pair of Ti, Mn, Fe, Ni, and Mo, at the 0.01 level, where Ti and Fe were highly correlated,
corresponding to the homogeneous spatial distribution of these two elements in Figure 2. Moreover,
Mn, Ni, and Mo add might be distributed throughout the Jiulongjiang River in a similar way with
Ti and Fe. Cr and Ni had a strong positive correlation coefficient of 0.393 at the 0.05 level, indicating
similar sources of Cr and Ni. Ba had a low correlation with other elements. The strong correlations at
different levels among the metals indicated multiple sources could be responsible for the dissolved
heavy metals present in water of the Jiulongjiang River.



Int. J. Environ. Res. Public Health 2018, 15, 2752 8 of 14

Table 2. Pearson correlation matrix of dissolved heavy metals in the Jiulongjiang River.

Ti Cr Mn Fe Ni Mo Sb Ba

Ti 1
Cr −0.014 1
Mn 0.698 ** −0.018 1
Fe 0.996 ** 0.010 0.696 ** 1
Ni 0.630 ** 0.393 * 0.857 ** 0.632 ** 1
Mo 0.649 ** 0.266 0.726 ** 0.653 ** 0.802 ** 1
Sb −0.151 0.032 −0.029 −0.111 0.003 −0.073 1
Ba 0.248 −0.047 0.243 0.257 −0.036 −0.034 −0.016 1

*: strong positive correlation coefficients at the 0.05 level; **: strong positive correlation coefficients at the 0.01 level.

3.2.2. Factor and Principal Component Analysis

Factor and Principal Component Analysis is a statistical method to explain the underlying
structure of a set of variables and interpret the relationships between variables by converting a large
number of potentially related variables into a set of linearly unrelated variables using a dimensionality
reduction technique [25,52]. The data needed to avoid numerical ranges of the original variables by
z-scale standardization [53]. The reliability of the data for FA/PCA was under 0.001, as calculated by
Kaiser-Meyer-Olkin and Bartlett’s sphericity test. The results of FA/PCA for metal concentrations are
listed in Table 3. In order to identify the sources of the dissolved heavy metals, the factor scores for
each element are plotted in Figure 3.

Table 3. Varimax rotated component matrix of dissolved heavy metals in the Jiulongjiang River.

Variables PC 1 PC 2 PC 3 Communalities

Ti 0.90 −0.24 −0.14 0.88
Cr 0.17 0.71 0.20 0.58
Mn 0.90 −0.08 0.06 0.81
Fe 0.90 −0.23 −0.10 0.87
Ni 0.88 0.37 0.10 0.92
Mo 0.85 0.30 −0.03 0.82
Sb −0.08 0.01 0.95 0.91
Ba 0.22 −0.69 0.21 0.57

Eigenvalues (%) 4.00 1.35 1.00
Variance (%) 50.03 16.88 12.56

Cumulative (%) 50.03 66.90 79.46

PC: principal component. Significance of Kaiser-Meyer-Olkin and Bartlett’s sphericity test is <0.001. Extraction
method: Principal component analysis. Rotation method: Varimax with Kaiser normalization. Rotation converges
after four iterations.

Three principal components (PC) with eigenvalues were extracted accounting for 79.46% of the
total variance. The factor loadings were classified into three groups: strong, moderate, and weak,
with the loading values of >0.75, 0.75–0.50, and 0.50–0.30 [52], respectively. PC 1 had strong loadings of
Ti (0.90), Mn (0.90), Fe (0.90), Ni (0.88), and Mo (0.85), with a variance of 50.03% (Figure 1), indicating a
mixed source of weathering rocks and urban land. Ti and Fe, which are the major elements in crustal
materials, were major components with relatively high values [27,54], and the low concentrations
of Mn, Ni, and Mo were also representative of their background levels. Therefore, a lithogenic
origin might be presumed, since these heavy metals are generally present in weathered rocks [41,55].
Moreover, Ti, Mn, Fe, Ni, and Mo were enriched in site W5 and N4, as well as their nearby area,
which were defined as urban land [31], indicating distinct urban land pollution. PC 2, responsible for
16.88% of the variance, was correlated with Cr (0.71), Ni (0.37), and Mo (0.30), which are associated
with the discharge of industrial effluents from the factories. It has been reported that some factories are
located in the estuary wharf [52,56]. PC 3 had a strong positive loading of Sb (0.95), with a variance of
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12.56%. Mine deposits and coal areas are distributed in the upper reaches of Beixi stream (Figure 1) [32],
which might be the main factor to cause high loading of Sb in the drainage basin [57,58].
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3.3. Water Quality Index and Health Risk Assessment

3.3.1. Water Quality Index

The weights of each parameter for calculating the WQI were obtained on the basis of the FA/PCA,
and the weights are summarized in Table 4. The values of WQI were calculated with Equation
(1), and the WQI results of each sampling site are shown in Figure 4 and in the Supplementary
Materials (Table S1). The WQI values varied from 4.23 to 97.65, among which water samples at site
N4 (WQI = 97.65) were categorized as good water, and water samples at W5 had a value near the
good water limit (WQI = 47.33). In these two sites, water might have been polluted by anthropogenic
activities. Water in other sites of this study area fell into the category of excellent water, with WQI
values less than 50, indicating the natural water was suitable for drinking. In general, the water quality
of Jiulongjiang River was good, but more attention should be paid to sites N4 and W5. On the basis of
source identification analyzed by multivariate statistics, Ti, Mn, Fe, and Ni were controlled factors in
these two sites, and thus, our study results suggest that the local government should introduce policies
to control urban land pollution and industrial emissions.

Table 4. Weights for the variables in the water samples from the Jiulongjiang River.

PC Eigenvalue (%) Relative
Eigenvalue Variable Loading

Value
Relative Loading

Value on Same PC Weight 1

1 4.00 0.63 Ti 0.90 0.20 0.13
Mn 0.90 0.20 0.13
Fe 0.90 0.20 0.13
Ni 0.88 0.20 0.13
Mo 0.85 0.19 0.12

Total 4.43 1.00 0.63

2 1.35 0.21 Cr 0.71 0.51 0.11
Ni 0.37 0.27 0.06
Mo 0.30 0.22 0.05

Total 1.38 1.00 0.21

3 1.00 0.16 Sb 0.95 1.00 0.16
Total 0.95 1.00 0.16

Total 6.36 1.00
1 Weight = relative eigenvalue × relative loading value.
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3.3.2. Health Risk Assessment

Based on the risk assessment guidance [42], HQ and HI values for Cr, Mn, Fe, Ni, Mo, Sb, and Ba
by ingestion and dermal pathways for adults and children are shown in Figure 5, and the calculation
processes are provided in Supplementary Materials (Tables S2–S6), where the HI values were the
sum of HQingestion and HQdermal. The missing values of Ti were caused by the lack of RfDingestion

and RfDdermal values. For adults, the HQingestion and HQdermal for all elements were smaller than
1, indicating these elements presented little hazard through ingestion and dermal absorption in the
whole drainage area. Comparatively, the HQingestion and HQdermal for children were higher, implying
children were more sensitive to the dissolved heavy metals in the water. A health risk assessment
showed that the HI values of Sb were closer to 1 (0.09 for adults and 0.17 for children) than the
other elements, indicating that Sb might represent a potential threat to the water quality of the river.
Therefore, we also suggest that more attention should be paid towards controlling mining activities in
order to decrease the levels of Sb inputted into the Jiulongjiang River.Int. J. Environ. Res. Public Health 2018, 15, x FOR PEER REVIEW  11 of 14 
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4. Conclusions

This study presented data of dissolved heavy metals (Ti, Cr, Mn, Fe, Ni, Mo, Sb, and Ba) in the
Jiulongjiang River water in order to analyze the distribution and sources of pollution in the water,
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by using multivariate statistical methods, including CA and FA/PCA. We also provided important
information that is relevant to local water management officials by assessing water quality and health
risk. Our results arrive at the following conclusions:

(i) Three groups of dissolved heavy metals were categorized: (1) Cr, Ni, and Mo (<1 µg/L); (2) Mn
and Sb (1–10 µg/L); (3) Ti, Fe, and Ba (>10 µg/L), in which Ti, Mn, Sb were not within accepted
limits at some sites on the basis of guidelines established by the WHO, the US EPA, and China,
indicating that they might be the main pollutants of concern in the drainage basin.

(ii) Based on the spatial distributions and CA results, Ti, Mn, Fe, Ni, and Mo all had a high correlation
coefficient, indicating a similar source. The FA/PCA results identified three components that
accounted for 79.46% of the total variance. PC 1 suggested that a mixed lithogenic and urban
land source contributed to Ti, Mn, Fe, Ni, and Mo; PC 2 explained that Cr, Ni, and Mo were also
influenced by the discharge of industrial effluents; Sb had a strong loading on PC 3, which was
controlled by mining activities.

(iii) The results of WQI indicated that the water in the Jiulongjiang River was basically categorized as
excellent water, and water in sites W5 and N4 were poorer because of urban land use. HQ and
HI values indicated that Sb was a potential threat to human health. Mining activities in the upper
reaches of Beixi stream should be closely scrutinized, with preventive actions taken, if needed.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/15/12/2752/
s1, Table S1. Original data and water quality index (WQI) results of dissolved heavy metals in the Jiulongjiang
River. Table S2. Hazard quotient by ingestion pathway of dissolved heavy metals for adults. Table S3. Hazard
quotient by ingestion pathway of dissolved heavy metals for children. Table S4. Hazard quotient by dermal
pathway of dissolved heavy metals for adults. Table S5. Hazard quotient by dermal pathway of dissolved heavy
metals for children. Table S6. Hazard index of dissolved heavy metals in the Jiulongjiang River.

Author Contributions: Conceptualization: B.L. and G.H.; methodology: B.L.; software: B.L.; validation: G.H.;
investigation: G.H., M.L., K.Y., X.L., and J.L.; writing—original draft preparation: B.L.; writing—review and
editing: G.H.; supervision: G.H.; project administration: G.H.; funding acquisition: G.H.

Funding: This work was supported jointly by the National Natural Science Foundation of China (No. 41325010;
41661144029).

Acknowledgments: The authors gratefully acknowledge Yupeng Tian for his assistance with field sampling.
The authors also thank Jun Li for laboratory assistance. The authors thank the three anonymous reviewers and
the editors for the valuable comments and suggestions that greatly improved the quality of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Islam, M.S.; Ahmed, M.K.; Raknuzzaman, M.; Habibullah-Al-Mamun, M.; Islam, M.K. Heavy metal pollution
in surface water and sediment: A preliminary assessment of an urban river in a developing country.
Ecol. Indic. 2015, 48, 282–291. [CrossRef]

2. Kominkova, D.; Nabelkova, J. Effect of urban drainage on bioavailability of heavy metals in recipient.
Water Sci. Technol. 2007, 56, 43–50. [CrossRef] [PubMed]

3. Kaushik, A.; Kansal, A.; Meena, S.; Kumari, S.; Kaushik, C.P. Heavy metal contamination of river Yamuna,
Haryana, India: Assessment by Metal Enrichment Factor of the Sediments. J. Hazard. Mater. 2009, 164,
265–270. [CrossRef] [PubMed]

4. Chowdhury, S.; Mazumder, M.A.J.; Al-Attas, O.; Husain, T. Heavy metals in drinking water: Occurrences,
implications, and future needs in developing countries. Sci. Total Environ. 2016, 569–570, 476–488. [CrossRef]

5. Wu, Q.; Leung, J.Y.S.; Geng, X.; Chen, S.; Huang, X.; Li, H.; Huang, Z.; Zhu, L.; Chen, J.; Lu, Y. Heavy metal
contamination of soil and water in the vicinity of an abandoned e-waste recycling site: Implications for
dissemination of heavy metals. Sci. Total Environ. 2015, 506–507, 217–225. [CrossRef]

6. Xiao, J.; Wang, L.; Deng, L.; Jin, Z. Characteristics, sources, water quality and health risk assessment of trace
elements in river water and well water in the Chinese Loess Plateau. Sci. Total Environ. 2019, 650, 2004–2012.
[CrossRef]

http://www.mdpi.com/1660-4601/15/12/2752/s1
http://www.mdpi.com/1660-4601/15/12/2752/s1
http://dx.doi.org/10.1016/j.ecolind.2014.08.016
http://dx.doi.org/10.2166/wst.2007.736
http://www.ncbi.nlm.nih.gov/pubmed/18025730
http://dx.doi.org/10.1016/j.jhazmat.2008.08.031
http://www.ncbi.nlm.nih.gov/pubmed/18809251
http://dx.doi.org/10.1016/j.scitotenv.2016.06.166
http://dx.doi.org/10.1016/j.scitotenv.2014.10.121
http://dx.doi.org/10.1016/j.scitotenv.2018.09.322


Int. J. Environ. Res. Public Health 2018, 15, 2752 12 of 14

7. Shotyk, W.; Bicalho, B.; Cuss, C.W.; Donner, M.W.; Grant-Weaver, I.; Haas-Neill, S.; Javed, M.B.; Krachler, M.;
Noernberg, T.; Pelletier, R.; et al. Trace metals in the dissolved fraction (<0.45 µm) of the lower Athabasca
River: Analytical challenges and environmental implications. Sci. Total Environ. 2017, 580, 660–669. [CrossRef]

8. Yang, X.; Wang, Z. Distribution of dissolved, suspended, and sedimentary heavy metals along a salinized
river continuum. J. Coast. Res. 2017, 33, 1189–1195. [CrossRef]

9. Li, S.; Xu, Z.; Cheng, X.; Zhang, Q. Dissolved trace elements and heavy metals in the Danjiangkou Reservoir,
China. Environ. Geol. 2008, 55, 977–983. [CrossRef]

10. Jiang, Y.; Xie, Z.; Zhang, H.; Xie, H.; Cao, Y. Effects of land use types on dissolved trace metal concentrations
in the Le’an River Basin, China. Environ. Monit. Assess. 2017, 189, 633. [CrossRef]
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