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Abstract: With the rapid deployment of mobile technologies and their applications in the healthcare
domain, privacy concerns have emerged as one of the most critical issues. Traditional technical
and organizational approaches used to address privacy issues ignore economic factors, which are
increasingly important in the investment strategy of those responsible for ensuring privacy protection.
Taking the mHealth system as the context, this article builds an evolutionary game to model three
types of entities (including system providers, hospitals and governments) under the conditions of
incomplete information and bounded rationality. Given that the various participating entities are often
unable to accurately estimate their own profits or costs, we propose a quantified approach to analyzing
the optimal strategy of privacy investment and regulation. Numerical examples are provided for
illustration and simulation purpose. Based upon these examples, several countermeasures and
suggestions for privacy protection are proposed. Our analytical results show that governmental
regulation and auditing has a significant impact on the strategic choice of the other two entities
involved. In addition, the strategic choices of system providers and hospitals are not only correlated
with profits and investment costs, but they are also significantly affected by free riding. If the profit
growth coefficients increase to a critical level, mHealth system providers and hospitals will invest
in privacy protection even without the imposition of regulations. However, the critical level is
dependent on the values of the parameters (variables) in each case of investment and profits.

Keywords: mHealth; privacy protection; investment; evolutionary game; free riding; regulation

1. Introduction

Recently, the significant advances in Internet and mobile communications have had a great impact
on wireless networks and mobile applications [1]. By enabling patients to manage their health data
(e.g., via electronic health records) more conveniently [2], better tracking of medicine supplies [3] and
reducing the cost of care [4], mHealth technology has enormous potential for improving the quality
and timely delivery of healthcare [5]. However, mHealth is a double-edged sword technology and
its potential benefits have come accompanied by the threat of privacy violations [6]. According to a
survey by Healthcare Information and Management System Society (HIMMS), only 38% of clinicians
use patients’ Electronic Health Records (EHRs) under a formal privacy policy [7]. The annual Crime
Scene Investigation (CSI)/ Federal Bureau of Investigation (FBI) surveys and Computer Emergency
Response Team (CERT) statistics show that security breaches have been one of the most significant
challenges to OSN. For example, iCloud was attacked by black-hat hackers in 2014; the attack incurred
a large data loss that included user identities, emails, and telephone numbers of several million families
and firms. SafeNet Corporation reported that during the first half of 2016, 92% of companies and
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organizations experienced data breaches and that 3,046,456 data records were lost or stolen every
day [8]. Therefore, how to develop an effective mechanism for assessing privacy protection in mHealth
systems has become a challenge to governments, industries and academia research.

Currently, there are various data protection regulations and cyber security laws in both developed
and developing countries. For example, the General Data Protection Regulation (GDPR) is a regulation
in EU law on data protection and privacy for all individuals within the European Union (EU)
and the European Economic Area (EEA). The GDPR aims primarily to give control to individuals
over their personal data and to simplify the regulatory environment for international business by
unifying the regulation within the EU [9]. In China, the National Standards on Information Security
Technology—Personal Information Security Specification (GB/T 35273-2017) has taken effect on
1 May 2018. The Standard requires transparency, specificity and fairness of processing purpose,
proportionality, security, risk assessment, and the respect of individuals’ rights to control the processing
of information about them [10]. However, there is still a lack of penalties on privacy violation and data
disclosure in China.

In the academia area, the bulk of research on privacy issues in mHealth systems is mainly
focused on organizational and technological solutions [11]. However, these types of solutions are
no longer sufficient. On the one hand, as communication networks and social media play an
increasingly important role, the emergence of new privacy problems might occur. These problems
come not only from technological and organizational deficiencies, but also from economical disregard
and lack of oversight. On the other hand, profit maximization is considered to be the most
important goal of commercial entities. In reality, effective privacy protection in mHealth system
requires moderate investment from different entities (e.g., system providers, hospitals, governments
and patients). Requirements, may include technological research, equipment purchase, system
installation, organizational restructuring, staff training, service fees and/or governmental regulation
and auditing [12]. How to balance between the profits from and the costs of privacy investment should
be considered. Therefore, privacy-aware entities are shifting their focus from what is technically
possible or organizationally do-able, to including what is economically optimal.

The weakness of traditional solutions to privacy concerns is their lack of a quantitative decision
framework. Game theory is a branch of applied mathematics that formalizes strategic interaction
among autonomous agents, which can provide a mathematical framework for modeling privacy
problems in which multiplayers with contradictory or collaborative goals are considered [13].
Furthermore, game theory is capable of analyzing many scenarios before determining the appropriate
actions. This can greatly benefit for the entities’ decision making. In recent years, research on game
theoretic approaches to security and privacy problems can be organized into six main categories:
information security investment, trust and privacy, network security, malicious program, penetration
testing and digital forensics [14]. This paper focuses more on information security and privacy
investment and network security.

Existing research on game theoretic approaches primarily considers the interaction of two players
or two types of players under a competitive scenario [15]. However, three or more types of decision
makers might be involved in a game. The relationships between players can be cooperative, selfish,
or free riding. Moreover, it is difficult for different entities to identify and achieve the optimal
investment strategy in a single game process. Instead, they are assumed to have bounded rationality
and to be working under incomplete information. The long-term profit of each stage is different and
higher payoff strategies tend to displace lower profit strategies over time. Information security and
privacy investment studies based on the theories of a Bayesian game [16], Stackelberg game [17] and
differential game [15] cannot solve the above problems, because these games all assume that the game
players are rational, and ignore the dynamic process of adapting behavior. Additionally, privacy
investment has significant importance in reality and is indispensable for all entities. The co-investment
secured by governmental regulation should also be analyzed, but previous scholars have not researched
these topics sufficiently.
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Evolutionary game theory forgoes a typical assumption of classical game theory: rationality.
Instead, evolutionary game theory, supposes that game players (entities) are naïve optimizers operating
under imperfect information. Players can adapt their behavior on their immediate context [18]. Entities
interact with each other and receive profits based on their strategic choices. Strategies which receive
the higher profits spread in the population at the cost of other strategies with lower profits [19].
Evolutionary stability is a refinement of the concept of Nash equilibrium, which leads to ideas such as
an “unbeatable strategy” or an “evolutionarily stable strategy (ESS)”. Understanding this dynamic
process is the mainstay of evolutionary game theory [20].

This paper applies an evolutionary game theoretic approach to modeling and analyzing the
optimal investment strategy of privacy protection. We take the mHealth system as the context, which
involves three types of entities: system providers, hospitals and governments. To begin with, we review
some assumptions and define several parameters of the evolutionary game model. Then, we analyze the
stability of the model, and define reasonable codes of conduct for each player. Furthermore, we provide
numerical examples for illustration and to verify the mathematical model. Finally, we suggest several
countermeasures that could be used to improve the development of privacy protection in the mHealth
system. The main contributions of this paper are as follows:

• We review and summarize the features and weaknesses of existing game theoretical approaches
to study privacy related issues.

• We build an evolutionary game model to formulate cooperate interactions and bounded rational
confrontation among system providers, hospitals and governments in mHealth system.

• We analyze the different solutions obtained from evolutionary equilibrium and interpret different
outcomes on how they may benefit decision makers.

• We construct simulation experiments to prove the usefulness of our proposed model.

The rest of this paper is organized as follows: in Section 2, we review studies that are of relevance.
Section 3 describes the decision-making problems of privacy investment, and proposes the evolutionary
game model. Then, the ESSs are illustrated under different parameter conditions. Section 4 verifies and
analyzes the theoretical results obtained from numerical examples. Section 5 discusses the relationship
between the simulation results and strategic choice of privacy investment. Section 6 briefly summarizes
our research and provides several future directions.

2. Literature Review

Privacy has become one of the most important research issues in the information age [21]. Privacy
can be defined as the claim of individuals, groups or organizations to control when, how, and to
what extent their personal information is captured or extracted and used by others [22]. Existing
scholarly on privacy related issues were examined from three categories–organizational, technical,
and economical approaches.

Organizational research is often characterized or related to organizational culture [23], privacy
concerns [24], privacy paradox [25] and privacy policies [26]. Technological research mainly focuses
on two aspects: anonymity and access control [27]. Anonymity means the hiding and fuzzification of
the data source to prevent, associating information with identities of the individuals. The methods of
anonymity include handicapping [28], generalization [29], slicing [30], etc. Privacy protection based
on access control refers to controlling the network users to access the sensed data, on the one hand,
to ensure the legitimate, authenticated, even paid users access the sensitive data efficiently, on the
other hand, to prevent illegal, unauthenticated, unpaid users from accessing the nodes resources [31].

Despite being quite comprehensive, the organizational and technological methods of privacy
protection have disadvantages and limitations. Effective privacy protection in mHealth systems
requires a substantial investment by system providers, hospitals, governments and patients, all of
whom also want to maximize their benefits. However, traditional methods ignore the economic factors,
such as credit loss, investment costs and expected profits, all of which are important for independent
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entities attempting to make the optimal strategic decision. Investment decisions in this context lead
researchers to use game theoretic approaches to allocate limited resources, model benefit interactions,
and take into account the underlying incentive mechanisms [32].

Game theoretic approaches have been proposed by many researchers to improve network security
and privacy. The application of game theory in network security and privacy can be classified into
several categories: applications for analysis of network attack-defense [33], applications for network
security measurement [34], IDS configuration [35], location privacy [36], economics of security and
privacy [37], etc. From the perspective of economics, some literature concerning security and privacy
investment in information systems has been produced. In [38], a game theoretic approach is applied to
address security investment issues, in which the level of profits depends on the interaction between
players’ strategic choices. This paper points out that the profits a firm makes from security investment
depend on the extent of hacking. In contrast, the hacker’s profits depend on the probability of him or
her being caught. In [16], another game-theoretic approach is proposed to investigate different aspects
of security investment. Additionally, the potential advantages of using game-theoretic approaches to
security investment as opposed to decision-theoretic approaches are discussed. Based on the concepts
of Return on Attack (ROA) and Return on Investment (ROI), an attack-defense game tree is used to
analyze attack behaviors and the defender’s corresponding strategies [39].

With increasing interdependence, each firm free rides by investing less, and suffers lower
profit, while the attacker enjoys higher profit. Therefore, information sharing and cooperation
among firms can increase the level of information security; this is consistent to the finding of [40].
In [41], the intrusion detection system (IDS) of OSN is defined as a non-cooperative game, which is
used to answer two questions: What are the expected behaviors of rational attackers? What is the
optimal strategy for the defenders? The expected behaviors of attackers, the minimum defending
resources, and the optimal responding of the defenders are discussed based on a Nash equilibrium
analysis. In [42], a game theoretic framework is proposed to model the interaction between small
and medium-sized enterprises (SMEs) and attackers and to investigate the allocation of security
investment budgets. By emphasizing the importance of security information sharing, a game theoretic
model consisting two competitive firms is developed. This research investigated the benefits if
the firms created an information-sharing alliance, and showed that if information sharing among
allied firms had sufficiently large positive implications on firm requirements. The increased security
information sharing can bring two benefits for the firms: a “direct benefit”, and a “strategic benefit” [43].
Considering two similar firms, the relationship between information sharing and information security
investment is investigated. This research found that firms’ strategic choices vary with the features of
stored information, either complementary or substitutable, and the investment strategy chosen by the
firms might be sub-optimal [44].

Considering attacker behavior and leakage costs, the relationship between security investment and
information sharing are further discussed. Their findings showed that firms should devote significant
attention to their relationship with other firms when strategically choosing security investment [12].
By using differential game theoretic approaches, dynamic strategies for security investment and
information sharing for two competing firms are investigated. This paper examined how security
investment rates and information sharing rates are affected by several parameters in a non-cooperative
scenario. Other similar studies have been conducted by [45–47]. We summarize the features of existing
game theoretic approaches to security and privacy problems in Table 1.
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Table 1. Summary of game theoretic approaches to security & privacy problems.

Security & Privacy Problems Game Model Solution

Network attack-defense Stochastic game Nash equilibrium
Network security measurement Static zero-sum game Nash equilibrium

IDS configuration Dynamic Bayesian game Bayesian Nash equilibrium

Location privacy Incomplete information static game Bayesian Nash equilibrium

Security investment based on the
relationship of attack-defense

Static game, Stackelberg game, dynamic
Bayesian game

Nash equilibrium, Bayesian
Nash equilibrium

Security investment based on the
internal relationship of defenders

Differential game, repeated game,
dynamic Bayesian game

Nash equilibrium, Bayesian Nash
equilibrium, belief-based strategy

Security investment based on the
relationship of multiple players

Incomplete information game, repeated
game, dynamic Bayesian game

Nash equilibrium, Bayesian Nash
equilibrium, belief-based strategy

As shown in Table 1, in previous works, most of game theoretic models of security and privacy
investment are based on the assumption of a single scenario with an offender-defender interaction.
An offender attempts to breach system security to disclose or cause damage to the privacy data.
A defender, on the other hand, takes appropriate measures to enhance the level of privacy protection.
However, the types of entities in a mHealth system might be multiple, and could include offenders,
system providers, hospitals, patients and governments. The relationships between these entities are
not only oppositional in nature. The relationships can also be cooperative, selfish, or free riding.
Moreover, it is difficult to achieve the optimal investment strategy in a single game scenario where
there is incomplete information and bounded rationality. Security and privacy investment studies
based on other games, such as Bayesian, Stackelberg and differential games cannot solve this problem.
Also, perfect rationality may not be practical in this scenario. Furthermore, existing studies seldom
consider the impact of government regulation on investment. In the absence of appropriate regulation,
the entities that invest in privacy protection (e.g., system providers and hospitals) will attempt to
free ride on the privacy expenditures of others. How to motivate the entities to cooperate in privacy
investment is not investigated in existing articles.

To distinguish this study from the models in existing works, we propose a parametric evolutionary
game model. Our model consists of system providers, hospitals and governments, and can be used to
analyze the optimal strategies of privacy investment in a mHealth system. Our evolutionary game
theory (EGT) model which contains three types of entities, can potentially find several realistic stable
strategies after recursive interactions. This study is designed to fill the gap in existing literature by
exploring strategies of privacy investment. Our study also examines the impact of profit growth
coefficients, investment costs, reputation profits and fines on the strategic choice of the participants

3. Evolutionary Game Model of Privacy Investment

3.1. Problem Recognition and Description

As well known, there is a large population in China, and the healthcare resources are in short
supply [48]. As a typical mobile service, mHealth can provide care through telemedicine, reduce
the costs, and improve the quality and timely access of healthcare. Therefore, the implementation
of mHealth devices and applications has great significance and has risen to the national strategy
of China [49]. However, privacy violation has become one of the most serious obstacles to the
implementation of mHealth [50,51].

According to analysis above, an effective mechanism for mHealth privacy protection requires
moderate investments of different entities, which may include technological research, devices purchase,
organizational restructure, staff training, etc. Therefore, mHealth system providers, hospitals and
governments have very important positions in mHealth privacy protection, while the factors that
influence investors’ strategic choice should be deeply investigated. With these initial impressions,
we went to Jiangsu Province Hospital of TCM, who has well-established mHealth systems in Nanjing,
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China and interviewed the hospital dean in charge of financial budgets, the manager in charge of
mHealth service, several doctors and patients. In addition, we also went to iFLYTEK, a highly regarded
mHealth system provider and interviewed the manager in charge of financial budgets and market,
several system engineers and the relevant personnel of mHealth system. Through investigation,
we found there were two outstanding problems of privacy investment:

(1) Insufficient budget is viewed as the main challenge for sustaining privacy investment because of
the long return period and high investment costs.

(2) Because of information asymmetry and market dynamics, system providers and hospitals are not
sure that privacy investment can provide competitive advantages. Therefore, they adjust their
strategic choice frequently for profits maximization.

Concerning the first problem, the basic cost-benefit analysis is essential for both system providers
and hospitals [52,53]. Economic factors, such as investment costs, profits from privacy investment
and governmental subsidies will have significant impacts on the strategic choice of the above entities.
Moreover, the investment process might create a channel that allows other entities to receive a free
ride on privacy expenditures. Therefore, the interaction between game players will also influence their
investment decisions. Considering these characteristics, game theory provides a quantitative decision
framework that can formalize strategic interaction among autonomous players, and model privacy
investment problems in which multiplayers with contradictory or collaborative goals [54,55]. Now,
there has been substantial progress in the study of security and privacy investment based on game
theoretic approaches [12,15,38,42].

However, concerning the second problem, system providers, hospitals and governments are
bounded rationality because of incomplete information and dynamic investment process. It is difficult
for investors to achieve an optimal strategy in a single game process by using Bayesian game,
Stackelberg game and differential game theoretic approaches. Instead, they always adjust and improve
their strategic choice for profits maximization. This characteristic is consistent with the evolution of
nature, which motivate us to use evolutionary game theory.

Considering the decision problems of mHealth privacy investment, this paper applies
evolutionary game theory to model such situations. We investigate the optimal strategies of privacy
investment in mHealth context not only based on cost-benefit analysis, but also from evolutionary
perspective. The motivation of using evolutionary game theory can be concluded as follows:

(1) Equilibrium solution refinement. The evolutionary game approaches provide a refined solution
that ensures stability of a strategy adopted by a population, where no small subgroup of deviants
could successfully invade the whole population. Such strategy is known as evolutionary stable
strategy (ESS) [56].

(2) Bounded rationality. In traditional game theory, the game players are assumed as rational
and the players believe that the other side is also rational throughout the game. However,
this assumption is often unrealistic. This situation is avoided in evolutionary game, where players
adopt dynamic strategies that lead them to sustain in the population without caring about instant
profits maximization [57].

(3) Game dynamics. Since players in evolutionary game interact with each other for multiple rounds
by adopting different strategies, the state of their interaction varies over time according to the
replication games. Thus, the evolutionary game provides a natural way to introduce dynamics,
where success strategies are imitated by others and propagate over interaction rounds [13].

3.2. Model Establishment

The privacy concerns of a mHealth system involve several types of entities, including offenders,
defenders, patients and regulators. Their roles in privacy protection of mHealth system are described
as follows:
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(1) Offenders. Offenders maliciously use their computer/security skills to steal, exploit, and sell
patient’s data. They always attempt to find and exploit weaknesses and vulnerabilities in security
systems for illegal profit.

(2) Defenders. Defenders in a mHealth system include system providers and hospitals. System
providers are technology providers (e.g., Microsoft, Amazon and Google) that can provide
support to secure mHealth devices, databases and software for hospitals. Whether or not they
will invest in privacy protection is dependent on the profits from and costs of those investments.
Hospitals collect patient data from various sources, and perform other operations such as
deleting, editing, and sharing data. The security level of patients’ data is positively related
to the level of privacy management and the regulation of hospitals, which are also required to
make sufficient investment.

(3) Patients. Patient’s data that is collected by mHealth devices will be incorporated into an
electronic record that is stored in hospital databases. The electronic record is sought by and may
potentially be shared with medical experts, caregivers, academic researchers and public health
organizations [58]. To prevent privacy disclosure, we assume that patients are willing to pay
more for improved service and privacy protection.

(4) Regulators. Regulators in a mHealth system refer to third-party organizations, such as
governments. Under the current profit condition of privacy investment, governments should
motivate system providers and hospitals to invest in privacy protection via punishment and
compensation mechanisms.

The relationship of the above entities is shown in Figure 1. Existing research primarily consider
the relationship of participating entities to be opposite and competitive (e.g., offenders and defenders,
offenders and patients). However, the relationship of entities in real life situations can be cooperative
(e.g., hospitals and system providers) and reciprocal (e.g., hospitals and governments, system providers
and governments), while the strategic choice can be affected by others.
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Figure 1. The relationship of entities in mHealth systems.

This study proposes a mHealth system privacy investment chain, consisting of three types of
entities: system providers (denoted by S), hospitals (denoted by H) and governments (denoted by
G). System providers and hospitals have two types of strategies: “invest (I)” and “not invest (NI)”.
The privacy investments of system providers include investment in technological research, software
upgrades, hardware improvements, etc. The investment of hospitals includes equipment purchases,
development of privacy rules, staff training, etc. We identify governments as key players because
governments can charge fines to system providers and hospitals that choose to “not invest”. In current
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economic and technical conditions, governments can only charge static quantity-based fines to the
entities that choose to “not invest”. Therefore, governments also have two strategies: “regulate
(R)” and “not regulate (NR)”. Therefore, there are eight types of strategy profile between system
providers, hospitals and governments: (invest, invest, regulate); (not invest, invest, regulate); (invest,
not invest, regulate); (not invest, not invest, regulate); (invest, invest, not regulate); (not invest, invest,
not regulate); (invest, not invest, not regulate); (not invest, not invest, not regulate).

3.2.1. Notations

The key notations that occur in this paper are listed in Table 2 for easy reference.

Table 2. Key notations of evolutionary game model.

Notations Connotations

PS Profits of system providers if system providers and hospitals do not invest, PS > 0
PH Profits of hospitals if system providers and hospitals do not invest, PH > 0

R1
Reputation profits of governments if system providers and hospitals choose to
“invest”, R1 > 0

R0
Reputation profits of governments if they choose to “regulate”, and only one side
of system providers and hospitals choose to “invest”, R1 > R0 > 0

CS Investment costs of system providers, CS > 0
C Investment costs of hospitals, CH > 0

CG Regulation costs of governments, CG > 0

L Credit loss incurred by governments if any of the system providers and hospitals
choose to “not invest”, and governments choose to “not regulate”, L > 0

F Fine for system providers and hospitals if they choose to “not invest”, F > 0
ξS Profits of system providers from free riding, ξS > PS > 0
ξH Profits of hospitals from free riding, ξH > PH > 0
α0 Profit growth coefficient of system providers if only system providers invest, α0 > 0

α1
Profit growth coefficient of system providers if both system providers and hospitals
invest, α1 > α0 > 0

β0 Profit growth coefficient of hospitals if only hospitals invest, β0 > 0

β1
Profit growth coefficient of hospitals if both of system providers and hospitals
invest, β1 > β0 > 0

3.2.2. Assumptions and Payoff Matrix

Considering the reality of mHealth privacy investment in China, we posit the following
assumptions to facilitate the model formulation and solution:

(1) With the rapid development of information and communication technology (ICT), personal health
information in a digital format can be conveniently copied, transmitted, and integrated. Under
this scenario, malicious offenders can easily use their professional skills to steal, exploit, and sell
patient’s data for illegal benefits. According to our interview in Jiangsu Province Hospital of
TCM and other hospitals, we find that patients are willing to pay more for the improved privacy
protection of mHealth service for the reason of increased security/privacy incidents and the
improvement of privacy awareness.

(2) Under current technical conditions, the investment cost is so high that the three types of game
entities cannot make the optimal strategic decision at the initial stage. They have bounder
rationality, and cannot make a choice that maximizes their own profits. Each player has imitating
abilities and can adjust his or her own strategy according to experience.

(3) If system providers and hospitals simultaneously choose to “not invest”, patients will not pay
more for a low level of privacy protection. The profits of system providers and hospitals remains
fixed, which can be written, as PS and PH, respectively. In this scenario, if governments choose to
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“regulate”, system providers and hospitals will receive a fine F. Therefore, the payoff functions of
game players can be defined as:

ES(NI, NI, R) = PS − F (1)

EH(NI, NI, R) = PH − F (2)

EG(NI, NI, R) = 2F− CG (3)

(4) If only system providers choose to “invest”, this will encourage technology research and software
upgrades. Patient’s privacy can be protected at a higher level and patients are therefore willing to
pay more. However, hospitals might free ride off the investment made by system providers and
share in the extra benefits (such as having a positive reputation and earning patient trust). Thus,
the hospitals will earn a larger profits ξH. In this scenario, if governments choose to “regulate”,
hospitals will receive the fine F and system providers will get the subsidy. Therefore, the payoff
functions of entities can be defined as:

ES(I, NI, R) = (1 + α0)PS − CS + F (4)

EH(I, NI, R) = ξH − F (5)

EG(I, NI, R) = R0 − CG (6)

(5) If only hospitals choose to “invest”, staff behavior can be regulated, and privacy awareness can be
improved. Patients are also willing to pay more for effective privacy protection. Similarly, system
providers also might share in the extra profits ξS by free riding. In this scenario, if governments
choose to “regulate”, then system providers will receive the fine F and hospitals will receive the
subsidy. Therefore, the payoff functions of entities can be defined as:

ES(NI, I, R) = ξS − F (7)

EH(NI, I, R) = (1 + β0)PH − CH + F (8)

EG(NI, I, R) = R0 − CG (9)

(6) As mentioned above, patient’s privacy can be protected at a higher level even if only one side of
the system providers and hospitals choose to “invest”. In this scenario, governments can obtain
reputation profits R0 (R0 > 0) if they choose to “regulate”. However, if governments choose
to “not regulate”, it will result in low efficiency of privacy protection and free riding might be
present. Therefore, they will not obtain reputation profits.

(7) In practice, not all the behavior of privacy investment or free riding can be assessed precisely, for
the sake of limited budgets and technological support. Therefore, we assume that the fine for
system providers and hospitals is not enough, and smaller than reputation profits (2F < R0).

(8) If both the system providers and hospitals choose to “invest”, patient’s privacy can be protected
more effectively, and patients will be willing to pay more. In this scenario, whether or not
governments choose to “regulate”, they will receive higher reputation profits R1 (R1 > R0).
Therefore, the payoff functions of entities can be defined as:

ES(I, I, R) = (1 + α1)PS − CS (10)

EH(I, I, R) = (1 + β1)PH − CH (11)

EG(I, I, R) = R1 − CG (12)
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These assumptions are either common to most game theoretical approaches or closer to scenarios
in reality. Based on the above assumptions, the payoff matrix for game players is shown in Table 3.

Table 3. The payoff matrix.

Strategy Payoffs

Systems providers Hospitals Governments Systems providers Hospitals Governments
invest invest regulate (1 + α1)PS − CS (1 + β1)PH − CH R1 − CG

not invest invest regulate ξS − F (1 + β0)PH − CH + F R0 − CG
invest not invest regulate (1 + α0)PS − CS + F ξH − F R0 − CG

not invest not invest regulate PS − F PH − F 2F− CG
invest invest not regulate (1 + α1)PS − CS (1 + β1)PH − CH R1

not invest invest not regulate ξS (1 + β0)PH − CH −L
invest not invest not regulate (1 + α0)PS − CS ξH −L

not invest not invest not regulate PS PH −L

3.2.3. Equilibrium Analysis

In the initial stage of the three types of players’ game, suppose that the population of system
providers choosing “invest” is x(0 ≤ x ≤ 1), and the population choosing “not invest” is 1−x. Similarly,
the population of hospitals choosing “invest” is y(0 ≤ y ≤ 1), and the population choosing “not invest”
is 1−y. The population of governments choosing “regulate” is z(0 ≤ z ≤ 1), and the population
choosing “not regulate” is 1−z.

According to the assumption in Section 3.2.2, supposing that µ1,1 represents the expected payoff
of system providers that choose to “invest”, µ1,2 represents the expected payoff of system providers
that choose “not invest”, and µ1 represents the average expected payoff. Then:

µ1,1 = [(1 + α1)PS − CS]yz + [(1 + α0)PS − CS + F](1− y)z + [(1 + α1)PS − CS]y(1− z)
+[(1 + α0)PS − CS](1− y)(1− z)
= (1 + α0)PS − CS + (α1 − α0)PSy + F(1− y)z

(13)

µ1,2 = (ξS − F)yz + (PS − F)(1− y)z + ξSy(1− z) + PS(1− y)(1− z)
= (ξS − PS)y + PS − Fz

(14)

µ1 = xµ1,1 + (1− x)µ1,2 (15)

Supposing that µ2,1 represents the expected payoff of hospitals that choose to “invest”,
µ2,2 represents the expected payoff of hospitals that choose to “not invest”, and µ2 represents the
average expected payoff. Then:

µ2,1 = [(1 + β1)PH − CH ]xz + [(1 + β0)PH − CH + F](1− x)z + [(1 + β1)PH − CH ]x(1− z)
+[(1 + β0)PH − CH ](1− x)(1− z)
= (1 + β0)PH − CH + (β1 − β0)PHx + F(1− x)z

(16)

µ2,2 = (ξH − F)xz + (PH − F)(1− x)z + ξHx(1− z) + PH(1− x)(1− z)
= (ξH − PH)x + PH − Fz

(17)

µ2 = yµ2,1 + (1− y)µ2,2 (18)

Supposing that µ3,1 represents the expected payoff of governments that choose to “regulate”, µ3,2

represents the expected payoff of governments that choose to “not regulate”, and µ3 represents the
average expected payoff. Then:

µ3,1 = (R1 − CG)xy + (R0 − CG)(1− x)y + (R0 − CG)x(1− y) + (2F− CG)(1− x)(1− y)
= R1xy + R0[x(1− y) + (1− x)y] + 2F(1− x)(1− y)− CG

(19)
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µ3,2 = R1xy− L(1− x)y− Lx(1− y)− L(1− x)(1− y)
= R1xy− L + Lxy

(20)

µ3 = zµ3,1 + (1− z)µ3,2 (21)

According to the Malthusian dynamic equation [59], the replication dynamic equation of the
population x for system providers is:

FS(x) = dx
dt = x(µ1,1 − µ1)

= x(1− x)[(α0PS − CS) + (α1 − α0)PSy− (ξS − PS)y + F(2− y)z]
(22)

The replication dynamic equation of the population y for hospitals is:

FH(y) = dy
dt = y(µ2,1 − µ2)

= y(1− y)[(β0BH − CH) + (β1 − β0)BHx− (ξH − BH)x + F(2− x)z]
(23)

The replication dynamic equation of the population z for governments is:

FG(z) = dz
dt = z(µ3,1 − µ3)

= z(1− z){R0[x(1− y) + (1− x)y] + 2F(1− x)(1− y)− CG + L− Lxy}
(24)

From the replication dynamic equations above, we have nine equilibrium points—P1(0,0,0),
P2(0,0,1), P3(0,1,0), P4(0,1,1), P5(1,0,0), P6(1,0,1), P7(1,1,0), P8(1,1,1), P9(x*,y*,z*)—that correspond to
equilibria of the dynamic system. P9(x*,y*,z*) is a mixed equilibrium point that satisfies the condition:

(α0PS − CS) + (α1 − α0)PSy ∗ −(ξS − PS)y ∗+F(2− y∗)z∗ = 0
(β0BH − CH) + (β1 − β0)BHx ∗ −(ξH − BH)x ∗+F(2− x∗)z∗ = 0
R0[x ∗ (1− y∗) + (1− x∗)y∗]− CG + L− Lx ∗ y∗ = 0

(25)

3.3. Stable Analysis of Equilibrium Points

The stability of equilibrium points can be analyzed by using a Jacobian matrix [60]. The Jacobian
matrix can be defined as follows:

J =


∂FS(x)

∂x
∂FS(x)

∂y
∂FS(x)

∂z
∂FH(y)

∂x
∂FH(y)

∂x
∂FH(y)

∂z
∂FA(z)

∂x
∂FA(z)

∂y
∂FA(z)

∂z

 =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 (26)

We can examine the stability of equilibrium points by following the conditions a11 < 0, a22 < 0 and
a33 < 0 [61]. Then, we can compute the values of the equilibrium points shown in Table 4. Here, P9

is not satisfied under the above condition because a11 = 0, a22 = 0 and a33 = 0. Here, P8(1,1,1) is not a
satisfied condition because CG > 0. Other equilibrium points will be ESSs whereas the values of related
parameters are satisfied under different conditions.

Table 4. Values of equilibrium points.

Equilibrium Points a11 a22 a33

P1(0, 0, 0) α0PS − CS β0PH − CH 2F + L− CG
P2(0, 0, 1) α0PS − CS + 2F β0PH − CH + 2F −(2F + L− CG)
P3(0, 1, 0) α1PS − CS − (ξS − PS) −(β0PH − CH) R0 + L− CG
P4(0, 1, 1) α1PS − CS − (ξS − PS) + F −(β0PH − CH + 2F) −(R0 + L− CG)
P5(1, 0, 0) −(α0PS − CS) β1PH − CH − (ξH − PH) R0 + L− CG
P6(1, 0, 1) −(α0PS − CS + 2F) β1PH − CH − (ξH − PH) + F −(R0 + L− CG)
P7(1, 1, 0) −[α1PS − CS − (ξS − PS)] −[β1PH − CH − (ξH − PH)] −CG
P8(1, 1, 1) −[α1PS − CS − (ξS − PS) + F] −[β1PH − CH − (ξH − PH) + F] CG

P9(x∗, y∗, z∗) 0 0 0
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According to Table 4, the ESSs of three players are correlated with regulation costs, regulation
profits, payoff growth coefficients, and fine for investors. Therefore, the stability analysis of an
equilibrium strategy can be categorized when those parameters are in different intervals. The schematic
diagram is shown in Figure 2. To facilitate the analysis of ESSs, we assume that there is just a single
government regulating all the system providers and hospitals available in a local area.Int. J. Environ. Res. Public Health 2018, 15, x 12 of 27 
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3.3.1. ESSs When CG > R0 + L

If the regulation cost is high enough to satisfy the condition of CG > R0 + L, governments will
choose to “not regulate”, whether or not system providers and hospitals choose to “invest”. The ESSs
are elaborated by the following propositions:

Proposition 1. When 0 < α0 < CS
PS

, α0 < α1 < ξS+CS−PS
PS

and 0 < β0 < CH
PH

, β0 < β1 < ξH+CH−PH
PH

, (0,
0, 0) is an ESS, and then system providers, hospitals and governments will choose to (not invest, not invest,
not regulate).

Proof. If 0 < α0 < CS
BS

, 0 < β0 < CH
BH

and CG > R0 + L > 2F + L, we find that:

EG(N, N, R) = 2F− CG < −L = EG(N, N, NR)

ES(I, NI, NR) = (1 + α0)PS − CS < (1 +
CS
PS

)PS − CS = PS = ES(NI, NI, NR)

EH(NI, I, NR) = (1 + β0)PH − CH < (1 +
CH
PH

)PH − CH = PH = EH(NI, NI, NR)

In this scenario, the regulation cost is higher than the credit loss. Therefore, governments will
choose to “not regulate”. Meanwhile, the profit growth coefficients are small, so system providers and
hospitals have little or no incentive to invest in privacy protection (for small profits). Therefore, the
ESS profile is to (not invest, not invest, not regulate). �

Proposition 2. When 0 < α0 < CS
PS

, α0 < α1 < ξS+CS−PS
PS

and CH
PH

< β0 < β1 < ξH+CH−PH
PH

, (0, 1, 0) is an
ESS, and then system providers, hospitals and governments will prefer to (not invest, invest, not regulate).
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Proof. If CG > R0 + L, we find that EG(NI, I, R) = R0−CG < EG(NI, I, NR). Therefore, governments
will choose to “not regulate”. Then, if CH

PH
< β0 < β1 < ξH+CH−PH

PH
, we find that:

EH(NI, I, NR) = (1 + β0)PH − CH > (1 +
CH
PH

)PH − CH = PH = EH(NI, NI, NR)

In this scenario, hospitals have a stronger incentive to invest in privacy protection. Then, if the
profit growth coefficients of the system providers remain fixed, we can prove that

ES(I, I, NR) = (1 + α1)PS − CS < (1 +
ξS + CS − PS

PS
)PS − CS = ξS = ES(NI, I, NR)

System providers prefer to choose to “not invest” because the profit from choosing “invest” is
lower than the profit from free riding. Therefore, the ESS profile is to (not invest, invest, not regulate). �

Proposition 3. When CS
PS

< α0 < α1 < ξS+CS−PS
PS

, 0 < β0 < CH
PH

and β0 < β1 < ξH+CH−PH
PH

, (1, 0, 0) is an
ESS, and then system providers, hospitals and governments will choose to (invest, not invest, not regulate).

Proof. Similarly, we find that EG(I, NI, R) = R0 − CG < EG(I, NI, NR). Therefore, governments will
choose to “not regulate”. Then, as the profit growth coefficients of system providers increase, which are
satisfied by CS

PS
< α0 < α1 < ξS+CS−PS

PS
, we find that:

ES(I, NI, NR) = (1 + α0)PS − CS > (1 +
CS
PS

)PS − CS = PS = ES(NI, NI, NR)

In this scenario, system providers will invest in privacy protection. We can also prove that

EH(I, I, NR) = (1 + β1)PH − CH < (1 +
ξH + CH − PH

PH
)PH − CH = ξH = EH(I, NI, NR)

Hospitals prefer to “not invest” because the profit from choosing to “invest” is lower than the
profit from free riding. The ESS is to (invest, not invest, not regulate). �

Proposition 4. When CS
PS

< α0 < α1 < ξS+CS−PS
PS

and CH
PH

< β0 < β1 < ξH+CH−PH
PH

, (1, 0, 0) and (0, 1, 0)
are ESSs, then system providers, hospitals and governments will choose to (invest, not invest, not regulate) or to
(not invest, invest, not regulate).

Proof. Similarly, we know that governments will choose to “not regulate”. Then, if CS
PS

< α0 < α1 <
ξS+CS−PS

PS
and CH

PH
< β0 < β1 < ξH+CH−PH

PH
, we find that:

ES(I, NI, NR) = (1 + α0)PS − CS > (1 +
CS
PS

)PS − CS = PS = ES(NI, NI, NR)

EH(NI, I, NR) = (1 + β0)PH − CH > (1 +
CH
PH

)PH − CH = PH = EH(NI, NI, NR)

ES(I, I, NR) = (1 + α1)PS − CS < (1 +
ξS + CS − PS

PS
)PS − CS = ξS = ES(NI, I, NR)

EH(I, I, NR) = (1 + β1)PH − CH < (1 +
ξH + CH − PH

PH
)PH − CH = ξH = EH(I, NI, NR)

The profits to system providers and hospitals that choose to “invest” are higher than the
investment costs. However, the profits are lower than the profits from free riding. These entities may
therefore free ride others, and the ESS profile can be to (invest, not invest, not regulate) or to (not
invest, invest, not regulate) which depending on the initial stage. �
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Proposition 5. When ξS+CS−PS
PS

< α0 < α1 and ξH+CH−PH
PH

< β0 < β1, (1, 1, 0) is an ESS, then system
providers, hospitals and governments will choose to (invest, invest, not regulate).

Proof. If ξS+CS−PS
PS

< α0 < α1 and ξH+CH−PH
PH

< β0 < β1, we find that:

ES(I, I, NR) = (1 + α1)PS − CS > (1 +
ξS + CS − PS

PS
)PS − CS = ξS = ES(NI, I, NR)

EH(I, I, NR) = (1 + β1)PH − CH > (1 +
ξH + CH − PH

PH
)PH − CH = ξH = EH(I, NI, NR)

In this scenario, the profits for system providers and hospitals that choose to “invest” are higher
than both the investment costs and the profits from free riding. Both of these entities will therefore
choose to “invest”, even without the imposition of regulations. Therefore, the ESS profile is to (invest,
invest, not regulate). �

3.3.2. ESSs When 2F + L < CG < R0 + L

If the regulation cost is satisfied by the condition of 2F + L < CG < R0 + L , then governments will
choose to “regulate” when system providers and/or hospitals choose to “invest”. The entities will
receive a fine if they do not choose to “invest”. Here, ESSs are elaborated by the following propositions:

Proposition 6. When 0 < α0 < CS−2F
PS

, α0 < α1 < ξS+CS−PS−F
PS

and CH−2F
PH

< β0 < β1 < ξH+CH−PH−F
PH

,
(0, 1, 1) is an ESS, then system providers, hospitals and governments will choose to (not invest, invest, regulate).

Proof. Because CG < R0 + L, we find that EG(NI, I, R) = R0 − CG > −L = EG(NI, I, NR). Therefore,
governments will choose to “regulate”. Then, if CH−2F

PH
< β0 < β1 < ξH+CH−PH−F

PH
, we find that:

EH(NI, I, R) = (1 + β0)PH − CH + F > (1 +
CH − 2F

PH
)PH − CH = PH − F = EH(NI, NI, R)

Therefore, hospitals will invest in privacy protection when they can obtain the subsidy F.
If 0 < α0 < CS−2F

PS
and α0 < α1 < ξS+CS−PS

PS
, we can prove that:

ES(I, I, R) = (1 + α1)PS − CS < (1 +
ξS + CS − PS − F

PS
)PS − CS = ξS − F = ES(NI, I, R)

In this scenario, the profit for system providers choosing to “invest” is lower than the profit from
free riding even if the system providers may receive the fine F. Therefore, the ESS profile is to (not
invest, invest, regulate). �

Proposition 7. When CS−2F
PS

< α0 < α1 < ξS+CS−PS−F
PS

, 0 < β0 < CH−2F
PH

and β0 < β1 < ξH+CH−PH−F
PH

,
(1, 0, 1) is an ESS, then system providers, hospitals and governments will choose to (invest, not invest, regulate).

Proof. If CS−2F
PS

< α0 < α1 < ξS+CS−PS−F
PS

, we find that:

ES(I, NI, R) = (1 + α0)PS − CS + F > (1 +
CS − 2F

PS
)PS − CS = PS − F = ES(NI, NI, R)

Therefore, system providers will choose to “invest” when they can obtain the subsidy F. Then,
if 0 < β0 < CH−2F

PH
and β0 < β1 < ξH+CH−PH−F

PH
, we can prove that:

EH(I, I, R) = (1 + β1)PH − CH < (1 +
ξH + CH − PH − F

PH
)PH − CH = ξH − F = EH(I, NI, R)
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The profit for hospitals choosing to “invest” is lower than the profit from free riding even if they
receive the fine F. Therefore, the ESS profile is to (invest, not invest, regulate). �

Proposition 8. When CS−2F
PS

< α0 < α1 < ξS+CS−PS−F
PS

and CH−2F
PH

< β0 < β1 < ξH+CH−PH−F
PH

, (1, 0, 1)
and (0, 1, 1) are ESSs, then system providers, hospitals and governments will choose to (invest, not invest,
regulate) or to (not invest, invest, regulate).

Proof. If CS−2F
PS

< α0 < α1 < ξS+CS−PS−F
PS

and CH−2F
PH

< β0 < β1 < ξH+CH−PH−F
PH

, we find:

ES(I, NI, R) = (1 + α0)PS − CS + F > (1 +
CS − 2F

PS
)PS − CS = PS − F = ES(NI, NI, R)

EH(NI, I, R) = (1 + β0)PH − CH + F > (1 +
CH − 2F

PH
)PH − CH = PH − F = EH(NI, NI, R)

ES(I, I, R) = (1 + α1)PS − CS < (1 +
ξS + CS − PS − F

PS
)PS − CS = ξS − F = ES(NI, I, R)

EH(I, I, R) = (1 + β1)PH − CH < (1 +
ξH + CH − PH − F

PH
)PH − CH = ξH − F = EH(I, NI, R)

The profits for system providers and hospitals that choose to “invest” are higher than the
investment costs, but the profits are lower than the profits from free riding. These entities may
therefore free ride others, even when they might be faced with the fine F by governments. Therefore,
the ESS can be either to (invest, not invest, regulate) or to (not invest, invest, regulate). �

3.3.3. ESSs When CG < 2R + L

If the regulation cost is low and therefore satisfied the condition of CG < 2R + L, then governments
will choose to “regulate” even if they will not gain the desired reputation profits. The ESS is illustrated
as follows.

Proposition 9. When 0 < α0 < CS−2F
PS

and 0 < β0 < CH−2F
PH

, (0, 0, 1) is an ESS and then, system providers,
hospitals and governments will choose to (not invest, not invest, regulate).

Proof. Because CG < 2F + L, we know that EG(NI, NI, R) = 2F − CG > L = EG(NI, NI, NR).
Therefore, governments will choose to “regulate”. Then, if 0 < α0 < CS−2F

PS
and 0 < β0 < CH−2F

PH
, we

can prove that:

ES(I, NI, R) = (1 + α0)PS − CS + F < (1 +
CS − 2F

PS
)PS − CS + F = PS − F = ES(NI, NI, R)

EH(NI, I, R) = (1 + β0)PH − CH + F < (1 +
CH − 2F

PH
)PH − CH + F = PH − F = EH(NI, NI, R)

In this scenario, the profit growth coefficients are small. As such, system providers and hospitals
will choose to “not invest” (because of the small profits), even if they can obtain the subsidy. Therefore,
the ESS profile is to (not invest, not invest, regulate). �

4. Illustration and Simulation

4.1. Numerical Example

Our game equilibria provide a detailed exposition of the game model and its properties. In this
section, we derive numerical results from the game analysis, and use MATLAB to simulate and support
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the game-theoretic analysis. The variables used to calculate the ESSs were PS, PH , ξS, ξH , CS, CH , α0,
α1, β0, β1, F, CG,R0 and L. We assign fixed values to several variables, whereas other variables will
increase or decrease related to assigned variables. Please note that the values we used in this MATLAB
simulation are just for illustration. In reality, the values of these parameters are determined by the
financial earnings, investment costs, and the quantify measurement of reputation.

According to the analysis in Section 4, ESSs are different when the regulation costs and the profit
growth coefficients occur under different conditions. Therefore, the numerical simulation can be
analyzed under different values of CG, R0, F and L, as shown in Table 5.

Table 5. Different values of CG, R0, F, L and ESSs of governments.

CG R0 L F ESS

$400 $200 $100 $40 not regulate
$250 $200 $100 $40 regulate if any one side of system providers and hospitals choose to “invest”
$80 $200 $100 $40 regulate

4.2. Simulation of ESSs

4.2.1. Simulation When CG > 2R + L

We set the values of the included parameters to CG = $400, R0 = $200, L = $100, PS = $500,
PH = $400, ξS = $700, ξH = $600, CS = $200, CH = $100. Also, α0, α1, β0 and β1 are variables. Thus,
we can calculate the following:

CS
PS

= 0.4,
CH
PH

= 0.25,
ξS + CS − PS

PS
= 0.8 and

ξH + CH − PH
PH

= 0.75

Governments will choose to “not regulate” because CG < 2R + L. Therefore, the replication
dynamic equation of population z for governments can be defined as z = 0. Then, we set the replication
dynamic equation of population x,y for system providers and hospitals to be from 5% to 95%.

Therefore, the numerical simulation of different ESSs can be analyzed under the different values
of α0, α1, β0 and β1, as shown in Table 6. The simulation results are depicted in Figure 3, which are
consistent with the theoretical analyses of Proposition 1 to Proposition 5.

Table 6. Different values of α0, α1, β0, β1 and ESSs when CG > 2R + L.

α0 α1 β0 β1 ESS

0.2 0.4 0.1 0.3 (not invest, not invest, not regulate)
0.2 0.4 0.4 0.6 (not invest, invest, not regulate)
0.5 0.7 0.1 0.3 (invest, not invest, not regulate)
0.5 0.7 0.4 0.6 free riding
1.0 1.2 0.9 1.1 (invest, invest, not regulate)
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4.2.2. Simulation When 2F + L < CG < R0 + L

When 2F + L < CG < R0 + L , governments will choose to “regulate” if any of the system providers
and/or hospitals choose to “invest”. Therefore, the replication dynamic equation of population z for
governments can be defined as z = 1. Similarly, we set the replication dynamic equation of population
x, y for system providers and hospitals to be from 5% to 95%.

To facilitate our simulation, we set the values of included parameters to CG = $250, R0 = $200,
L = $100, F = $40, PS = $500, PH = $400, ξS = $700, ξH = $600, CS = $200, CH = $150. Also, α0, α1, β0 and
β1 are variables. Thus, we can calculate the following:

CS − 2F
PS

= 0.24,
CH − 2F

PH
= 0.175,

ξS + CS − PS − F
PS

= 0.72 and
ξH + CH − PH − F

PH
= 0.775

Therefore, the numerical simulation of different ESSs can be analyzed under different values of
α0, α1, β0 and β1 as shown in Table 7. The simulation results are depicted in Figure 4, and these results
support Proposition 6 to Proposition 8.

Table 7. Different values of α0, α1, β0, β1 and ESSs when 2F + L < CG < R0 + L.

α0 α1 β0 β1 ESS

0.2 0.4 0.3 0.5 (not invest, invest, regulate)
0.4 0.6 0.1 0.3 (invest, not invest, regulate)
0.4 0.6 0.3 0.5 free riding
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4.2.3. Simulation When CG < 2F + L

When CG < 2F + L, governments will always prefer to “regulate”. Therefore, the replication
dynamic equation of population z for governments can be defined as z = 1. The replication dynamic
equation of population x, y for system providers and hospitals is also set at from 5% to 95%.

We set the values of the included parameters to CG = $80, R0 = $200, L = $100, F = $40, PS = $500,
PH = $400, ξS = $700, ξH = $600, CS = $200, CH = $150. Also, α0, α1, β0 and β1 are variables. Thus,
we can calculate the following:

CS − 2F
PS

= 0.24,
CH − 2F

PH
= 0.175,

ξS + CS − PS − F
PS

= 0.72 and
ξH + CH − PH − F

PH
= 0.775

We set α0 = 0.2, α1 = 0.6, β1 =0.1, β1 = 0.3, which satisfies the following condition:

0 < α0 <
CS − 2F

PS
and 0 < β0 <

CH − 2F
PH

The simulation result is shown in Figure 5. This result is consistent with the theoretical analysis
of Proposition 9.
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4.3. Sensitivity Analysis and Discussion

Next, we conduct a sensitivity analysis to explain the impact of α0, α1, β0, β1 and F on ESSs.
We take stable points (0, 0, 0), (0, 1, 1) and (0, 0, 1) as examples, and other scenarios are similar.

4.3.1. Sensitivity Analysis of (0, 0, 0)

First, we perform a sensitivity analysis of (0, 0, 0). The values of α0, α1, β0 and β1 vary within a
fixed range, as are summarized in Table 8.
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Table 8. Different values of α0, α1, β0 and β1 for sensitivity analysis.

α0 α1 β0 β1

1 0.1 0.3 0.05 0.2
2 0.15 0.35 0.08 0.25
3 0.2 0.4 0.1 0.3
4 0.25 0.45 0.12 0.35
5 0.3 0.5 0.15 0.4

Then, we set the initial population x,y as follows:

x = 0.2, y = 0.8; x = 0.3, y = 0.7; x = 0.4, y = 0.6

Figure 6 summarizes the results of the sensitivity analysis. The results show the relationship
between profit growth coefficients and the evolutionary trend. As shown, the smaller the profit growth
coefficients (α0, α1, β0, β1, α1, β0, β1) are, the fewer steps there are to ESS. In other words, the lower the
profit brought about by privacy investment, the larger becomes the probability of choosing to “not
invest”. Hence, if governments choose to “not regulate”, system providers and hospitals will tend to
choose “not invest” due to the small profit growth coefficients. The simulation results of our sensitivity
analysis support Proposition 1, and Proposition 2 to Proposition 5 can be verified by similar methods.
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4.3.2. Sensitivity Analysis of (0, 1, 1)

When governments choose to “regulate”, the entity that chooses to “not invest” will receive the
fine F. Conversely, the entity that chooses to ‘invest’ will get the subsidy F. Therefore, we conduct a
sensitivity analysis to explain the impact of F on ESS. The values of F vary within a fixed range that
can be defined as follows:

F = 30; F = 35; F = 40

Then, we set the initial population x, y as follows:

x = 0.2, y = 0.8; x = 0.3, y = 0.7; x = 0.4, y = 0.6

Figure 7 summarizes the sensitivity analysis results. The results show the relationship between
fines/subsidies and evolutionary trends. As shown, the larger the fine/subsidy (F) is, the fewer
steps there are to ESS. Hence, if governments choose to “regulate”, there is a far greater probability
that system providers and hospitals will choose to “invest” due to the potential fine or subsidy.
That is, if the profit growth coefficients are satisfied 0 < α0 < CS−2F

PS
, α0 < α1 < ξS+CS−PS−F

PS
and

CH−2F
PH

< β0 < β1 < ξH+CH−PH−F
PH

, the conditions will exist whereby either system providers or
hospitals will invest in privacy protection. These results support Proposition 6, and Proposition 7 and
Proposition 8 can be verified by similar methods.
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4.3.3. Sensitivity Analysis of (0, 0, 1)

If none of the system providers and hospitals chooses to “invest”, both of them will receive the
fine F. Therefore, we conduct a sensitivity analysis to explain the impact of F on ESS. The values of F
vary within a fixed range that can be defined as follows: F = 30; F = 35; F = 40.

Then, we set the initial population x, y as follows:

x = 0.2, y = 0.8; x = 0.3, y = 0.7; x = 0.4, y = 0.6

Figure 8 summarizes the sensitivity analysis results, which show the relationship between fines
and evolutionary trends. As shown, the smaller the fine/subsidy (F) is, the fewer steps there are to ESS.
Hence, under these circumstances system providers and hospitals will tend to choose to “not invest”
due to the small profit growth coefficients, even when they know will receive the fine. That is, if the
profit growth coefficients are satisfied 0 < α0 < CS−2F

PS
and 0 < β0 < CH−2F

PH
, the conditions will exist

whereby none of system providers and hospitals will invest in privacy protection. These sensitivity
analysis results support Proposition 9.
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4.4. Impacts of Different Parameters on ESS

In order to discuss the impacts of different parameters on ESS, we take Proposition 4 as an example.
Based on the equilibrium analysis, the ESS of system providers and hospitals can be either (invest,
not invest) or (not invest, invest) when free riding is present. As shown in Figure 9, the probability of
choosing (invest, not invest) is greater if SM > SN while the probability of choosing (not invest, invest)
is higher if SM < SN. SM can be defined as follows:

SM =
1
2
[

β0PH − CH
ξH − (β1 − β0 + 1)PH

+
ξS − (1 + α1)PS + CS
ξS − (α1 − α0 + 1)PS

] (27)
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There are 10 variables (PS, PH, ξS, ξH, CS, CH, α0, α1, β0, β1) influencing the ESS. We take
investment costs (CS, CH) as examples, and other scenarios are similar.

First, we set the values of CS as: CS = $180, $200, and $220. Other values remain fixed as defined
in Section 4.2. The evolutionary trends under differing values of variables can be compared and the
simulation result is shown in panel (a) of Figure 10. The dotted lines represent system providers,
and the solid lines represent hospitals. The ESS is (not invest, invest). From panel (a) in Figure 10,
we observe that the smaller CS, the fewer steps to reach ESS.
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Similarly, we define the values of CH as: CH = $80, $100, and $120. The simulation result is shown
in in panel (b) of Figure 10. From panel (b) in Figure 10, we can conclude that the larger CH are,
the higher probability of converging to (0, 1).

The impacts of other variables on ESS are shown in Table 9.
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Table 9. Impacts on ESS when variables change.

Parameters Change SM (SN) ESS

α0↓, α1↓ ↑(↓) (not invest, invest)
β0↑, β1↑ ↑(↓) (not invest, invest)

PS↓ ↑(↓) (not invest, invest)
PH↑ ↑(↓) (not invest, invest)
CS↑ ↑(↓) (not invest, invest)
CH↓ ↑(↓) (not invest, invest)
ξS↑ ↑(↓) (not invest, invest)
ξH↓ ↑(↓) (not invest, invest)

5. Implications and Countermeasures

To provide useful insights for the multiple participants in the privacy protection of mHealth
system: (i) the system providers; (ii) the hospitals; (iii) the governments, we worked with Nanjing Drum
Tower Hospital and Jiangsu Province Hospital of TCM, two famous hospitals with well-established
mHealth systems in Nanjing, China. While building this evolutionary game theoretic model, we also
interacted with Department of Health of Jiangsu Province, China, to help us understand the regulations
involved in healthcare. Based on the model analysis and simulation results, we draw the conclusion
that profit growth coefficients, investment costs, benefits from free riding and governmental regulation
all play important roles in the investment choice of privacy protection. In particular, we find that if
the profit growth coefficients are prohibitively small, system providers and hospitals will not invest
in privacy protection, even if adequate government subsidies are available. Hence, we propose three
different strategies for policy makers that can help boost participation in privacy investment.

(1) Increasing the minimum profit growth coefficients and reducing the investment costs

According to Proposition 1, system providers and hospitals will choose to “not invest” due to the
relatively small benefits to be obtained from privacy investment, even if they may potentially receive a
fine from governments. According to Proposition 9, to (invest, invest, not regulation) is the optimal
state of privacy protection in a mHealth system. Ideally, system providers and hospitals will invest
in privacy protection without the regulation of governments. Based on the above propositions, we
find that the probability of privacy investment is positively related to the size of the profit growth
coefficients. If the profit growth coefficients increase to a critical level, system providers and hospitals
will obtain the expected benefits from investment in privacy protection, enabling patient privacy to
be protected at a higher and more secure level. Therefore, increasing the minimum profit growth
coefficients and reducing investment costs would help system providers and hospitals obtain larger
benefits if and when they choose to “invest” in privacy protection. The policy makers can create these
conditions by implementing the following measures:

• Support innovation of privacy protection technology. Any technological innovations related
to privacy protection that can increase payoffs and reduce costs should be encouraged and
motivated through National Science and Technology Plans or industrial development funds [62].
Governments should give priority to financially supporting or encouraging privacy protection
R&D through policy incentives and financial subsidies.

• Enhance privacy awareness. Proper privacy education programs should be strengthened, in
order to remove current forms of narrow-minded consciousness relating to privacy protection.
Additionally, privacy protection lectures should be held, where experts in this domain would be
invited to systematically explain to the citizens how to develop an appropriate attitude towards
privacy protection.

• Provide two types of a mHealth service. Hospitals can provide two types of a mHealth service.
The first type is a basic service, which patients could obtain it at a low price. The second is a
value-added service, which would offer improved levels of patient safety and privacy. However,
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this service would be provided at a higher price. With improved of privacy awareness, patients
would be willing to pay more for better privacy protection. Through this two-type method,
system providers and hospitals could obtain the right balance between benefits and costs of
privacy investment.

(2) Strengthening privacy advertisements and improving privacy regulations

According to Proposition 6, Proposition 7 and Proposition 8, when the profit growth coefficients
and the investment costs of system providers and hospitals remain fixed, the probability of choosing
to “invest” will be greater if governments choose to “regulate”. Based on the model analysis, the
probability of governmental regulation is negatively related to regulation costs, and positively related
to reputation profits. Positive public service advertisements unconsciously affect people’s behavior
and thoughts, and shape their values. As such, advertising is an effective way to enhance reputation
profits and reduce regulation costs. In addition, the absence of trust might be a severe issue and a
major challenge to effective privacy protection in the healthcare domain. With serious doubts coming
from the patients, a powerful legal system should be built, in order to improve patient trust levels and
to reshape the credit mechanism rather than adopting industrial self-discipline. Therefore, we need
to improve the relevant laws and regulations in China, in order to make clear the privacy authority
of individuals and the responsibility of governments. In this way, governmental regulations can be
properly implemented, and citizens can immediately preserve and defend their legal rights.

(3) Intensifying punishment and offering incentives

According to Proposition 1 to Proposition 5, if governments choose to “not regulate”, the cost of
privacy investment is so high under current technical conditions that system providers and hospitals
react negatively. Additionally, one important reason for the strategic choice to “not invest” (and free
riding instead) is that the entities do not have to pay very much for their misdemeanors. Based on
the model analysis, giving larger subsidies and fines to system providers and hospitals will increase
the probability of privacy investment. On the one hand, governments should reward and support
those entities that persist in implementing privacy protection. Governments should guide system
providers and hospitals towards transforming their attitude toward investment to one that supports
the enhancement of security and privacy awareness. On the other hand, because of the importance
of rewarding and punishing mechanisms used under the current technical conditions, the power of
multiple social organizations should be used to supplement the regulation of governments. This could
include such steps as relaxing approval conditions, in order to give legality and authority to system
providers and hospitals, and supporting a variety of privacy protection activities (organized by the
associations) through financial subsidies and social donations.

6. Conclusions

Taking mHealth system as the context, we propose an evolutionary game-theoretic model to
assess the decision making of privacy investment among system providers, hospitals and governments.
We examine the conditions under which the chosen strategy is an evolutionary stable strategy,
and investigate to quantify the appropriate investment of privacy investment and regulation. Then,
we design a numerical simulation to explore and verify the theoretical results for managerial
implication. Our model is generalizable to other similar healthcare systems and settings around
the world, but not in those which are free or heavily state subsidized. We obtained the following
results with potential implications via a theoretical analysis and simulation:

• The strategic choice of governmental regulation is mainly correlated with the size and degree of
reputation profits and credit losses, as well as the cost of regulation. These factors profoundly
affect the investment choice of system providers and hospitals.
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• The strategic choices of privacy investment made by system providers and hospitals are not only
correlated with the profits from investment, but those choices also affected by the extra benefits
from free riding and the fine (or subsidy) from governments.

• If the profit growth coefficients are prohibitively small, then system providers and hospitals
will choose to “not invest” due to the small benefits they will receive. This is true even if they
receive a fine/subsidy from governments. When the profit growth coefficients increase to a critical
level, the probability of choosing “invest” will be correspondingly larger if governments choose
to “regulate”.

• As regulation costs increase, the strategic choice of governments will change from to “regulate” to
“not regulate”. Similarly, as the profit growth coefficients increase, the strategy profile of system
providers and hospitals will change as follows: (not invest, not invest), (not invest, invest), (invest,
not invest), (invest, invest).

• If the extra benefits from free riding are large enough, the probability of system providers and
hospitals choosing to “not invest” by will increase. On the other hand, if the fine/subsidy
from governments increases, the probability of choosing to “not invest” and to free ride instead
will decrease.

• If the profit growth coefficients are larger enough, system providers and hospitals will be willing
to invest in privacy protection even if without governmental regulation. This result will not
accrue additional benefits to system providers and hospitals, but will also reduce the cost to
governments. Therefore, in reality the optimal stage of privacy protection is to (invest, invest,
not regulate).

In this study, we use mHealth as the context for illustration, however, the development can be
adapted with some effort to other emerging domains. Our study has several limitations that can be
addressed in follow-up study. First, one could instead use an evolutionary game model for strategy
choice based on a nonlinear demand function. It would be very interesting to compare those results
with ours, but it would be very complicated to analyze due to its complexity. Second, a scenario
involving an increased demand for patients’ privacy protection might be considered as this will affect
the evolutionary path of the strategies. Third, not all the behavior of privacy investment or free riding
can be evaluated precisely, for the sake of limited budgets and technological supports. How to enhance
the accuracy of regulation on privacy investment should be addressed. Finally, an interesting issue
to address in future work is how other factors (e.g., the advertising investment of system providers)
affect the evolution of the choice of strategy for privacy protection.
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