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Abstract: Precipitation is a key environmental factor determining plant community structure and
function. Knowledge of how community characteristics and leaf stoichiometric traits respond to
variation in precipitation is crucial for assessing the effects of global changes on terrestrial ecosystems.
In this study, we measured community characteristics, leaf stoichiometric traits, and soil properties
along a precipitation gradient (35–209 mm) in a desert ecosystem of Northwest China to explore
the drivers of these factors. With increasing precipitation, species richness, aboveground biomass,
community coverage, foliage projective cover (FPC), and leaf area index (LAI) all significantly
increased, while community height decreased. The hyperarid desert plants were characterized
by lower leaf carbon (C) and nitrogen/phosphorus (N/P) levels, and stable N and P, and these
parameters did not change significantly with precipitation. The growth of desert plants was limited
more by N than P. Soil properties, rather than precipitation, were the main drivers of desert plant leaf
stoichiometric traits, whereas precipitation made the biggest contribution to vegetation structure and
function. These results test the importance of precipitation in regulating plant community structure
and composition together with soil properties, and provide further insights into the adaptive strategy
of communities at regional scale in response to global climate change.

Keywords: precipitation; community characteristics; leaf stoichiometric traits; soil properties; desert
ecosystem; global climate change

1. Introduction

Water availability is the most important factor affecting ecosystem structure and function [1–3].
In arid and semi-arid regions, especially, biophysical activity is tightly coupled to water availability,
and water deficit exerts a profound influence on ecosystem dynamics [4,5]. Precipitation is a key
environmental factor that determines water availability in desert ecosystems and regulates the
responses of plant communities and entire ecosystems [6–8]. The response and adaptation of desert
plant community characteristics and their leaf stoichiometric traits to precipitation are of the utmost
importance, as community characteristics and leaf traits are fundamental elements in understanding
the structure and function of ecosystems [9–11]. Precipitation affects community characteristics
and leaf traits in complex ways, especially in a changing climate. It may directly influence plant
activity and ecological processes, and also indirectly mediates these through interactions with abiotic
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factors such as soil water content, supplementary water, soil nutrition, and evaporation [1,7,12,13].
Exactly how precipitation affects community characteristics and leaf stoichiometric traits across
a precipitation gradient remains largely unclear and needs further research at the interface of ecology
and hydrology, especially in arid regions [8].

Dryland ecosystems, which cover nearly 40% of terrestrial habitats and provide critical
ecosystem services to biota, are particularly suitable for investigating the role of precipitation on
ecological communities [2]. These ecosystems are defined by high seasonal and annual variation
in precipitation [4]. In arid regions, sparse and variable precipitation exerts strong control over
plant community composition, life histories, physiological properties, and resource availability,
thereby impacting eco-hydrological processes [6,14]. The response of plants to precipitation regimes
had been analyzed in some studies, within individual species, and within communities and
ecosystems [1,14,15]. The research on the response of individual plants to precipitation regimes
had focused mainly on biophysiological traits including water use efficiency, photosynthesis, sap flow,
respiration and evapotranspiration [14,16,17]. Community characteristics including species diversity,
species composition, and biomass are the main parameters of the ecological processes that are highly
sensitive to precipitation [1,5,18,19]. Precipitation plays a crucial role in shaping vegetation distribution
within arid environments, and understanding responses of community to precipitation is critical to
maintain desert ecosystems sustainability [4,14].

Leaf traits are an important determinant of plant growth and production in plant communities,
and their nutrient traits are closely associated with the structure and function of terrestrial
ecosystems [9,10,20]. Elser et al. [21,22] revealed that terrestrial plants or plant communities
grow in a wider range of nutrient conditions and the C/N/P stoichiometry of terrestrial plants
could reflect how plant species adjusted to the local growth conditions. Ecological stoichiometry,
as an integrative approach, can yield new insights for studying how precipitation affects the balance
of essential elements including C, N, and P at different trophic levels and wide spatial scales [20,23–25].
Precipitation may change the leaf C, N, P stoichiometry through a cascade of plant-soil feedbacks,
and may also alter the species composition and leaf C, N, P stoichiometry due to differences in species’
nutrition stoichiometry contents [13,26–28]. Currently, there has been increasing research on the leaf
stoichiometry of plant species in relation to variations in geographical and climatic factors [20,25,26,28].
However, few studies have focused on the effects of precipitation regimes on the leaf stoichiometric
traits of desert plants, especially the relationship between precipitation and nutrient stoichiometry in
field environments across a range of precipitation gradients in arid regions.

The middle and lower reaches of the Heihe River, a typical arid inland river desert ecosystem,
occur in an extremely arid inland region where the ecological environment is fragile [29]. The primary
landscapes are peripheral desert, riparian forest and a central oasis, with desert playing a crucial role
in maintaining a stable ecological environment and the oasis in maintaining agricultural production.
Over the past years, human activity (e.g., grazing and agriculture) and global climate change
has led to the destruction of desert vegetation in this region [29–32]. Currently, some studies on
vegetation-environment relationships have been carried out in several riparian and oasis zones [33–36].
However, little is known about the effects of precipitation on natural desert vegetation and soil
properties at a regional scale, especially leaf stoichiometric traits. With a large range of annual
precipitation from 29 to 447 mm, the middle and lower reaches of the Heihe River are a suitable study
site for investigating the responses of natural desert ecosystems to precipitation.

Seven sites with natural desert vegetation in the middle and lower reaches of the Heihe River
were used to explore patterns of community structure and leaf stoichiometric traits along a natural
precipitation gradient. Specifically, the study aims to: (1) characterize the pattern of plant community
characteristics, leaf stoichiometric traits and soil properties along precipitation gradient; (2) evaluate
the relationship between plant community characteristics and soil properties, leaf stoichiometric traits
and soil properties; and (3) determine major factors affecting community characteristics and leaf
stoichiometric traits along a precipitation gradient. We hypothesized that precipitation play a major
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role on plant community structure, while soil properties had key influence on leaf stoichiometric traits.
These findings can be useful to maintain the sustainability of natural desert ecosystems.

2. Materials and Methods

2.1. Study Area and Site Description

The Heihe River Basin (Figure 1) is the second largest inland river basin in Northwest China,
with a length of 821 km in its main stream and a catchment area of 14.29 × 104 km2. The river
originates from the middle of the Qilian Mountains, on the northern Tibet Plateau, then flows through
Qinghai Province, Gansu Province, and the Inner Mongolia Autonomous Region, and terminates
at the north end of Juyan Lake in Ejin county, Inner-Mongolia [30]. The Heihe River Basin has
a varied topography, with elevations between about 900 and 5500 m (calculated from ASTER
GDEM, http://westdc.westgis.ac.cn/), and the integrated topographic landscape can be divided into:
a glaciology and geocryology zone, an alpine vegetation zone, a piedmont oasis zone, and a desert
zone. The desert zone accounts for more than 75% of the total land area. The upper reaches are covered
with thick vegetation and have well-developed glaciology and geocryology, which means they form
the main runoff generating region [37]. The middle and lower reaches have a great deal of farmland
and desert, and have become the primary runoff consumption region [30].
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Figure 1. The Heihe River Basin in northwestern China and the locations of the sampling sites.

The study was conducted in the vast natural desert, located in the middle and lower reaches
of the Heihe River. The region is characterized by a typical continental arid climate, which is
dominated by a warm-humid summer and a cold-dry winter. The mean annual precipitation
(from 1950 to 2000) was 29–447 mm (calculated from the WORLDCLIM dataset, www.worldclim.org)
with a high spatial and temporal variability. The majority (more than 75%) of precipitation falls from
July to August, and pan evaporation is relatively high, especially in lower reaches, evaporation is
100 times greater than the precipitation [17,30]. The mean annual temperature is 5–10 ◦C. The soils have
developed from gray-brown desert soil [30]. Natural desert vegetation accounts for 87.02% of the total
area [38]. In the oasis, the primary vegetation is Populus euphratica Oliv. and Tamarix ramosissima Lebed.
Outside of the oasis, the primary vegetation is temperate desert shrubland. Desert shrub plants
(Artemisia desertorum Spreng., Kalidium gracile Fenzl, Salsola passerina Bunge, Kalidium cuspidatum
(Ung. Sternb.) Grub., and Haloxylon ammodendron (C. A. Mey.) Bunge are the dominant species and
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major primary producers, and herb plant appeared in the form of companion species [30]. The list of
plant species in the seven sampling sites were shown in Table A1.

2.2. Experimental Design and Data Collection

This study was conducted in temperate desert shrubland through the middle and lower reaches
of Heihe River Basin. In August 2015, seven shrubland sampling sites along a precipitation gradient
were prepared; vegetation and soil sampling were finished at the same time within one week when
aboveground biomass reached the peak [30]. The sites were in an open, flat, undisturbed desert Gobi
area, far from the river (more than 10 km) and other water resources. In each sampling site, three shrub
quadrats (5 m × 5 m) were established randomly as three replicates. The number of species, coverage,
plant height, leaf area index (LAI), basal diameter, and width of canopy were recorded individually.
Four herb quadrats (1 m × 1 m) were established at each corner of the shrub quadrat to collect data of
number of herb species, coverage, and height. Compared to community coverage, foliage projective
cover only records green leaves coverage [39]. A 30 m sample lines were set up near each shrub
quadrat, and foliage projective cover (FPC) was measured with a simple FPC measuring tube [39].
Aboveground biomass was determined by the harvest method. Harvested materials were oven-dried
at 80 ◦C to constant weight, and then the weight was recorded. The geographic coordinates and
elevation of each plot were recorded using a global positioning system. LAI was measured with
a LAI-2200 Plant Canopy Analyzer (LI-COR, Lincoln, NE, USA), by using one sensor with a 90◦ view
cap. Measurements were made near sunset [40].

At each site, intact soil cores were collected using a cutting ring (volume of 100 cm3) from five
soil depths (0–10, 10–20, 20–30, 30–40, and 40–50 cm) in each shrub quadrat after removing any rocks
and litter, with three replicates. Soil samples were sealed in an ice chest and were transported to
laboratory. Soil samples were air-dried and passed through a 2-mm sieve. Soil pH and electrical
conductivity (EC) were measured in 1:1 soil-water and 1:5 soil-water suspensions (Multiline F/SET-3,
WTW, Weilheim, Germany), respectively [41]. Soil total C and N were measured using a C/H/N
analyzer (Vario EL III, Elementar, Hanau, Germany) [42], soil available P was measured by the Olsen
method, and soil available K was obtained with 1 M ammonium acetate and measured by atomic
absorption spectroscopy [43]. Soil bulk density and gravimetric soil water content (SWC) was measured
by collecting soil cores from each soil layer using a stainless-steel cutting ring (100 cm3) at 0–10, 10–20,
20–30, 30–40, and 40–50 cm depths in each shrub quadrat, and then were oven dried at 105◦C to
a constant weight.

2.3. Leaf Stoichiometric Traits

Sun-exposed and fully expanded mature leaves (or assimilating shoots) were collected from
three individuals of the dominant species at each shrub quadrat. The leaves from same species were
put together and grouped in paper envelopes. Leaf stoichiometric traits were analyzed with three
replicates for same sample, and presented in mass basis (%). The total C and N concentrations in the
leaves were measured using a C/H/N analyzer (Vario EL III, Elementar, Hanau, Germany). Leaf P and
K concentrations were measured using an inductively coupled plasma optical emission spectrometer
(iCAP 6300, Thermo Scientific, Waltham, MA, USA) [44].

2.4. Statistical Analysis

Species richness was determined from the total species numbers in each plot. Species importance
value was calculated as (RD + RC + RF)/3 to indicate the dominant species (Tables 1 and A2), where RD,
RC, and RF are the relative density, relative coverage, and relative frequency, respectively, of each
species in each plant community [45]. Gravimetric soil water content data were averaged across three
soil layers of 0–10, 10–30, and 30–50 cm; other soil data were averaged across 0–50 cm soil depth.

All data were log 10 transformed to meet the homogeneity of variance and normality. One-way
ANOVA analysis of variance was applied to compare the differences in community characteristics,
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leaf stoichiometric traits, and soil properties in different sites. If significant differences were found,
Tukey’s test was used to determine the differences (Tables A3 and A4). Regression analyses were
used to detect relationship among plant community characteristics, leaf stoichiometric traits, and soil
properties along precipitation gradient. Appropriate regression equations were selected based on level
of significance and high R2 value. Pearson correlation was used to determine the strengths of possible
relationships between community characteristics, leaf stoichiometric traits, and environmental factors.
Significant differences were evaluated at the level of p < 0.05. Statistical analyses were carried out
using SPSS Version 18.0 (SPSS, Chicago, IL, USA).

Table 1. Characteristics of plant community and mean annual rainfall in the Heihe River Basin.
Values are means ± SD.

Site Locations
Annual
Rainfall

(mm)

Altitude
(m)

Dominant
Species

Species
Richness

Aboveground
Biomass (g/m2)

Coverage
(%) Height (cm)

Foliage
Projected
Cover (%)

Leaf Area
Index

S1 42◦16.13′ N
101◦22.46′ E 35 920 Haloxylon

ammodendron 1 101.8 ± 56.6 5.7 ± 0.5 152 ± 48.7 7.2 ± 3.5 0.8 ± 0.1

S2 42◦30.87′ N
101◦15.07′ E 39 982 Nitraria

sibirica Pall. 1 60.3 ± 31.4 7.3 ± 2.0 25.4 ± 3.7 8.9 ± 2.5 0.1 ± 0.0

S3 40◦16.90′ N
98◦41.03′ E 69 1227 Nitraria

praevisa Bobr. 2 72.7 ± 23.7 16.0 ± 6.0 26.6 ± 1.1 15.6 ± 2.5 0.2 ± 0.0

S4 39◦56.53′ N
98◦59.91′ E 82 1326 Artemisia

desertorum 3 77.6 ± 23.5 17.6 ± 5.0 62.1 ± 14.1 12.2 ± 3.5 0.4 ± 0.1

S5 39◦56.53′ N
100◦46.17′ E 149 1655 Kalidium

gracile 3 230.0 ± 126.6 19.1 ± 0.1 17.5 ± 1.5 27.8 ± 2.5 0.6 ± 0.1

S6 38◦49.09′ N
100◦59.24′ E 162 1714 Salsola

passerina 5 316.0 ± 69.0 22.2 ± 3.3 27.9 ± 4.3 24.4 ± 2.5 0.8 ± 0.1

S7 38◦37.55′ N
101◦5.25′ E 209 2016 Kalidium

cuspidatum 3 234.8 ± 45.1 27.3 ± 5.5 14.2 ± 0.3 37.8 ± 5.1 0.9 ± 0.1

Environment variables included precipitation and 11 soil properties including gravimetric soil
water content (0–10 cm), gravimetric soil water content (10–30 cm), gravimetric soil water content
(30–50 cm), soil bulk density, soil total nitrogen, soil total carbon, soil C/N, soil available P, soil available
K, soil pH, and soil electrical conductivity were used to separate key environmental factors for variation
of community characteristics, the marginal and conditional effects of the variables were calculated
through forward selection in redundancy analysis (RDA) that directly showed the significance and
percentage of the explained factors [46]. Statistical test for each added variable was conducted
with Monte Carlo permutation tests (9999 permutations). Marginal effects showed the effects of the
environmental variables on community characteristics, and conditional effects showed the effects of
the environment variables on community characteristics after the anterior variable was eliminated
by the forward selection method [31,32,46]. The forward selection method was performed to exclude
variables that did not contribute significantly (p > 0.05) to variation, and the redundant variables were
eliminated and a group of key variables was determined. Both precipitation variable and soil properties
were included in the group of key variables, variation partitioning was used to separate the variation
in the community characteristics between two groups of significant predictors: precipitation and soil
properties. The independent effects of each factor and the interactive effects between factors were
included in the final model [47]. Either precipitation variable or all of soil properties was not included
in the group of key variables, variation partitioning procedure was not performed. Leaf stoichiometric
traits data was analyzed in same process. The forward selection, Monte Carlo test, and variation
partitioning were conducted using CANOCO for Windows program (version 5.0) [46].

3. Results

3.1. Changes in Community Characteristics along the Precipitation Gradient

Species richness (F = 38.79, p < 0.001), aboveground biomass (F = 8.75, p < 0.001), community
height (F = 18.51, p < 0.001), community coverage (F = 62.05, p < 0.001), FPC (F = 14.80, p < 0.001) and
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LAI (F = 76.44, p < 0.001) were significantly different among sites with different annual precipitation
(Tables 1 and A3).

Species richness, aboveground biomass, community coverage, FPC, and LAI significantly
increased with increasing precipitation and could be described by linear equations, while community
height significantly decreased with increasing precipitation and could also be described by linear
equations (Table 1, Figure 2).
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Figure 2. Changes of community characteristics with the precipitation gradient. (A) Species richness;
(B) Aboveground biomass (g/m2); (C) Community height (cm); (D) Community coverage (%);
(E) Foliage projective cover (%); (F) Leaf area index.

3.2. Changes in Leaf Stoichiometric Traits along the Precipitation Gradient

For all species, the mean leaf C, N, P, and K contents, and C/N, C/P, and N/P ratios were
301.22 mg g−1, 18.81 mg g−1, 1.74 mg g−1, 17.59 mg g−1, 15.88, 199.68, and 12.27, respectively (Table 2).
Leaf C (F = 175.76, p < 0.001), leaf N (F = 109.19, p < 0.001), leaf P (F = 456.43, p < 0.001), leaf K (F = 253.59,
p < 0.001), leaf C/N (F = 319.26, p < 0.001), leaf C/P (F = 306.01, p < 0.001), and leaf N/P (F = 241.23,
p < 0.001) were significantly different among sites with different precipitation (Tables 2 and A3). Leaf C,
leaf N, and leaf C/N had no significant trend with increasing precipitation. Leaf K decreased
significantly with increasing precipitation and could be described by linear equation, while Leaf P
showed a hump-shaped pattern, increasing and then decreasing rapidly with increasing precipitation,
and could be described by quadratic curve (Figure 3). Leaf C/P and leaf N/P had the opposite trend
to leaf P (Figure 3).
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Table 2. Leaf stoichiometric traits for dominant species along a precipitation gradient in the Heihe
River Basin.

Site C (mg/g) N (mg/g) P (mg/g) K (mg/g) C/N C/P N/P

S1 334.63 ± 11.39 21.06 ± 0.74 1.15 ± 0.01 20.29 ± 0.23 15.89 ± 0.03 291.03 ± 11.05 18.32 ± 0.73
S2 193.69 ± 3.34 13.49 ± 0.21 1.34 ± 0.01 15.68 ± 0.09 14.35 ± 0.12 144.63 ± 2.52 10.08 ± 0.18
S3 351.28 ± 28.75 26.74 ± 1.44 2.55 ± 0.11 18.43 ± 1.14 13.12 ± 0.19 138.18 ± 13.06 10.52 ± 0.71
S4 467.27 ± 2.02 22.83 ± 0.45 2.84 ± 0.04 29.04 ± 0.43 20.48 ± 0.19 164.78 ± 3.00 8.05 ± 0.09
S5 176.45 ± 2.43 12.86 ± 0.28 1.63 ± 0.03 12.82 ± 0.48 13.72 ± 0.11 108.19 ± 3.51 7.89 ± 0.32
S6 238.86 ± 3.67 16.46 ± 0.45 1.83 ± 0.08 18.16 ± 0.92 14.51 ± 0.17 130.40 ± 7.49 8.99 ± 0.62
S7 346.35 ± 27.43 18.19 ± 1.61 0.82 ± 0.05 8.70 ± 0.52 19.05 ± 0.24 420.55 ± 9.83 22.08 ± 0.80

Mean 301.22 ± 99.05 18.81 ± 4.86 1.74 ± 0.70 17.59 ± 6.08 15.88 ± 2.68 199.68 ± 108.61 12.27 ± 5.34
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Figure 3. Changes of leaf C, N, P, K, and C/N/P ratios with the precipitation gradient.
(A) Leaf C (mg/g); (B) Leaf N (mg/g); (C) Leaf C/N ratio; (D) Leaf K (mg/g); (E) Leaf P (mg/g);
(F) Leaf N/P ratio; (G) Leaf C/P ratio; Lines are plotted if regressions are significant at p < 0.05.



Int. J. Environ. Res. Public Health 2018, 15, 109 8 of 19

3.3. Changes in Soil Properties along the Precipitation Gradient

Gravimetric soil water content in the 0–10 cm soil layer (GSWC10) (F = 3.24, p = 0.033), gravimetric
soil water content in 10–30 cm soil layer (GSWC30) (F = 12.62, p < 0.001), gravimetric soil water content
in 30–50 cm soil layer (GSWC50) (F = 18.01, p < 0.001), soil bulk density (F = 24.39, p < 0.001), soil total N
(F = 22.26, p < 0.001), soil total C (F = 56.56, p < 0.001), soil C/N ratio (F = 28.68, p < 0.001), soil available
P (F = 23.76, p < 0.001), soil available K (F = 24.02, p < 0.001), soil pH (F = 2.33, p = 0.41), and soil EC
(F = 25.36, p < 0.001) varied significantly among sites with different precipitation (Tables 3 and A4).

Gravimetric soil water content at 0–10 cm and at 10–30 cm showed a significantly increasing
trend with increasing precipitation, and could be described by linear equations, but this trend
was not significant at 30–50 cm soil depths (Figure 4). Soil bulk density and soil pH remained
relatively constant with increasing precipitation (Figure 4). Soil total N and total C significantly
increased with precipitation and could be described by linear equations, while soil available K
significantly decreased with precipitation and could also be described by logarithmic equation
(Figure 4). Soil C/N, soil available P, and soil electrical conductivity did not significantly vary with
increasing precipitation (Figure 4).

Int. J. Environ. Res. Public Health 2018, 15, 109    8 of 20 

 

3.3. Changes in Soil Properties along the Precipitation Gradient 

Gravimetric  soil  water  content  in  the  0–10  cm  soil  layer  (GSWC10)  (F  =  3.24,  p  =  0.033), 

gravimetric soil water content in 10–30 cm soil layer (GSWC30) (F = 12.62, p < 0.001), gravimetric soil 

water content in 30–50 cm soil layer (GSWC50) (F = 18.01, p < 0.001), soil bulk density (F = 24.39, p < 

0.001), soil total N (F = 22.26, p < 0.001), soil total C (F = 56.56, p < 0.001), soil C/N ratio (F = 28.68, p < 

0.001), soil available P (F = 23.76, p < 0.001), soil available K (F = 24.02, p < 0.001), soil pH (F = 2.33, p = 

0.41), and soil EC (F = 25.36, p < 0.001) varied significantly among sites with different precipitation 

(Table 3 and Table A4). 

Gravimetric soil water content at 0–10 cm and at 10–30 cm showed a significantly  increasing 

trend with increasing precipitation, and could be described by linear equations, but this trend was 

not significant at 30–50 cm soil depths (Figure 4). Soil bulk density and soil pH remained relatively 

constant with increasing precipitation (Figure 4). Soil total N and total C significantly increased with 

precipitation  and  could  be  described  by  power  equations,  while  soil  available  K  significantly 

decreased with precipitation and could also be described by  logarithmic equation  (Figure 4). Soil 

C/N,  soil  available  P,  and  soil  electrical  conductivity  did  not  significantly  vary with  increasing 

precipitation (Figure 4).   

 

Figure 4. Changes of soil properties with the precipitation gradient. (A) Gravimetric soil water content 

in  the  0–10  cm  soil  layer  (%);  (B) Gravimetric  soil water  content  in  10–30  cm  soil  layer  (%);  (C) 

Gravimetric soil water content in 30–50 cm soil layer (%); (D) Soil bulk density (g/cm3); (E) Soil total 

N (mg/g); (F) Soil total C (mg/g); (G) Soil C/N ratio; (H) Soil available P (mg/kg); (I) Soil available K 

(mg/kg); (J) Soil Ph; (K) Soil EC (ms/cm). Lines are plotted if regressions are significant at p < 0.05.   

Figure 4. Changes of soil properties with the precipitation gradient. (A) Gravimetric soil
water content in the 0–10 cm soil layer (%); (B) Gravimetric soil water content in 10–30 cm soil
layer (%); (C) Gravimetric soil water content in 30–50 cm soil layer (%); (D) Soil bulk density (g/cm3);
(E) Soil total N (mg/g); (F) Soil total C (mg/g); (G) Soil C/N ratio; (H) Soil available P (mg/kg);
(I) Soil available K (mg/kg); (J) Soil pH; (K) Soil EC (ms/cm). Lines are plotted if regressions are
significant at p < 0.05.
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Table 3. Soil properties in different sites along a precipitation gradient in the Heihe River Basin. Values are means ± SD. Abbreviations: GSWC10, soil water content
(0–10 cm); GSWC30, soil water content (10–30 cm); GSWC50, soil water content (30–50 cm); SBD, soil bulk density; TN, soil total nitrogen; TC, soil total carbon; C/N,
soil C/N ratio; AP, soil available phosphorus, AK, soil available potassium content; pH, soil pH; EC, soil electrical conductivity.

Sites GSWC10 (%) GSWC30 (%) GSWC50 (%) SBD (g/cm−3) TN (mg/g) TC (mg/g) C/N AP (mg/kg) AK (mg/kg) pH EC (ms/cm)

S1 1.10 ± 0.56 6.02 ± 2.22 11.38 ± 0.59 1.36 ± 0.09 0.45 ± 0.05 12.98 ± 4.65 29.22 ± 11.06 3.82 ± 1.23 312.36 ± 74.79 8.38 ± 0.22 6.51 ± 1.47
S2 0.22 ± 0.09 0.84 ± 0.18 1.53 ± 0.48 1.72 ± 0.09 0.57 ± 0.04 4.05 ± 0.99 7.18 ± 2.18 2.91 ± 0.63 118.28 ± 34.89 8.89 ± 0.36 0.46 ± 0.15
S3 1.41 ± 0.85 4.23 ± 2.74 5.57 ± 4.06 1.27 ± 0.19 0.88 ± 0.45 16.10 ± 1.62 21.91 ± 11.32 10.16 ± 4.23 237.94 ± 106.37 8.52 ± 0.12 6.85 ± 2.14
S4 0.42 ± 0.26 1.60 ± 0.57 2.47 ± 0.29 1.58 ± 0.04 0.39 ± 0.02 12.39 ± 1.08 31.69 ± 2.93 2.37 ± 0.37 183.90 ± 17.84 8.89 ± 0.76 1.72 ± 0.96
S5 0.89 ± 0.34 4.22 ± 0.82 5.02 ± 0.40 1.25 ± 0.04 0.83 ± 0.12 17.69 ± 0.74 21.64 ± 2.34 5.00 ± 1.52 136.08 ± 47.98 8.71 ± 0.04 2.14 ± 0.24
S6 2.24 ± 0.82 2.86 ± 0.73 3.79 ± 0.39 1.49 ± 0.01 0.82 ± 0.08 21.99 ± 1.43 26.73 ± 0.96 3.60 ± 0.60 68.40 ± 15.29 8.70 ± 0.16 1.26 ± 0.21
S7 3.33 ± 0.60 8.69 ± 1.22 10.42 ± 0.96 1.54 ± 0.11 0.99 ± 0.77 23.31 ± 1.18 23.62 ± 0.55 3.16 ± 0.44 175.05 ± 19.84 8.59 ± 0.07 3.41 ± 0.06
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3.4. Relationships among Community Characteristics, Leaf Stoichiometric Traits and Environmental Factors

Species richness, aboveground biomass, community coverage, FPC, and LAI were significantly
and positively related to soil water content at 0–10 cm. Species richness, FPC, and LAI was positively
correlated with soil water content at 10–30 cm, and LAI was positively correlated with soil water content
at 30–50 cm. There were other positive or negative correlations among community characteristics or
leaf stoichiometric traits and soil properties in these natural desert communities (Table A5).

3.5. Controlling Factors of Community Characteristics and Leaf Stoichiometric Traits

In the Monte Carlo test of forward selection (p < 0.05) for community characteristics, precipitation,
soil C/N, GSWC50, soil total nitrogen and soil available P passed the test (Table 4). Variation
partitioning showed that precipitation and soil properties jointly explained 76.9% of the variation of
community characteristics; precipitation had the largest contribution (34.1%), next was soil properties
(24.3%), and then the interaction of precipitation and soil properties (Figure 5). In the Monte Carlo
test of forward selection (p < 0.05) for leaf stoichiometric traits, GSWC50, soil C/N, soil bulk density,
GSWC30, soil electrical conductivity and soil available K passed the test (Table 5).

Precipitation had the largest contribution to variations in community characteristics, whereas soil
properties had significant effect on the variations in leaf stoichiometric traits (Tables 4 and 5).

Table 4. Marginal and conditional effects obtained from the forward selection of the Monte Carlo test
for community characteristics. The abbreviations are same as Table 3.

Marginal Effects Conditional Effects
p Value F Value

Environmental Variables Eigenvalues Environmental Variables Eigenvalues

Precipitation 60.5 Precipitation 60.5 0.001 29.1
Soil total carbon 42.5 Soil C/N 12.8 0.001 8.6

Soil total nitrogen 33.2 GSWC50 5.1 0.002 4.5
GSWC10 25.1 Soil total nitrogen 3.9 0.004 5.7

Soil available K 18.8 Soil available P 3.8 0.034 2.8
Soil C/N 11.7 SEC 2.2 0.082 2.2
GSWC30 9.3 Soil bulk density 1.7 0.190 1.6

SEC 6.3 Soil total carbon 1.5 0.193 1.6
GSWC50 4.3 GSWC10 1.2 0.115 2.0

Soil bulk density 3.4 GSWC30 1.1 0.395 1.0
Soil available P 1.8 Soil available K 0.7 0.391 1.0

Soil pH 1.6 Soil pH 0.6 0.460 0.9

Table 5. Marginal and conditional effects obtained from the forward selection of the Monte Carlo test
for leaf stoichiometric traits. The abbreviations are same as Table 3.

Marginal Effects Conditional Effects
p Value F Value

Environmental Variables Eigenvalues Environmental Variables Eigenvalues

GSWC50 34.6 GSWC50 34.6 0.001 10.1
GSWC30 31.6 Soil C/N 11.7 0.002 7.4
GSWC10 21.9 Soil bulk density 16.0 0.003 5.8

Soil available K 14.7 GSWC30 5.9 0.007 4.5
SEC 12.9 SEC 12.4 0.010 5.7

Precipitation 10.1 Soil available K 3.6 0.038 3.5
Soil C/N 9.8 Soil total carbon 2.6 0.064 3.0

Soil total nitrogen 7.4 Precipitation 2.4 0.137 2.0
Soil total carbon 6.1 Soil available P 1.2 0.320 1.2
Soil available P 5.7 GSWC10 1.0 0.376 1.0

Soil pH 5.3 Soil total nitrogen 0.9 0.449 0.8
Soil bulk density 2.3 Soil pH 0.4 0.658 0.5
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4. Discussion

4.1. Community Characteristics and the Precipitation Gradient

Vegetation dynamics are tightly coupled with hydrological processes in arid and semi-arid
ecosystems [2]. Previous studies have reported that precipitation plays an important role in regulating
plant community structure and composition, with consequent influences on ecosystem functioning
and potential feedback [1,4,48]. Our results showed that precipitation was the major driving force for
variation of community characteristics and supported our hypothesis. In this arid region, the majority
(more than 75%) of precipitation falls in July and August, shrub plants could use surface rainfall
for survival in summer [30,49], and precipitation might be the main water resource for shrub plants.
In addition, herb plants increased the community coverage, foliage projective cover, and species richness
in rainy season. Therefore, water limitation might explain why single shrub-dominated community
existed in S1–S5, while herb plant appeared in S6 and S7 (Tables A1 and A2). Community height was
significantly and negatively related to precipitation in our results, which was contrary to results in an
alpine wetland ecosystem [50]. Potential mechanisms for this result may be that plants with greater
height use more soil water at deeper depths than plants of smaller individual in hyperarid regions [51].

Our results showed that species richness and aboveground biomass increased linearly along the
precipitation gradient (Figure 2), however, the maximum species richness and aboveground biomass
did not appear in S7 with highest precipitation (Table 1). Decreased species richness and aboveground
biomass appeared to be caused largely by the dominant shrub plant (Kalidium cuspidatum) [52].
Because Kalidium cuspidatum is a typical salt-secreting halophytic shrub, highly saline habitats with
salt crust can develop [52], and distribution and growth of other plants were limited, therefore,
species richness was low. Our results showed that species richness was significantly positive correlated
with GSWC10 and GSWC30 (Table A5), which was contrary to results obtained in a previous study in
an alpine wetland ecosystem [50], but was consistent with the results in arid and semiarid regions [3,53].
This difference might stem from the relatively small effects of interspecific competition in arid regions,
whereas high species density in humid environments leads to greater interspecific competition and
decreased species diversity [53]. These findings suggest that there is a positive interaction effect for
plant diversity and upper soil water content in arid regions [54]. Although our results were consistent
with previous conclusions obtained in arid and semi-arid regions, our results were derived from
one-time-filed observations; the relationship between plant communities and precipitation may change
in different seasons, long-term study are necessary in future.

4.2. Leaf Stoichiometric Traits and the Precipitation Gradient

Leaf stoichiometric traits along a natural precipitation gradient in an arid desert habitat might be
different from those reported at regional scales [35,55,56]. Our results showed that the mean of leaf
C was 301.22 mg g−1, which was significantly lower than in other arid regions and lower than the
average of global flora [21,25,55,56]. This difference might be because drought and salt stress inhibit
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desert plant photosynthesis by reducing stomatal conductance and water potential, and drought and
salt stress lead to increased metabolic costs and decreasing C fixation [55,57]. The mean leaf N was
18.81 mg g−1, significantly lower than that in other arid regions [35,55,56], but nearly equivalent with
Chinese flora and global flora [20,21,25]. Killingbeck et al. [58] reported that the average of leaf N
was 22.0 mg g−1 based on 78 species of desert plant leaves. In our study, the fact that the leaf N of
dominant species tended to be relatively low was largely due to the lower soil N and a relative lack of
symbiotic N fixer [35].

Previous studies have reported that P is considered the major growth-constraining nutrients in
plant communities in China compared with the global average [20]. However, some studies reported
that soil P content have large variation across China and show an increasing trend from humid region
to arid region [59]. In our study, the mean leaf P was 1.74 mg g−1, higher than that of the Loess Plateau
and the average of Chinese flora [20,35], but nearly equivalent with that in other arid regions and
the average of global flora [21,25,55,57]. Relative high leaf P content appeared to be caused largely
by high soil P content, due to leaf P being tightly coupled with soil P [20]. An N/P ratio less than
14 indicates N constraint, while an N/P ratio more than 16 indicates P constraint. With an N/P ratio
between 14 and 16, either or both N or P constrain plant growth [60]. In the present study, the leaf
N/P ratio in this region was 12.7, indicating that plant growth was largely constrained by N. This is
consistent with some previous studies in desert ecosystems [55,61], but differs from other studies in
grassland and woodland [62,63]. This difference indicated that P might play an important role in plant
distribution patterns in relative humid ecosystems in China. The relative deficiency in soil N content
and the relatively adequate soil P content could possibly explain why N content is the key limiting
factor for the plant N/P pattern in desert ecosystems [61].

Some studies on leaf stoichiometric traits-climate-soil relationships have been carried out at local,
regional, or global scales providing further understanding of the mechanisms of vegetation dynamics
in response to global climate change [20,25,55,64]. Reich and Oleksyn et al. [25] observed that leaf N,
leaf P and N/P ratio were significantly related to latitude and mean annual temperature at a global scale.
However, Kerkhoff et al. [64] reported that leaf N and leaf P were not related to the latitude, but leaf
N/P ratio significantly decreased with increased latitude based on 1054 worldwide plant species.
Han et al. [20] reported that leaf N and P of 753 plant species in China were significantly related with
latitude and mean annual temperature, but leaf N/P ratio was not related to latitude. This discrepancy
may be attributed to the different nutrient limitations in the different regions [28]. Our results showed
that there was no significant linear relationship between leaf C/N/P stoichiometry and precipitation at
the regional scale (Figure 3), and further proved leaf stoichiometric traits of different plant functional
groups fluctuated significantly and the climate varied relatively little at a regional scale, so that
variations of leaf stoichiometric traits modulated by the climate are non-significant [35]. Our results
showed that leaf K was significantly and negatively related to precipitation (Figure 3), similar results
were reported that ability of resisting drought and absorbing water for Erica multiflora L. depend on
obtaining more K element in arid environment [65]. Our sampling captured a relatively narrow range
of precipitation, given the complex relationships between precipitation and vegetation, detail field
investigations in different seasons at large scale in arid region should be conducted to elucidate the
responses of different functional groups or community-level leaf stoichiometric traits to precipitation
in next research.

4.3. Soil Properties and the Precipitation Gradient

Soil properties play important roles in regulating plant community structure and composition in
arid and semi-arid ecosystem, especially the non-phreatophyte species [1]. Our result showed that
upper soil water content (0–30 cm) showed a significantly increasing trend with increasing precipitation
(Figure 4), and was consistent with results obtained in arid and semi-arid region [3,7]. In our study,
with increasing rainfall and decreasing evaporation in summer, soil moisture at soil surface from S1 to
S7 increased. Some studies reported that soil with high bulk density has low water holding capacity in



Int. J. Environ. Res. Public Health 2018, 15, 109 13 of 19

the surface soil and might induce drought stress in the surface soil in arid regions [66,67]. However,
soil bulk density in our study did not show a significant decrease with increasing precipitation, and soil
pH remained relatively constant with increasing precipitation (Figure 4). These results appeared to be
caused by soil parent material that mainly composes of sand [30]. Thomey et al. [68] and Noy-Meir [4]
found that large rainfall events result in a significantly high pulse-response in the upper soil water
content (0–16 cm) in arid regions, and deep soil water content change controlled by precipitation are
non-significant due to relative small precipitation and high evaporation. Our results also showed that
deeper soil water content (30–50 cm) did not show a significant increase with increasing precipitation.
However, the largest soil water content appeared in S1 (Figure 4). In addition, high soil electrical
conductivity in S1 indicated that the soil water content (30–50 cm) may be affected by groundwater.

Previous studies have reported that precipitation can directly and indirectly affect soil properties
via improved plant-soil feedback responses [1,48]. Zhou et al. [7] reported that precipitation may
regulate plant production and decomposition and then affect soil C and soil N. Some studies have
observed that soil C and N increased with increasing precipitation [69,70], and this was consistent with
our results that soil total N and total C significantly increased with precipitation (Figure 4). The loss
of soil water would increase organic matter decomposition rates and affect net N mineralization in
hyperarid regions, which leads to losses of soil C and N content [71].

5. Conclusions

This study comprehensively characterized plant community characteristics, leaf stoichiometric
traits, and soil properties along a precipitation gradient in an arid area of China. The analysis indicated
that precipitation had a positive effect on species richness, aboveground biomass, community coverage,
FPC, and LAI, but it significantly decreased community height, and precipitation was an important
factor that affected soil properties, including soil water and soil nutrition. Whereas, soil properties, rather
than precipitation, were drivers of desert plant leaf stoichiometric traits. The growth of desert plants
might be more limited by N rather than P in this region. Given the different roles of precipitation and soil
properties in leaf stoichiometric traits and community characteristics, these environmental factors should
be involved in biogeochemical simulation models and degraded ecosystem restoration in arid areas.
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Appendix A

Table A1. List of plant species in the seven sampling sites.

Sampling Sites Family Species

S1 (1 species including 1 shrub) Chenopodiaceae Haloxylon ammodendron (C. A. Mey.) Bunge
S2 (1 species including 1 shrub) Zygophyllaceae Nitraria sibirica Pall.
S3 (2 species including 2 shrubs) Zygophyllaceae Nitraria praevisa Bobr.

Solanaceae Lycium ruthenicum Murr.
S4 (3 species including 3 shrubs) Asteraceae Artemisia desertorum Spreng.

Ephedraceae Ephedra przewalskii Stapf.
Polygonaceae Calligonum mongolicum Turcz.

S5 (3 species including 3 shrubs) Chenopodiaceae Kalidium gracile Fenzl
Chenopodiaceae Salsola passerina Bunge
Chenopodiaceae Sympegma regelii Bunge

S6 (7 species including 5 shrubs
and 2 herbages)

Chenopodiaceae Kalidium gracile Fenzl
Chenopodiaceae Salsola passerina Bunge
Chenopodiaceae Sympegma regelii Bunge

Leguminosae Caragana roborovskyi Kom.
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Table A1. Cont.

Sampling Sites Family Species

Zygophyllaceae Nitraria roborowskii Kom.
Chenopodiaceae Agriophyllum squarrosum (L.) Moq.
Chenopodiaceae Halogeton glomeratus (Bieb.) C. A. Mey.

S7 (4 species including 3 shrubs
and 1 herbage)

Chenopodiaceae Kalidium cuspidatum (Ung. Sternb.) Grub.
Chenopodiaceae Salsola passerina Bunge

Tamaricaceae Reaumuria songarica (Pall.) Maxim.
Zygophyllaceae Zygophyllum fabago L.

Table A2. Information of sampling sites. Shrub layer: HA, Haloxylon ammodendron; NS, Nitraria sibirica;
NP, Nitraria praevisa; AD, Artemisia desertorum; KG, Kalidium gracile; SP, Salsola passerina; SR, Sympegma regelii;
KC, Kalidium cuspidatum. Herb layer: AS, Agriophyllum squarrosum; HG, Halogeton glomeratus;
ZF, Zygophyllum fabago.

Site Annual
Rainfall (mm)

Important Value of Major Species in Shrub Layer Important Value of Major
Species in Herb Layer

HA NS NP AD KG SP SR KC AS HG ZF

S1 35 1.00
S2 39 1.00
S3 62 0.76
S4 82 0.72
S5 149 0.51 0.31
S6 162 0.61 0.22 0.85 0.15
S7 209 0.26 0.69 1

Table A3. One-way ANOVA of community characteristics and leaf stoichiometric traits among the
sampling sites across the middle and lower reaches of Heihe River Basin. *** indicates significant
difference at p < 0.001.

Community Characteristics/Leaf
Stoichiometric Traits Sum of Squares df Mean Square F Sig.

Species richness 1.153 6 0.192 38.79 <0.001 ***
Aboveground biomass 1.601 6 0.267 8.75 <0.001 ***
Community coverage 1.148 6 0.191 18.51 <0.001 ***

Community height 2.187 6 0.364 62.05 <0.001 ***
Foliage projective cover 1.403 6 0.234 14.80 <0.001 ***

Leaf area index 2.127 6 0.354 76.44 <0.001 ***
Leaf C 0.430 6 0.072 175.76 <0.001 ***
Leaf N 0.246 6 0.041 109.19 <0.001 ***
Leaf P 0.651 6 0.108 456.43 <0.001 ***
Leaf K 0.487 6 0.081 253.59 <0.001 ***

Leaf C/N 0.098 6 0.016 319.26 <0.001 ***
Leaf C/P 0.815 6 0.136 306.01 <0.001 ***
Leaf N/P 0.564 6 0.094 241.23 <0.001 ***

Table A4. One-way ANOVA of soil properties among the sampling sites across the middle and lower
reaches of Heihe River Basin. *, ** indicate significant difference at p < 0.05 and p < 0.01, respectively.

Soil Properties Sum of Squares df Mean Square F Sig.

Gravimetric soil water content (0–10 cm) 2.596 6 0.433 3.24 <0.033 *
Gravimetric soil water content (10–30 cm) 4.144 6 0.691 12.62 <0.001 **
Gravimetric soil water content (30–50 cm) 3.862 6 0.644 18.01 <0.001 **

Soil bulk density 0.251 6 0.042 24.39 <0.001 **
Soil total nitrogen 2.034 6 0.339 22.26 <0.001 **
Soil total carbon 6.793 6 1.132 56.56 <0.001 **

Soil C/N 4.751 6 0.792 28.68 <0.001 **
Soil available P 3.665 6 0.611 23.76 <0.001 **
Soil available K 4.215 6 0.702 24.02 <0.001 **

Soil pH 0.007 6 0.001 2.330 <0.041 *
Soil electrical conductivity 19.360 6 3.227 25.36 <0.001 **
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Table A5. Pearson’s correlation coefficients (r) among community characteristics, leaf stoichiometric traits, and environmental factors in different sites along
a precipitation gradient in the Heihe River Basin. Significant correlations at p < 0.05 and p < 0.01 are shown in bold and in bold with underline, respectively.
Abbreviations: SR, species richness; AGB, aboveground biomass; COVER, community coverage; Height, community height; FPC, foliage projective cover; LAI, leaf
area index. Other abbreviations are described in Table 3.

Community Characteristics and Leaf Stoichiometric Traits GSWC10 GSWC30 GSWC50 SBD STN STC C/N SAP SAK pH EC

SR 0.742 0.642 0.370 −0.152 0.752 0.700 −0.040 0.179 −0.132 −0.144 0.100
AGB 0.449 0.342 0.130 −0.167 0.386 0.730 0.273 −0.155 −0.375 −0.044 −0.218

COVER 0.537 0.290 0.077 −0.059 0.560 0.739 0.193 0.017 −0.345 0.077 −0.158
HEIGHT −0.248 0.189 0.414 −0.131 −0.539 −0.177 0.469 −0.179 0.628 −0.249 0.477

FPC 0.678 0.463 0.226 −0.149 0.698 0.752 0.003 −0.046 −0.359 −0.136 −0.157
LAI 0.573 0.581 0.674 −0.196 0.103 0.623 0.496 −0.285 0.112 −0.232 0.133

Leaf C 0.067 0.122 0.170 0.071 −0.242 0.075 0.517 −0.033 0.429 −0.069 0.333
Leaf N 0.037 0.090 0.180 −0.245 −0.070 0.064 0.383 0.416 0.534 −0.242 0.649
Leaf P −0.407 −0.518 −0.548 −0.126 −0.191 −0.122 0.243 0.315 −0.011 0.159 0.027
Leaf K −0.541 −0.524 −0.357 0.122 −0.607 −0.366 0.375 −0.096 0.200 0.110 0.022

Leaf C/N 0.171 0.173 0.148 0.431 −0.257 0.114 0.413 −0.538 0.104 0.147 −0.170
Leaf C/P 0.596 0.724 0.746 0.143 0.145 0.326 0.174 −0.257 0.340 −0.246 0.288
Leaf N/P 0.583 0.748 0.813 0.035 0.172 0.286 0.104 −0.140 0.411 −0.335 0.413
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