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Abstract: In different regions across the globe, elevated arsenic contents in the groundwater constitute
a major health problem. In this work, a biopolymer chitosan has been blended with volcanic rocks
(red scoria and pumice) for arsenic (V) removal. The effect of three blending ratios of chitosan and
volcanic rocks (1:2, 1:5 and 1:10) on arsenic removal has been studied. The optimal blending ratio
was 1:5 (chitosan: volcanic rocks) with maximum adsorption capacity of 0.72 mg/g and 0.71 mg/g
for chitosan: red scoria (Ch–Rs) and chitosan: pumice (Ch–Pu), respectively. The experimental
adsorption data fitted well a Langmuir isotherm (R2 > 0.99) and followed pseudo-second-order
kinetics. The high stability of the materials and their high arsenic (V) removal efficiency (~93%)
in a wide pH range (4 to 10) are useful for real field applications. Moreover, the blends could be
regenerated using 0.05 M NaOH and used for several cycles without losing their original arsenic
removal efficiency. The results of the study demonstrate that chitosan-volcanic rock blends should be
further explored as a potential sustainable solution for removal of arsenic (V) from water.
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1. Introduction

Arsenic (As) is released into the aquatic environment through a complex combination of
natural biogeochemical reactions and human interactions. Most arsenic related problems are due to
mobilization and transport by natural processes such as weathering of rocks and minerals. However,
arsenic mobilization can also be caused or aggravated by anthropogenic activities like mining,
fossil-fuel combustion and smelting of Cu, Ni, Pb, and Zn ores [1–4]. Arsenic can occur in the
environment in a number of oxidation states (−3, −1, 0, +3 and +5). However, in aqueous systems
inorganic arsenic exists mainly in the oxidation states +3 as arsenite and +5 as arsenate, depending on
the redox conditions [4]. As (III) is more mobile in natural water and is more toxic than As (V) [5,6].
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Exposure to inorganic arsenic is recognized to be a risk for humans because it affects the lungs, skin,
liver, kidney, and blood vessels [7–10]. Thus, it must be removed from drinking water when its
concentration is above the safety limit for human consumption (>10 µg/L) [11]. A high concentration
of arsenic in drinking water has been reported in countries such as Argentina, Bangladesh, China, Chile,
Canada, Hungary, India, Japan, Mexico, Poland, Taiwan, and USA [12,13]. Arsenic concentrations as
high as 190 µg/L have also been detected in the aquifers of Ziway and Koka basin, the northern part
of the Main Ethiopian Rift Valley (MER) [14]. The field arsenic speciation measurements have revealed
that As (V) is much more abundant compared to As (III) in the water of the area [14]. This may be due
to the fact that As (III) is easily oxidized to As (V). Therefore, this study was focused on removal of
As (V) from water.

Common methods for arsenic removal from water include chemical precipitation, filtration,
coagulation, anion exchange, reverse osmosis, adsorption techniques, and use of Donnan
membranes [15]. However, the application of membrane techniques, ion exchange, dialysis and
chemical treatment techniques require high initial and maintenance costs, and skilled manpower on
top of that. Nowadays, adsorption has been recognized as a suitable removal technology mostly for
developing regions with the merits of convenient processing, simple operation, potential regeneration,
and little toxic sludge generation [7,16].

Chitosan and Chitin have been investigated for arsenic removal since the 1980s [17].
Chitosan (poly-β(1-4)-2-amino-2-deoxy-D-glucose) is made by partial deacetylation of chitin [18,19].
Chitin (poly-β(1-4)-2-acetamido-2-deoxy-D-glucose) is an abundant polysaccharide, found in various
organisms including fungi, nematodes, and crustacean shells. Commercially, it is extracted from
exoskeleton shellfish processing waste. The structural unit for chitin and chitosan is shown in Figure 1.
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Figure 1. Structure of chitin and chitosan unit [20].

Recently, these low cost, non-toxic, and biodegradable polymeric materials have received
much attention for the treatment of contaminated water and wastewater [18,21] because chitin
and chitosan-derivatives possess many amino and hydroxyl groups [18,22]. They have shown
good potential for the removal of various pollutants such as arsenic [23], heavy metal ions [24,25],
radionuclides [26], dyes [27,28], fluoride [20] and other miscellaneous pollutants from (waste) water.
However, chitosan, itself soluble in acidic conditions, has poor mechanical properties for practical
applications. Hence, chitosan has been treated with cross-linking agents such as epichlorohydrin [29],
tripolyphosphate [30,31], and glutaraldehyde [32,33] or immobilized onto a solid surface to enhance
its chemical stability and mechanical strength [34].

Various modifications of chitosan have been made to improve its arsenic adsorption
capacity and/or acid stability such as chitosan functionalized with 3,4-diamino benzoic acid [35],
chitosan impregnated with metal ions/oxides [36–41], zerovalent iron encapsulated in chitosan
nanospheres [42], chitosan complexed with different metal ions like Cu (II), Fe (III), La (III), Mo (VI)
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and Zr (IV) [43], chitosan coated on ceramic alumina [7], and chitosan immobilized onto sodium
silicate [44]. Therefore, the main objective of the present study was to prepare chitosan-red scoria
(Ch–Rs) and chitosan-pumice (Ch–Pu) blends and evaluate their performance for As (V) removal.
The efficiency of Ch–Rs and Ch–Pu blends was compared with that of red scoria, pumice, chitosan
powder and chitosan gel, separately. Moreover, the effect of interfering ions was studied.

2. Materials and Methods

2.1. Adsorbent Preparation

Pumice and scoria, volcanic rocks, are abundant in many parts of the world. Pumice is a light
porous igneous volcanic rock with large surface area and high water adsorption capacity (20–30%),
whereas scoria is formed of vesicular fine to coarse fragments, reddish or black color, and light
size [45,46]. The rock samples were collected from volcanic cones of the Main Ethiopian Rift Valley
(MER), Ethiopia; approximately 100 km East of Addis Ababa. The collected adsorbent samples were
washed several times with deionized water to remove any impurities and subsequently dried at 55 ◦C
for 48 h [47]. The dried adsorbents were crushed in a mortar and sieved to obtain a silt fraction
(<0.075 mm) [45,46].

The chitosan blend was prepared, with slight modification, according to the method used by
Turan et al. [34]. Chitosan powder (low molecular weight, Sigma-Aldrich, St. Louis, MO, USA) was
dissolved in 2.0% (v/v) acetic acid in order to obtain a 4% (m/v) chitosan solution. The mixture was
stirred until a clear solution was obtained. About 60.0 g of red scoria silt particle size (<0.075 mm) was
added slowly to the chitosan solution and stirred for 2 h. Then, 0.1 M NaOH was added to neutralize
the excess acetic acid and the blend was washed several times with deionized water. The blend
was soaked in aqueous hydrochloric acid (pH ≈ 4.5) in order to protonate the amine function of
chitosan. After rinsing with deionized water, the blend was dried at 70 ◦C for 48 h and ground by a
mortar and pestle prior to use. The same procedure was used to prepare a chitosan–pumice blend.
Chitosan (without volcanic rocks) was prepared following the above procedure and called chitosan
gel (dry).

2.2. Adsorbent Characterization

2.2.1. Chemical Composition

The elemental composition of the geomaterials was analyzed using inductively coupled
plasma-optical emission spectroscopy (ICP-OES, Varian Vista MPX, Palo Alto, CA, USA).
Energy dispersive X-ray (EDX) spectroscopy (Silicon Drift Detector (SDD) X-MaxN, Oxford
Instruments, Abingdon, Oxfordshire, UK) was employed to obtain information on the oxide contents
of the geomaterials. The surface morphology was studied by scanning electron microscope (FEG SEM
JSM-7600F, JEOL, Peabody, MA, USA). Pyrolysis of the blends was carried out using a muffle furnace
to determine the chitosan loading on red scoria and pumice [48]. The Brunauer-Emmett-Teller (BET)
specific surface area of adsorbents was determined from N2 gas adsorption/desorption isotherms
obtained using BEL, Japan, Inc. Belsorp mini-II. The leaching of the chitosan from the blends was
analyzed using a total organic carbon (TOC) analyzer (Shimadzu TOC-VCPN, Columbia, MD, USA).

2.2.2. Determination of pH and Point of Zero Charge

The pH of the adsorbents was measured using a pH meter in a 1:10 adsorbent/water ratio
according to the standard method [49,50]. The point of zero charge (pHpzc) of adsorbents was
determined using a 0.01 M and 0.1 M solutions of NaCl as an electrolyte and adding 0.1 M solutions of
NaOH or HCl [51,52].
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2.3. Chemicals

A 1000 mg/L As(V) stock solution was prepared by dissolving an appropriate amount
of Na2HAsO4·7H2O (Merck KGaA, Darmstadt, Germany) in deionized water. Synthetic arsenic
containing water used for the adsorption experiments was prepared by diluting the stock solution with
deionized water to obtain an arsenic concentration in the range of 0.1 mg/L–25 mg/L. Solutions of
bicarbonate, chloride, nitrate, sulfate and phosphate anions were prepared from their respective
sodium salts.

2.4. Analytical Procedures

Inductively coupled plasma-mass spectrometry (ICP-MS, ELAN DRC-e, Perkin Elmer SCIEX,
Waltham, MA, USA) instrument was used in this study. The ICP and DRC (dynamic reaction cell)
conditions were selected that maximized the ion signals of arsenic while reducing the background to a
minimum. To remove possible interferences, the arsenic content was determined as AsO after reaction
of As with oxygen using ICP-MS in DRC mode. The operating parameters of the ICP-MS used for
this work are: Rf power 1300 W, plasma gas flow 15 L/min, auxiliary gas flow 1.2 L/min, nebulizer
gas flow 0.7 L/min, O2 gas flow 0.4 mL/min, and 1 reading in 3 replicates. ICP-MS ELAN software
(Version 3.4, Perkin Elmer SCIEX, Waltham, MA 02451, USA) was used to control the instrument and
process the acquired data. A 100 mg/L stock solution of ICP Multi-element standard solution XVI was
obtained from Merck, Germany. Milli-Q water (18.2 MΩ cm−1) was used for the preparation of all
blanks, standards and sample solutions. Blanks, standards and sample solutions were diluted 10 times
with a solution containing 10 µg/L internal standard (Ga and Rh). The signal of the internal standards
was used to monitor the consistency of the measurements. Linear calibration curves with a minimum
regression coefficient R2 of 0.9999 were obtained using standards in the range of 0.05 µg/L up to
20 µg/L As. For quality assurance, recalibrations were done after every 15–20 samples. The degree of
the reproducibility was also assured by neglecting data with relative standard deviation (RSD) >10%.
The limits of detection and quantification for arsenic were 0.11 µg/L and 0.30 µg/L, respectively.

2.5. Batch Arsenic Adsorption Studies

The batch adsorption experiments were performed in triplicate using 50 mL polyethylene plastic
centrifuge tubes. About 0.200 g of dry powdered sorbent (Ch–Rs or Ch–Pu) was added to 25 mL of
known As (V) concentration having a desired pH value. The initial pH was adjusted using HCl and/or
NaOH. Then, the tubes were agitated at 200 rpm on a horizontal shaker at 25 ◦C for the desired period
of time. Aqueous samples were taken after predetermined time intervals and were filtered through
a 0.45 µm membrane filter to separate the adsorbent from the As (V) containing solution. Then, the
residual arsenic concentration in the filtrate was measured using ICP-MS.

The As (V) adsorption capacity, qt (mg/g) at time t (min), and the As (V) removal efficiency
(% adsorption) were determined using the Equations (1) and (2) respectively.

qt = (C0 − Ct)

(
V
W

)
(1)

Adsorption(%) =

(
C0 − Ct

C0

)
× 10 (2)

where C0 and Ct (mg/L) are the initial arsenic concentration and the concentration at time t (min),
respectively, V is the solution volume (L) and W (g) is the adsorbent mass.

2.6. Regeneration of the Spent Adsorbents

First, saturated adsorbent is produced by adsorbing 0.25 mg/L As (V) solution. Then, the loaded
adsorbents were filtered and dried at 70 ◦C for 24 h. Next, 25 mL of a 0.05 M NaOH solution was
added to the centrifuge tube and the tubes were shaken at 200 rpm on a horizontal shaker at 25 ◦C for
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2 h. Subsequently, the suspensions were filtered and the arsenic content of the filtrate was measured.
The adsorbent was soaked in aqueous HCl at pH ≈ 4.5, rinsed and dried at 70 ◦C for 24 h for re-use.

3. Results and Discussion

3.1. Adsorbent Characterization

3.1.1. Chitosan Loaded on Rs and Pu

Pure red scoria and pumice lost about 0.15 and 8.35 wt % during pyrolysis, respectively.
Pure chitosan leaves a residue of about 0.09 wt % after pyrolysis at 750 ◦C. Blends of chitosan with
red scoria and pumice (1:5 ratios) lost 13.26 wt % and 21.70 wt %, respectively. Accordingly, the net
weight loss for Ch–Rs was 13.02% and Ch–Pu was 13.26%. These weight losses should correspond to
the amount of chitosan in the final blends. They are only about 3% lower than the initial amount of
chitosan used to prepare the blends (~16%), which illustrates that the method used for coating the red
scoria and pumice with chitosan is effective.

3.1.2. Chemical Composition

Si, Al and Fe are the major elements in pumice and red scoria (Table 1) as determined by ICP-OES
and confirmed by EDX. Other elements, except K (3.9%) in pumice and Ca (6.3%) in red scoria,
were present in relatively smaller amounts or below the detection limit of the instrument. The EDX
measurement indicated that the oxides of Si, Fe, and Al were the major constituents of both red scoria
and pumice. Similar values were reported by Alemayehu and Lennartz [46].

Table 1. Elemental composition and oxide content of red scoria and pumice.

Elements Pumice % (wt) Red Scoria % (wt) Oxides Pumice % (wt) Red Scoria % (wt)

Si 27.3 18.4 SiO2 69.2 42.2
Al 5.6 9.7 Al2O3 11.9 18.4
Fe 3.3 8.1 FeO 5.8 13.0
K 3.9 0.3 CaO 0.9 11.1
Ca 0.2 6.3 K2O 6.3 0.6
Na 1.0 2.3 Na2O 1.6 3.4
Mn <0.1 0.1 CuO 1.7 1.6
Mg <0.1 2.2 ZnO 1.3 1.3
Zn <0.1 <0.1 NiO 1.0 1.9
Cr <0. 1 <0.1 MnO 0.1 0.2
Cu <0. 1 <0.1 MgO 4.1
Co <0.1 <0.1 TiO2 2.3
Cd <0.1 <0.1
Ni <0.1 <0.1
Pb <0.1 <0.1
As <0.1 <0.1

SEM images of red scoria, Ch–Rs, pumice and Ch–Pu are shown in Figure 2. No differences in
morphology are observed between chitosan-coated (1:5 ratio) and uncoated materials, which illustrates
that isolated chitosan particles were not formed during the blending processes. This may further
indicate that the chitosan is well dispersed on the surface of the red scoria and pumice. The specific
surface areas of the red scoria and pumice and Ch–Rs and Ch–Pu blends were found to be 2.63, 3.88,
1.01, and 1.5 m2/g, respectively. The observed decrease in the surface area of the blends as compared
to the natural materials may be caused by the chitosan blocking some of the naturally available pores
in red scoria and pumice.
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3.1.3. pH and Point of Zero Charge

The pH of the adsorbents measured in water was found to be 7.8 (red scoria), 9.4 (pumice),
5.3 (Ch–Rs), and 5.8 (Ch–Pu), respectively. The high equilibrium pH values of both red scoria and
pumice imply that non-modified red scoria and pumice may not be favorable adsorbents for anions
such as arsenate. The pHpzc for red scoria and pumice was 7.5 and 6.8, respectively, whereas the pHpzc

of Ch–Rs and Ch–Pu (1:5 ratio) was found to be 6.5 and 6.6, respectively. Similar values of pHpzc were
reported for pumice by Sepehr et al. [53] and for protonated chitosan by Padilla-Rodriguez et al. [52].
In this work, the pH in water as well as the pHpzc of chitosan blends were found to be lower than that
of unmodified red scoria and pumice.

3.2. Adsorption of As (V) on Ch–Rs and Ch–Pu Blends

3.2.1. Preliminary Adsorption Experiments

Preliminary adsorption experiments were carried out under identical experimental conditions
using chitosan powder, chitosan gel (dry), pumice, red scoria, Ch–Rs and Ch–Pu blends at three
different Ch/Rs and Ch/Pu ratios (1:2, 1:5, and 1:10). The percentage of As (V) removed using these
adsorbents is shown in Figure 3A,B. A protonated chitosan gel exhibited enhanced As (V) adsorption
compared to chitosan powder (maximum ~88% versus ~40% at pH 3). Padilla-Rodriguez et al. [54]
also found that protonated chitosan flakes were more effective than chitosan powder for the removal
of As (V) from aqueous solutions. Both the Ch–Rs and Ch–Pu blends in 1:2 and 1:5 ratios showed the
highest As(V) removal efficiency (>90%) at a wide pH range (3 to 7) as compared to the unmodified red
scoria (~90% only at pH 3) and pumice (<20%), as well as the blends at 1:10 ratio of chitosan–red scoria
(>90% at pH 3 up to ~65% at pH 7) and chitosan–pumice (~85% at pH 3 up to ~19% at pH 7). The lower
removal efficiency of red scoria and pumice at initial pH values between 4 and 7 can be associated
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to the relatively high pH reached at equilibrium (8.9–9.3) during arsenate adsorption. Since the
equilibrium pH is greater than the pHpzc of red scoria and pumice (7.5 and 6.8, respectively), their
surface is negatively charged at equilibrium and could not bind arsenate efficiently. Similar findings
were reported by Turan et al. [34] as chitosan-immobilized pumice exhibited >90% of As (V) removal
at initial pH 3.0–7.0 whereas pumice displayed <20% adsorption toward As (V) and chitosan removed
~90% of As (V) only at initial pH 3.0. The results demonstrate the advantage of immobilizing chitosan
onto solid supports such as pumice and red scoria. Hence, further experiments for optimization of
various adsorption parameters were carried out using the Ch–Rs (1:5) and Ch–Pu (1:5) blends.
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3.2.2. Effect of Contact Time

Adsorption of As (V) by Ch–Rs and Ch–Pu is very rapid, with more than 85% of the initial amount
of arsenic being removed within 5 min (Figure 4A,B). This rapid adsorption in the beginning can be
attributed to the greater concentration gradient and the availability of a lot of adsorption sites. This is a
common behavior in adsorption processes and has been reported in other studies [37,55]. After 30 min,
further changes of the adsorption capacity were negligible. However, to ensure maximum adsorption
at equilibrium, a contact time of 2 h was chosen for subsequent optimization of other adsorption
parameters. At equilibrium, the As (V) adsorption capacities of the Ch–Rs and Ch–Pu blends were
0.030 mg/g (94.9%) and 0.028 mg/g (93.1%), respectively.
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3.2.3. Adsorption Kinetics

In order to investigate the adsorption rates of As (V) on the Ch–Rs and Ch–Pu adsorbents, the
adsorption process was determined by using pseudo-first order and a pseudo-second order kinetic
models. The nonlinear expressions of the pseudo-first-order and pseudo-second-order [56] models are
given in Equations (3) and (4), respectively.

qt = qe

(
1 − exp−K1t

)
(3)

qt =
k2q2

e t
1 + k2qet

(4)

where, k1 (min−1) is pseudo-first-order rate constant, k2 (g mg−1 min−1) is pseudo-second-order rate
constant, qt and qe are the arsenate adsorption capacity (mg/g) at any time t (min) and at equilibrium,
respectively. The pseudo-first-order and pseudo-second-order arsenic adsorption kinetics fit is shown
in Figure 5A,B, and the values of k1, k2, qe,cal (calculated), and qe,exp (experimental) are presented in
Table 2.

The analysis of the kinetics data showed that the values of qe,cal and qe,exp were very similar
for Ch–Rs and Ch–Pu. It is clear from Table 2 that the kinetic data could be well explained by
a pseudo-second-order model compared to pseudo-first-order model as it has a high correlation
coefficient and low χ2 values for both kinds of adsorbents. Therefore, it can be concluded that the
adsorption of As (V) on Ch–Rs and Ch–Pu blends follows pseudo-second-order kinetics.
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Table 2. Parameters of the pseudo-first-order and pseudo-second-order kinetic models for As(V)
adsorption by Ch–Rs and Ch–Pu blends.

Parameter
Ch–Rs Ch–Pu

Pseudo-First-Order Pseudo-Second-Order Pseudo-First-Order Pseudo-Second-Order

C0 (mg/L) 0.25 2.0 0.25 2.0 0.25 2.0 0.25 2.0
qe,exp(mg/g) 0.032 0.234 0.032 0.234 0.028 0.224 0.028 0.224
qe,cal(mg/g) 0.030 0.234 0.031 0.235 0.028 0.224 0.028 0.225
k1 (min−1) 0.628 0.582 - - 0.536 0.574 - -

k2(g/(mg min)) - - 126.88 12.72 - - 85.36 13.34
V0(mg/(g min)) - - 0.130 0.697 - - 0.067 0.669

R2 0.80706 0.77013 0.94773 0.9303 0.8837 0.88446 0.98627 0.96758
χ2 4.93 × 10−8 5.76 × 10−6 1.34 × 10−8 1.75 × 10−6 5.99 × 10−8 2.55 × 10−6 7.07 × 10−9 7.17 × 10−7

Another important parameter that provides information about the adsorption rate, particularly at
the beginning of the adsorption process, is the adsorption affinity (V0 = k2qe

2) [57]. The adsorption
affinity (V0) increases as the initial As (V) increases. The similar values of V0 for Ch–Rs and Ch–Pu
(Table 2) indicate comparable adsorption affinity of Ch–Pu and Ch–Rs blends. However, this cannot
explain the rate-limiting step. The rate-limiting step may either be the boundary layer (film) or
the intraparticle (pore) diffusion of the solute from the bulk of the solution in a batch process [58].
Therefore, the diffusion mechanism of the As (V) molecules was also examined by applying the Weber
and Morris intraparticle diffusion model [59] that is given by (Equation (5)).

qt = kpt0.5 + c (5)

kp (mg/(g min0.5)) is the intraparticle diffusion rate constant; and c (mg/g) is the intercept of the
intraparticle diffusion model. If the rate-limiting step is the intraparticle diffusion, the plot of qt versus
t1/2 should be a straight line and pass through the origin [58]. The curves of qt versus t0.5 are given
in Figure 6A,B. It is clear that each curve shows a multi-linear plot. Moreover, each curve does not
pass through the origin, which indicates that more than one mechanism/process (and not solely
intraparticle diffusion) is determining the rate of the removal process [60].
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Figure 6. Intraparticle diffusion plots of As(V) adsorption on Ch–Rs and Ch–Pu blends at initial As(V)
concentration of (A) 0.25 mg/L and (B) 2.0 mg/L.

3.2.4. Influence of pH

The pH of the solution can significantly affect the sorption of anions on the adsorbents by changing
the degree of ionization, the speciation of the ions and the surface charge of the adsorbent. Therefore,
adsorption of As (V) was studied at nine different initial pH values, between 3 and 11, while keeping
the other parameters constant (Figure 7A,B). The initial solution pH was adjusted by adding a 0.1 M
HCl and/or NaOH. Both Ch–Rs and Ch–Pu have a high adsorption efficiency (89–95%, Ch–Rs and
88–94%, Ch–Pu) in a wide initial pH range between 3 and 10. Similar results were previously reported
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by Turan et al. [34] for chitosan-immobilized pumice, >90% of As (V) removed at initial pH 3.0–7.0
and >70% of As (V) adsorption at pH > 8.0. Figure 7A,B also indicate that pH ≥ 11 is suitable for
desorption of As (V) saturated Ch–Rs and Ch–Pu blends. Figure 7 shows that the final pH was in the
range of 4.6–5.7 (Ch–Rs) and 4.9–5.6 (Ch–Pu) for an initial pH of 3 to 10, while the values of pHpzc

were 6.5 and 6.6 for Ch–Rs and Ch–Pu, respectively. Since the final pH is below the pHpzc of the
sorbents, the surface of both sorbents will be positively charged throughout the sorption process when
the initial pH is below 10 (pH < 10). This indicates that the adsorption mechanism is an electrostatic
interaction [22] between the protonated amine group of chitosan (–NH3

+) on the surface of blends and
the negatively charged arsenate anions (Scheme 1).
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Figure 7. Effect of initial pH on removal of As(V) by (A) Ch–Rs (B) Ch–Pu blends (initial As(V)
concentration 0.25 mg/L, adsorbent dose 8 g/L, shaking 2 h at 200 rpm at 24 ± 1 ◦C).

The TOC of treated water showed that the highest solubility of chitosan in the blends was at pH 3
where 7.59% of Ch–Pu and 4.60% of Ch–Rs were found to be soluble. The solubility of chitosan in
the Ch–Rs blend varied from 0.94% to 0.96% between pH 4 and 10, whereas the solubility of chitosan
in the Ch–Pu blend further decreased from 0.27% at pH ≈ 4.0 to 0.18% at pH ≈ 10.0. The removal
capacities of both adsorbents were not significantly affected by the initial pH in the pH range between
3 and 10. Consequently, pH 7 ± 0.1 was chosen for optimization of the other adsorption parameters.
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Scheme 1. Possible mechanism of adsorption and desorption of arsenate ions on Ch–Rs and
Ch–Pu blends.

3.2.5. Optimization of Adsorbent Dose

The effect of the adsorbent dose on the As (V) removal was studied using different amounts of
adsorbent (1–25 g/L) and a fixed As (V) concentration of 0.25 mg/L at pH ≈ 7.0. The As (V) removal
efficiency increased rapidly as the dose increased from 1 g/L to 5 g/L, and marginally thereafter
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(Figure 8A,B). The increase in adsorption efficiency with an increase of the adsorbent dose is due to
the greater availability of active surface sites for arsenate binding at a higher adsorbent dose [61].
However, the increase of the removal efficiency was found to be negligible above an adsorbent dose
of 8 g/L, which may be considered as the optimum dose. A dose of 20 g/L or higher can lower the
arsenate concentration of 0.25 mg/L to a concentration below the WHO guideline for drinking water
of 0.01 mg/L. On the other hand, the As (V) adsorption capacity (qe) decreased from 0.11 to 0.01 mg/g
with increasing adsorbent dose for the fixed arsenic concentration (Figure 8A,B). The decrease in
the adsorption capacity is due to the increased solid dose for the fixed solute load resulting in a
lower availability of arsenate ions per unit mass of adsorbents [61]. This finding is essential for real
application of the blends for treating arsenic contaminated drinking water, particularly, in developing
countries since pumice, red scoria, and chitosan are low-cost and naturally abundant materials.
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3.2.6. Effect of Initial Concentration

The effect of the initial concentration on As (V) removal was investigated by testing various
initial sorbate concentrations (0.1 mg/L to 10 mg/L). The As (V) removal percentage decreased with
increasing initial arsenic concentration (Figure 9A,B). The decrease in adsorption is attributed to
the higher ratio of arsenic ions over available active surface sites with increasing initial arsenic
concentration at constant mass of the adsorbent. However, the adsorption capacity increased
with increasing initial As (V) concentration until the maximum adsorption capacity was reached
(Figure 9A,B). This is commonly observed phenomenon in adsorption processes and has also been
reported in other studies [61].
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3.2.7. Adsorption Isotherm

The equilibrium experimental data of arsenic adsorption on Ch–Rs and Ch–Pu were fitted to
two common isotherm models: Langmuir and Freundlich isotherms that are given in Equations (6)
and (7), respectively.

qe =
QmaxbCe

(1 + bCe)
(6)

qe = KFC1/n
e (7)

where Ce (mg/L) is the As (V) concentration in the aqueous phase at equilibrium; qe (mg/g) is the
As (V) adsorption capacity at equilibrium; Qmax (mg/g) is the maximum adsorption capacity based on
the Langmuir equation; b (L/mg) is the Langmuir constant; KFA (mg1−1/n L1/n/g) is the adsorption
coefficient; 1/n is the adsorption intensity.

Besides the coefficient of determination, the nonlinear chi-squared (χ2) statistic test was used to
identify the best fit model to the observed experimental equilibrium isotherm data. χ2 is computed
using Equation (8) [62].

χ2 = ∑(qe − qe,cal)
2/qe,cal (8)

where qe,cal (mg/g) is the equilibrium capacity calculated from the model; and qe (mg/g) is the
experimental equilibrium capacity. A small χ2 value indicates similarity between the modeled and the
experimental data, whereas a larger χ2 value implies variation between the modeled and experimental
data [62]. The isotherm plots are graphically presented in Figure 10A,B. The values of the equilibrium
constants, χ2 and R2 for each isotherm model are presented in Table 3.
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Table 3. Isotherm parameters of the adsorption of As (V) on Ch–Rs and Ch–Pu blends.

Isotherm Parameters Ch–Rs Ch–Pu

Langmuir

qmax (mg/g) 0.722 0.710
B (L/mg) 1.551 1.712

RL 0.06–0.86 0.06–0.85
R2 0.997 0.999
χ2 8.34 × 10−3 8.24 × 10−3

Freundlich

KF ((mg1−1/n L1/n)/g) 0.361 0.363
n 2.318 2.374

R2 0.953 0.938
χ2 2.618 2.722

The Langmuir isotherm led to a higher correlation coefficient, R2 > 0.99, and lower chi-square
values for Ch–Rs and Ch–Pu blends, χ2 ≈ 8.34 × 10−3 and 8.24 × 10−3, respectively. The Langmuir
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isotherm equation resulted in a maximum adsorption capacity of 0.72 mg/g and 0.71 mg/g, for Ch–Rs
and Ch–Pu, respectively. The maximum sorption capacities of Ch–Rs and Ch–Pu adsorbents calculated
from the Langmuir isotherm for As (V) in this study are within the same range of both natural and
modified adsorbents reported in previous work (Table 4).The fitting of the equilibrium data to the
Langmuir isotherm was indicative for a monolayer adsorption of As (V) on the homogeneous surface
sites of both Ch–Rs and Ch–Pu blends. The separation factor (RL) of the Langmuir isotherm can be
computed by RL = 1/(1 + bC0) [58], where C0 (mg/L) is the initial As(V) concentration; and b (L/mg)
is the Langmuir constant. The adsorption process is irreversible if RL = 0, favorable if 0 < RL < 1,
linear if RL = 1 and unfavorable if RL > 1. The obtained values of RL are within the range 0–1 (Table 3),
indicating favorable equilibrium adsorption of As (V) on both Ch–Rs and Ch–Pu blends [58].

Table 4. Comparison of maximum adsorption capacity (Qmax, mg/g) of various low cost adsorbents
for As (V) removal.

Adsorbent Initial pH Qmax (mg/g) References

Feldspar 3 0.24 [63]
Manganese oxide coated zeolite 7 0.15 [64]

Magnetic iron oxide nanoparticles coated on sand 7 0.29 [65]
Iron-oxide coated sands 7 0.021 [66]

Fe(III)–Sn(IV) mixed oxide-coated sand 7 0.23 [67]
Kaolinite 0.86 [68]

Laterite soil 5.7 0.04 [69]
Rice polish 4 0.15 [70]

Modified zeolite Y 6 1.34 [71]
Fish scale 4 0.027 [72]
Bone char 10 1.43 [73]
Red mud 3.5 0.52 [74]
Red mud 2.3 0.51 [75]

Natural Muscovite 6 0.79 [76]
Iron oxide coated sand 7 0.099 [77]

Ch–Rs 7 0.72 This study
Ch–Pu 7 0.71 This study

3.2.8. Effect of Co-Existing Anions

The data reported in the previous sections have been gathered with aquatic solutions only
containing arsenate ions. This should allow to compare the data, e.g. maximum adsorption
capacity, with literature data collected under similar conditions. However, arsenic contaminated
water typically contains also several other anions that can affect the adsorption process and compete
with the arsenate ions for adsorption. In order to understand the effect of interfering ions, additional
adsorption experiments were carried out in presence of 10 mg/L, 50 mg/L, 100 mg/L, 250 mg/L and
500 mg/L salt solutions of chloride (Cl−), nitrate (NO3

−), bicarbonate (HCO3
−), sulphate (SO4

2−)
and phosphate (PO4

3−), separately and in a mixture [78]. Cl−, SO4
2−, NO3

−, HCO3
− and PO4

3−

ions, separately as well as the mixture of these ions, showed a negative effect on the removal
of arsenic (Figure 11A,B). The variations in adsorption capacity of both Ch–Rs and Ch–Pu with
varying background electrolyte concentrations indicate that arsenate is predominantly removed by
an outer-sphere complexation mechanism. This effect is greater when all six anions are present,
revealing that all ions are competing for the active sites. Since the equilibrium pH is below the
pHPZC, electrostatic interaction is expected to be the dominant removal mechanism. Moreover, as the
concentration of the co-existing ions increased from 10 mg/L to 500 mg/L, the removal of arsenic
dropped sharply. This is caused by the higher competing effect of these co-existing anions for the
active sites of the adsorbents. In general, the percentage of As (V) removal also decreased with an
increase in charge of the interfering ion. Therefore, PO4

3− was the anion that caused the greatest
reduction in As (V) adsorption, as was also reported in other studies for various adsorbents [58,61].
However, phosphate is absent or usually present at lower concentration (<0.21 mg/L) in groundwater
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of Ethiopia [50]. Because of the high bicarbonate content of the Ethiopian Rift Valley groundwater
wells (162–2045 mg/L) and lakes water (267–30,376 mg/L) in the Ziway-Shala basin (arsenic—affected
areas) [14], bicarbonate could be considered as a potential interfering ion in removal of As(V) from real
water samples of those areas using Ch–Rs and Ch–Pu. Taking into account the impact of competing
ions on the adsorption process, it may be useful to conduct future adsorption studies with the Ch–Rs
and Ch–Pu blends using solutions containing background salts at realistic concentrations and real
water samples of arsenic-affected areas.Int. J. Environ. Res. Public Health 2017, 14, 895  14 of 18 
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Figure 11. Effect of co-existing anions on As(V) removal by (A) Ch–Rs (B) Ch–Pu blends (initial
concentration 0.25 mg/L, dose 8 g/L, shaking at 200 rpm for 2 h, at 24 ± 1 ◦C).

3.2.9. Desorption of As (V) from Ch–Rs and Ch–Pu Surfaces

The possibility to regenerate adsorbents is a key asset when developing a cost-effective
adsorbent for pollutant removal from aqueous environments. In the present study, desorption tests
were conducted using 0.05 M NaOH solution. The percentages of As (V) that could be desorbed
were 92.5–99.4% and 95.7–99.6% for Ch–Rs and Ch–Pu, respectively. Regeneration was studied in
4 adsorption–desorption cycles. Even in the 4th cycle, 98% (Ch–Rs) and ~100% (Ch–Pu) of the actual
adsorption efficiency for As (V) was retained (Figure 12). Wang et al. [38] demonstrated that magnetic
nanoparticles impregnated chitosan beads could retain about 88.2% of the original As (V) adsorption
capacity after 5 cycles of reuse. Another previous study also concluded that a chitosan bed could
be recycled up to 15 cycles without losing its initial efficiency [79]. In basic solutions (see Figure 7),
the electrostatic interaction between chitosan and the arsenate ions becomes much weaker due to the
neutralization of positively charged amino groups (Figure 7A,B). As a consequence, the adsorbed
arsenate ion leaves the adsorption site of chitosan (Scheme 1). Subsequently, the adsorbents is
regenerated when being in contact with acid through protonation of the amine functional group
present in chitosan. This process does not seem to destroy the chitosan skeleton itself, which is a major
asset indicating the potential of Ch–Pu and Ch–Rs adsorbents for sustainable treatment of As (V)
contaminated water.
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4. Conclusions

The effectiveness of blending chitosan with red scoria and pumice was confirmed by the small
(~3%) loss of chitosan in the blending process. It was observed that blending ratio between the
chitosan and the volcanic rocks has a significant influence on arsenic removal efficiency. The optimal
blending ratio was 1:5 (chitosan: volcanic rocks) with a maximum adsorption capacity of 0.72 mg/g
and 0.71 mg/g for Ch–Rs and Ch–Pu, respectively. Both Ch–Rs and Ch–Pu blends can remove
about 93% of 0.25 mg/L As (V) solution in a wide range of initial pH values, avoiding the need
for pH adjustment in real applications. A dose of 20 g/L or higher of Ch–Rs/Ch–Pu can lower
arsenic concentrations from 0.25 mg/L As (V) to below the WHO guideline (0.01 mg/L) within 2 h.
The adsorption was very fast, reaching equilibrium within 30 min, and followed pseudo-second-order
kinetics. The similar adsorption performance of the Ch–Rs and Ch–Pu blends suggested that the
adsorption occurs on the chitosan surface of the blends, whereas the volcanic rocks mainly serve as
supporting material. The experimental equilibrium adsorption data of both Ch–Rs and Ch–Pu fit
well to the Langmuir model, which is also an indication for adsorption on a homogeneous surface of
protonated chitosan. The high As(V) removal performance of the prepared chitosan blends during
several adsorption–desorption cycles, without losing their original capacity, together with the high
desorption efficiency (93–99%) also indicate that the adsorbents could be considered as a sustainable
solution for the removal of As(V) from drinking water. However, taking into account the impact of
competing ions on the adsorption process, it would be useful to conduct future adsorption studies in
batch and column modes using solutions containing background salts at realistic concentrations and
real water samples of arsenic-affected areas. This should allow to further evaluate the potential of the
Ch–Rs and Ch–Pu blends as As (V) adsorbents.
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