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Abstract: In this study Yan’an City, a typical hilly valley city, was considered as the study area in
order to explain the relationships between the surface urban heat island (SUHI) and land use/land
cover (LULC) types, the landscape pattern metrics of LULC types and land surface temperature
(LST) and remote sensing indexes were retrieved from Landsat data during 1990–2015, and to find
factors contributed to the green space cool island intensity (GSCI) through field measurements of
34 green spaces. The results showed that during 1990–2015, because of local anthropogenic activities,
SUHI was mainly located in lower vegetation cover areas. There was a significant suburban-urban
gradient in the average LST, as well as its heterogeneity and fluctuations. Six landscape metrics
comprising the fractal dimension index, percentage of landscape, aggregation index, division index,
Shannon’s diversity index, and expansion intensity of the classified LST spatiotemporal changes
were paralleled to LULC changes, especially for construction land, during the past 25 years. In the
urban area, an index-based built-up index was the key positive factor for explaining LST increases,
whereas the normalized difference vegetation index and modified normalized difference water index
were crucial factors for explaining LST decreases during the study periods. In terms of the heat
mitigation performance of green spaces, mixed forest was better than pure forest, and the urban
forest configuration had positive effects on GSCI. The results of this study provide insights into the
importance of species choice and the spatial design of green spaces for cooling the environment.

Keywords: land surface temperature; landscape pattern analysis; spatial random point analysis;
single-channel algorithm; urban green space cooling island

1. Introduction

It is well known that urbanization is one of the most powerful and visible anthropogenic forces on
Earth [1–3]. The most obvious aspect of urbanization is that the natural landscape is increasingly being
replaced by anthropogenic land use/land cover (LULC) types, which can lead to many ecological and
environmental problems, such as urban heat islands [4,5]. In China, cities are expanding rapidly as the
economy grows, but land suitable for development is in short supply, particularly in mountainous
areas, where about one-fifth of the population lives. Thus, in the last decade, local governments have
begun removing the tops of mountains to fill valleys and create land suitable for building. In cities
such as Chongqing, Shiyan, Yichang, Lanzhou and Yan’an, tens of square kilometers of land have
been created. However, in the Yan’an city area, the relatively warmer urban land surface/atmosphere
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compared with the rural surroundings is very obvious in the summer, which is usually referred to as
an urban heat island (UHI).

1.1. Related Research

UHIs were identified for the first time in London during 1833 [6]. An UHI is more obvious
under calm, cloudless conditions, where it depends greatly on the urban morphology and land use
type [7–9]. UHIs are now considered major environmental problems in the 21st century [7,10,11],
because the higher temperatures in UHIs can lead to increases in urban energy consumption [12–15],
raised pollution levels [16–18], and they may even affect the habitability of cities and increase
mortality [12,15,19]. Therefore, methods for mitigating UHIs are now a major research focus. UHIs
exhibit different forms associated with at least four spatial regions: boundary-layer UHI (BLUHI),
canopy layer UHI (CLUHI), surface UHI (SUHI), and subsurface UHI (SubUHI). The urban canopy
layer extends upward from the surface to approximately the mean building height, whereas the urban
boundary layer is located above the canopy layer [20]. CLUHI and BLUHI are atmospheric heat islands
caused by warming of the urban atmosphere, whereas SUHI refers to the relatively higher warmth
of urban surfaces compared with surrounding rural areas. SubUHI is part of the overall UHI, which
denotes the relative warmth of urban ground temperatures compared with the rural background [21].
It is known that atmospheric UHIs are larger at night whereas surface UHIs are larger during the
day [22]. SUHIs have stronger effects on the daily outdoor activities of people. Moreover, SUHIs can be
measured conveniently at different spatial-temporal scales and simulated based on remote sensing data.
The effects of SUHIs can be evaluated using air temperature measurements and satellite land surface
temperature (LST) measurements. The air temperature measurements are obtained either by traversing
a city or by comparing point temperature measurements [23,24]. In general, SUHI measurements
based on air temperature have high temporal resolution with extensive time coverage, and they can
effectively describe the temporal variation in the effects of UHIs [25]. However, spatially continuous
analysis is often difficult because of the sparse distribution of observation stations. Fortunately, the
LST is a universal and important parameter for analyzing SUHIs. To address these problems, many
studies of the effects of SUHIs have considered LST data, which were mainly measured using two
approaches. Traditionally, LST data are measured via ground-based observations obtained from
automobile transects and weather station networks [20]. However, at present, due to the development
of thermal remote sensors, satellite-based imaging technology is now employed widely to detect UHIs
remotely and regionally because it facilitates the straightforward and consistent determination of
the spatial-temporal LST distribution [26]. Thus, AVHRR and ATSR [27,28], Moderate Resolution
Imaging Spectoradiometer (MODIS) [29], Landsat Thematic Mapper (TM) [30,31], Landsat Enhanced
Thematic Mapper Plus (ETM+) [32], Landsat Operational Land Imager and Thermal Infrared Sensor
(OLI & TIRS) [33,34], Chinese HJ-1B Infrared Multispectral Scanner (IRMSS) [35–37] alone or combined
with high-resolution satellite images, such as SPOT [38], Gaofen-1 [29], or Quickbird [25,39–41], can be
used for the rapid retrieval of LST data. In addition, hyperspectral thermal infrared data, such as those
acquired by the Infrared Atmospheric Sounding Interferometer (IASI) and Cross-track Infrared Sounder
(CrIS), have been used for retrieving LST data [42]. Therefore, LST data derived from thermal infrared
remote sensors are among the most commonly used indicators for heat island analysis. In the last two
decades, many studies have focused on identifying the factors that contribute to SUHIs [7,10,24,43–47],
which have shown that urban built-up land and the impervious surface area have positive effects on
SUHIs [48], whereas water bodies and green landscape have negative effects on SUHIs [24,43,49,50].
In addition, previous studies have demonstrated that there are complex relationship between the
landscape composition [25,39,44], land use and cover changes (LUCC) [3,36,51,52], and SUHIs.

Urban green spaces (UGS), including urban parks, green belts, attached green space, and
productive plantation areas, are considered to be important components of urban vegetation, where
they are cooler than their surrounding built-up areas and they can form a “green space cool
island” (GSCI).
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A previous study suggested that the GSCI intensity is affected by the size, shape, seasonal changes
(summer/autumn), and the forest structure (stem density, diameter, tree height, basal area, leaf area
index (LAI), and canopy density) for urban parks in Shenyang, China [24]. The urban landscape
configuration (LULC types and landscape pattern metrics) also influences SUHIs [43,53]. However,
the relationships between the GSCI intensity and other aspects of urban forest structures (e.g., species
composition, three-dimensional green biomass (TGB), and health) in UGSs have rarely been studied
and they are not yet fully understood. Furthermore, previous studies of the spatiotemporal distribution
and factors that affect SUHIs have mainly considered municipalities, provincial capitals, or coastal
cities, whereas few studies have investigated cities at the prefecture level in the loess hilly region
of China.

1.2. Study Objectives

In this study, based on field surveys and Landsat series (5/7/8) satellite remote sensing data
(1990–2015, 5-year intervals) acquired for Yan’an City, China, we investigated the effects of the LUCC
and UGS tree-layer structure on the SUHI intensity. The aims of this study were: (1) to explore the
quantitative relationships between the GSCI intensity and UGS structure, and to determine whether
the UGS structure significantly affects the GSCI intensity; (2) to examine the spatiotemporal trends in
the LST and LUCC during the last 25 years (1990–2015); and (3) to identify the main LULC types that
significantly affected the LST during six research periods. The results of this study should be useful for
urban planners and designers by facilitating the design of UGSs that maximize the GSCI intensity and
mitigate UHIs.

2. Materials and Methods

2.1. Study Area

The case study area, in the Baota District of Yan’an City (36◦22′44”–36◦45′53” N,
109◦14′7”–109◦46′9” E) in the middle reaches of the Yellow River, where it is located in an arid
and semiarid region of the Loess Plateau in Northwestern China, has been affected by severe soil
erosion which makes this district a key region for ecological restoration. The case study area covers
1174.54 km2 (comprising 1600 × 1432 grid cells at 30-m resolution) and the elevation ranges from circa
900 m to circa 1466 m above sea level (Figure 1). In 2013, this district had a population of 478,500
(Shaanxi Statistical Yearbook in 2014), 63% of whom were rural. This region has a typical semiarid
continental climate, with average annual rainfall of approximately 470 mm (with high variability in
recent years), where over 65% occurs between June and September, mainly in the form of heavy rain
(Baota Meteorological Observatory). The study area contains 260 villages according to the Second
National Land Survey of China. This area has undergone long-term soil and water conservation, and it
was selected as one of the pioneer demonstration areas for the large-scale ecological restoration project
known in China as “Grain to Green” [4,54,55].

Petroleum exploitation has been conducted throughout the study area by the Shaanxi Yanchang
Petroleum (Group) Co. Ltd. (Yan’an, China). During the past three decades, and road construction on
forestland or farmland in order to transport the crude oil from exploitation sites to oil refineries has
destroyed large amounts of vegetation.

One of the largest construction projects in the study area, which started in April 2012 (Figure 1),
doubled the city’s current area by creating 78.5 km2 of flat ground [56], on which the new Yan’an City
was built. Most of the vegetation was removed from more than 30 hills.

According to forest resource inventory data (2006) and field surveys (July to August, 2012–2015),
the dominant tree species in the study area are: Robinia pseudoacacia Linn., Platycladus orientalis (L.)
Franco, Quercus wutaishansea Mary, Pinus tabuliformis Carr., Betula platyphylla Suk., Populus davidiana Dode.,
Pyrus betulifolia Bunge, Ulmus pumila L., Malus pumila Mill., Juglans regia L., and Ostryopsis davidiana Decne
(Figure 2). The soil in the study area is mainly loessial soil according to Loess Plateau soil data [57].
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Figure 1. Map of the study area showing: (a) its location in China; (b) the topographical status; and (c)
the township administrative boundary (black polyline) and urban planning area (yellow circle) in 2015,
where the circle at the center marks the intersection of three mountains (Baota mountain, Qingliang
mountain, and Fenghuang mountain), as well as two rivers (Yanhe river and Duchuanhe river). Urban
area (UA) is a kind of the construction lands within the urban planning area. The suburban area (SUA)
is the area between the exterior of the urban area and the external outline of the study area, in the
corresponding period, based on master planning and land use planning of Yan’an city from Baota
District Branch of Yan’an Municipal Bureau of Land and Resources.
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Figure 2. Map showing the distribution of sampling points in the region (plots).

2.2. Data Sources

In this study, three types of data were utilized: (1) Baota district meteorological data (Baota
district bureau of meteorology), (2) Baota district land use data (provided by Baota District Branch of
Yan’an Municipal Bureau of Land and Resources), and (3) Landsat satellite images (path/row: 127/35),
downloaded from the United States Geological Survey [58]. Further details of these data are given in
Table 1.

Table 1. Overview of the data used in this study.

Serial
Number Data Acquisition Date and Time

(GMT)
Spatial

Resolution Utility

1 SPOT-5 9 September 2003; 03:40:49
9 September 2003; 03:40:57

2.5 m
2.5 m

Land use/cover classification of
satellite imagery

2 GeoEye-1 2009 1.65 m

3 Land use map 1995, 2000 1:100,000
2011 1:10,000

4 Landsat 5 TM

29 August 1990; 02:39:18
8 June 1995; 02:25:55

19 June 2005; 03:06:59
17 June 2010; 03:10:03

30 m, 120 m Used for land use/cover type
classification, remote sensing and

index calculation. Thermal
infrared bands used for retrieving
land surface temperature values.

5 Landsat 7 ETM+ 29 June 2000; 03:11:06 30 m, 60 m

6 Landsat 8 OLI & TIRS 1 July 2015; 03:18:49 30 m, 100 m

7 Boundary map of Yan’an city area 2011 Subset related data.
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2.3. Methods

2.3.1. Technical Details

The present study of the changes in the fraction of suburban vegetation and urban green
spaces (UGSs), and their effects on the thermal environment considered four main issues (Figure 3):
(1) the fraction of suburban vegetation and the characteristic changes in UGSs were studied using
spatial analysis and statistical analysis based on land use and cover change (LUCC) and associated
remote sensing indicators; (2) the characteristic changes in the thermal environmental were examined
using the land surface temperature (LST) single-channel algorithm and the landscape assessment
method; (3) the effects of LUCC on the thermal environment were analyzed using a spatial linear
regression method for the LST data versus land surface remote sensing indicators; and (4) the
mitigating effects of UGSs on surface urban heat islands (SUHIs) were assessed based on urban
forest configuration-related indicators.
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Figure 3. Methods employed in this study, where the definitions of variables are given in Equations
(1)–(19). ψ: atmospheric parameters; FV: vegetation fraction; NDVI: normalized difference vegetation
index; MNDWI: modified normalized difference water index; IBI: an index-based built-up index; Tsen:
at-sensor temperature; ε: land surface emissivity; SUHI: surface urban heat island.

2.3.2. Derivation of the Normalized Difference Vegetation Index (NDVI), Index-Based Built-Up Index
(IBI), and Modified Normalized Difference Water Index (MNDWI), and LULC Classification

Six remote sensing images acquired in the summer (Table 1, Serial Number = 4, 5, 6) were
used to produce multi-temporal sets of LULC maps of the study area for 1990, 1995, 2000, 2005,
2010 and 2015, with the assistance of the auxiliary data (Table 1, Serial Number = 1, 2, 3) and using
maximum likelihood classification in ENVITM 5.1 (Exelis Visual Information Solutions, Inc., Boulder,
CO, USA) [59]. The detailed image processing techniques, including radiometric calibration, geometric
correction, image classification, and accuracy assessment, were described previously [60]. The “Present
Situation of Land Use Classification (GB/T221010-2007)” and the actual details of the study area were
employed to extract the characteristics of the remote sensing data. Images of the study area were used
to classify the LULC into six types: construction land, farmland, forest, grassland, water, and unused



Int. J. Environ. Res. Public Health 2017, 14, 840 7 of 25

land (Table 2). Manual correction was then applied to ensure the accuracy of the classification. The
accuracies of the classified products were assessed by manual interpretation using Google Earth Pro®.
In total, 5% of the patches measuring more than 15 ha were selected randomly as samples. Using
the spatial join function in ESRI ArcGISTM version 10.0 (ESRI, Redlands, CA, USA) [61], the manual
interpretation results and the original results for these selected samples were compared to produce
confusion matrixes [62]. The results of the Jeffries-Matusita distance separability inspections were all
above 1.8000. The accuracies of the maps were above 90% in all 6 years. Finally, the kappa indices
were calculated and the results were above 0.85 in all 6 years. These values satisfied the accuracy
requirements for land-use change analysis [62]. All of the spatial data were transformed to a uniform
coordinate system (datum: Beijing_54, ellipse: Krasovsky, projection: Transverse Mercator, zone: 19N).

Table 2. Land use/land cover type classification system used in this study.

Primary Types Abbreviation Secondary Types Code

Construction land CL Urban area, rural residential area, other construction land 1
Farmland FL Paddy field, non-paddy field 2

Forest FO Forest, shrubs, sparse forest, other forest 3
Grassland GL Dense grassland, moderately dense grassland, sparse grassland 4

Water WA River, lake, reservoir or pond, beach, bottomland 5
Unused land UL Sandy land, saline land, marsh, bare land, bare rock, other unused land 6

The NDVI is a proxy of vegetation cover, which is frequently used in ecological and
environmental studies:

NDVI = (ρNIR − ρRED)/(ρNIR + ρRED) (1)

The MNDWI can enhance open water features while efficiently suppressing and even removing
built-up land noise as well as vegetation and soil noise, and thus MNDWI is suitable for enhancing
and extracting water information for a water region with a background dominated by built-up land
areas [63]. We used MNDWI to represent water areas.

MNDWI = (ρGreen − ρMIR)/(ρGreen + ρMIR) (2)

IBI was proposed for the rapid extraction of construction land features in satellite imagery [64]:

IBI =
2ρMIR/(ρMIR + ρNIR)− [ρNIR/(ρNIR + ρRed) + ρGreen/(ρGreen + ρMIR)]

2ρMIR/(ρMIR + ρNIR) + [ρNIR/(ρNIR + ρRed) + ρGreen/(ρGreen + ρMIR)]
(3)

where ρGreen, ρRed, ρNIR, and ρMIR represent the surface reflectivity of the green band, red band,
near-infrared (NIR) band and, mid-infrared band, respectively, of the Landsat satellites images after
Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) atmospheric correction with
ENVI 5.1.

2.3.3. Retrieval of LST and Measurement of Relative SUHIs

LST Inversion

In this study, the LST was inverted from Landsat thermal infrared data (Table 1, Serial Number = 4,
5, 6, resampled to a spatial resolution of 30 m) in terms of TM-6 or ETM+-6 using the single-channel
algorithm [65], and for TIRS-10/11 using the generalized single-channel method [66] combined with
the split-window covariance-variance ratio technique (SWCVR) [67]. The main steps in this process
comprised: (1) correcting the radiometric and geometrical distortions; (2) converting calibrated digital
numbers (DNs) into absolute units of at-sensor spectral radiance; (3) converting the at-sensor spectral
radiance into the at-sensor brightness temperature; and (4) correcting for the spectral emissivity of
different land cover types (NDVI values) to generate the LST data [34,65–67]. More details of the
computational process as follows:
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Step 1: At-sensor radiance (Lsen).

Lsen = gain× DN + o f f set (4)

Gain and offset are the slope and intercept of the radiance/digital number (DN) conversion
function, respectively, which were obtained from the metadata files.

Step 2: At-sensor temperature (Tsen).

Tsen = K2/ln(K1/Lsen + 1) (5)

where the two correction constants K1 and K2, whose unite is in W/(m2·sr·µm) and K, respectively.
More details value were shown in Table S1 (Supplementary Materials).

Step 3: Intermediate parameters.
(1) Parameter γ and δ

Refer to TM-6 and ETM+-6:

γ =
T2

sen
14387.7Lsen

(
λ4

1.19104× 108 Lsen + λ−1)
−1

(6)

δ = −γLsen + Tsen (7)

Refer to the band 10 of Landsat 8:

γ ≈ T2
sen

bγLsen
(8)

δ ≈ Tsen −
T2

sen
bγ

(9)

Here, bγ = 1324.
(2) Atmospheric parameters (ψ1, ψ2, ψ3 and w)

ϕ1 = a1ω2 + b1ω + c1

ϕ2 = a2ω2 + b2ω + c2

ϕ3 = a3ω2 + b3ω + c3

(10)

The values of constants (a1, a2, a3, b1, b2, b3, c1, c2 and c3) were shown in Table S1. The w is
water vapor content in g/cm2, which can be obtained from atmospheric profile (TM-6 and ETM+-6) or
SWCVR method (TIRS-10):

Fv =

(
NDVI − NDVIS

NDVIV − NDVIS

)2
(11)

where FV is the vegetation fraction, NDVIS and NDVIV correspond to the bare soil and fully-vegetated
NDVI, respectively, which can be extracted from the NDVI histogram according to the cumulative
percentage (5% sand 95% respectively) in the corresponding NDVI data.

Refer to TM-6 and ETM+-6:

ϕ1 = 1/τ, ϕ2 = −Ldown − Lup/τ, ϕ3 = Ldown (12)

τ is transmissivity; Lup and Ldown are up-welling and down-welling atmospheric radiance,
respectively, which were calculated using a web-based tool (http://atmcorr.gsfc.nasa.gov).

Refer to the band 10 of Landsat 8:

R11,10 =

N
∑

k=1
(T10,k − T10)(T11,k − T11)

N
∑

k=1
(T10,k − T10)

2
(13)

http://atmcorr.gsfc.nasa.gov
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where T10,k represents the brightness temperature of TIRS band 10 for pixel k; T11,k represents the
brightness temperature of TIRS band 11 for pixel k; T10 and T11 represents the mean brightness
temperature of TIRS band 10 and 11 over N pixels, respectively.

ε10

ε11
=


0.9939 NDVI < NDVIs

0.9939 NDVIv < NDVI
(0.0195FV + 0.9688)/(0.0149FV + 0.9747), NDVIs ≤ NDVI ≤ NDVIv

(14)

ω =

{
−18.973(ε10/ε11)R11, 10 + 19.130, (ε10/ε11)R11,10 > 0.9

−13.412(ε10/ε11)R11, 10 + 14.158, (ε10/ε11)R11,10 < 0.9
(15)

(3) Land surface emissivity (ε)

ε =


0.97, NDVI < NDVIs

0.97(1− FV) + 0.99FV, NDVIs ≤ NDVI ≤
0.99, NDVIv < NDVI

NDVIv (16)

Step 4: Land surface temperature (LST).

Ts = γ
[
ε−1(ψ1Lsen + ψ2) + ψ3

]
+ δ− 273.15 (17)

Measurement of the Relative SUHIs

• Green Space Cooling Island Intensity

The GSCI intensity is calculated as:

GSCI = ∆T = Tu− Tgs (18)

where Tgs is the daily average LSTm for a certain UGS interior and Tu is the daily average land
surface temperature measured by temperature and humidity probes (LSTm) in the external 10 m buffer
(excluding other green spaces and water) of the corresponding UGS, which is sufficiently wide to
include the neighboring urban thermal information for roads, residential or business buildings, and
parking spaces. In this context, the unit for temperature is degrees Celsius (◦C). The thermal field
variance index (LST grade/heat island intensity) was graded into five levels (Table 3). The spatial
distribution of heat islands in the study area is shown in Figure 3.

Table 3. Thermal landscape classification obtained using the mean-standard deviation method.

Thermal Landscape Category (LST Grade/Heat Island Intensity) LST Division

Hot/extremely strong T(x, y) ≥ m + std
Medium-hot/very strong m + std > T(x, y) ≥ m + 0.5std

Warm/moderate m + 0.5std > T(x, y) ≥ m − 0.5std
Medium-cold/weak m − 0.5std > T(x, y) ≥ m − std

Cold/none T(x, y) < m – std

T(x, y) is the surface temperature at location (x, y), and m and std are the mean and standard deviation for the
LSTs, respectively.

• Thermal Landscape

The thermal landscape in the urban and suburban areas was divided into five categories using
the LST mean-standard deviation method [68,69] (Table 3).
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2.3.4. Landscape Pattern Analysis

To assess the changes in the structural characteristics of the land and thermal landscapes at
a scale of 100 m from 1990 to 2015 (5-year interval), the FRAGSTATS 4.2 program (University of
Massachusetts, Boston, MA, USA) [70] was used to calculate the following six landscape metrics:
fractal dimension index (FRAC), percentage of landscape (PLAND), aggregation index (AI), division
index (DI), Shannon’s diversity index (SHDI), and expansion intensity (EI) (Table 4). These metrics
have been used frequently to assess the structural characteristics of landscapes and to monitor changes
in land use [44,53,71–73].

Table 4. Evaluation indices for LST and LUCC types [72,73].

Evaluation Index Description Formula

Fractal dimension
index (FRAC)

Ranging between 1 and 2, where a greater value indicates
more complex characteristic of the plaque and landscape.
A is the total area and P is the perimeter of a patch.

FRAC = 2 ln(0.25P)
ln A

Percentage of
landscape
(PLAND)

Characteristic of a certain class area relative to the
proportion of the total. A is the total area, a is the plaque
area, and n is the number of patches. PLAND =

n
∑

i=1
ai

A ∗ 100

Aggregation index
(AI)

Characterization of the degree of plaque accumulation,
ranging between 0 and 100, where a lower value indicates
a greater degree of dispersion for the representative. gii is
adjacent to a number of patches relative to a class plaque.

AI =
∣∣∣ gij

max→gij

∣∣∣

Division index (DI)

Measure of the plaque distribution, ranging between 0 and
1, where a value closer to 1 represents a more severe split.
A is the total area, ai is the area of the ith plaque, and n is
the number of patches.

DI =
[

1−
n
∑
1
( ai

A )

]

Shannon’s diversity
index (SHDI)

Diversity measure that increases with the number of patch
types and as the proportional distribution of the area
among patch types becomes more equal.

SHDI = −
m
∑

i=1
(Pi× ln Pi)

Expansion intensity
(EI)

Measure of the intensity of spatial expansion. Ai + j and Ai
are the areas in years i + j and i, respectively. EI = Ai+j−Ai

Ai

FRAC, PLAND, AI, DI and EI were calculated for LULC and SHUI in the whole area, suburban area and urban area
at the landscape level [74].

2.3.5. Surveying and Measurement of SUHI-Related Indicators at the Plot Level

Size and Shape of UGSs

We used the Google Earth Professional online platform (Version 7.1) and images captured on
25 July 2015 under the same conditions (perspective elevation of ca. 1500 m and a parallel projection
state). We delineated boundary polygons of 34 representative green spaces (area larger than 1 ha;
Figure 2) with relatively even distributions in the urban core area, which ranged in size among large,
medium, and small [75,76]. Each boundary polygon was saved separately in the form of a KML
file, which was then transformed into a shape file (shp) in Global Mapper V10.01 and employed for
extracting area, perimeter, external buffer, and subset/clipping-related spatial data. The UGS area,
perimeter, and landscape shape index (LSI) were used to describe the UGS size and shape, and the
perimeter/area ratio described the complexity and the edge effect for an urban park. A larger LSI
indicated a more complex urban park shape [24]. LSI was calculated using ArcGIS 10.0 as follows:

LSI =
Pt

2
√

π × A
(19)

where Pt is the total perimeter around a green space and A is the area of the green space.
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Surveys of UGS Forest Structure and Temperature Measurements

We determined the urban forest structures based on the tree-layer species number (TSN), TGB
and LAI for forests in the UGSs according to our preliminary investigations. The number of plots
sampled for each green space is shown in Figure 2. Each of the 34 sampling quadrats was defined as a
20 m × 20 m square (0.04 ha).

TSN: Number of species (diameter at breast height ≥5 cm, with a certain number) comprising the
tree layer of a forest in an UGS.

LAI: One half the total leaf surface area per unit ground area [77]. Every tree in each sampling
quadrat was measured directly with a canopy analyzer (fish-eye camera) and adjustable tripod. Each
single tree’s LAI was calculated using analysis software (WinSCANOPY Reg v2005a) and the mean
value was taken as the LAI for the whole sampling quadrat.

TGB: The space volume occupied by living plant stems and leaves [78]. TGB was evaluated for
each tree in a sampling quadrat using an empirical formula according to corresponding shape of the
tree canopy (Table 5).

Table 5. Empirical formulae for determining the three-dimensional green biomass of trees [78].

Canopy
Shape Cylinder Oval Sphere Flat

Spheroid Cone Spherical Fan Spherical
Segment

Empirical
formula

πx2y
4

πx2y
6

πx2y
6

πx2y
6

πx2y
12

π
(

2y3−y2
√

4y2−x2
)

3
π(3xy2−2y3)

6

Tree
species

PC, PH,
PO, SC,

WS

FC, PCa,
SM, UP AV, JF AM, JR,

PU, SJ

CD, GB, MA,
PA, PB, PT,

RP, ZJ
AP, FS, PS, SJv AJ, SJp

x: tree canopy diameter; y: crown length; AJ: Albizia julibrissin Durazz; AM: Acer mono Maxim; AP: Amygdalus
persica L.; AV: Armeniaca vulgaris Lam.; CD: Cedrus deodara (Roxb.) G. Don; FC: Fraxinus chinensis Roxb.; FS: Forsythia
suspensa (Thunb.) Vahl f. suspensa; GB: Ginkgo biloba L.; JF: Juniperus formosana Hayata; JR: Juglans regia L.; MA:
Morus alba L.; PA: Picea asperata Mast.; PB: Pinus bungeana Zucc. ex Endl.; PC: Pistacia chinensis Bunge; PCa: Prunus
cerasifera Ehrhar f. atropurpurea (Jacq.) Rehd.; PH: Populus hopeiensis Hu et Chow in Bull.; PO: Platycladus orientalis
(L.) Franco; PS: Pinus sylvestris Linn. var. mongolica Litv.; PT: Pinus tabuliformis Carr.; PU: Pyrus ussuriensis Maxim.;
RP: Robinia pseudoacacia Linn.; SC: Sabina chinensis (L.) Ant.; SJ: Sophora japonica Linn.; SJp: Sophora japonica Linn. var.
japonica f. pendula Hort.; SJv: Sophora japonica Linn. var. violacea Carr.; SM: Salix matsudana var. matsudana f. tortuosa
(Vilm.) Rehd.; UP: Ulmus pumila L.; WS: Wisteria sinensis (Sims) Sweet.; ZJ: Ziziphus jujuba Mill.

The near-ground (approximately 1.5 m above the ground) air temperature (AT1.5) and land
surface temperature (LSTm) were measured using temperature and humidity probes (Yangling Qiantai
Electronic Science and Technology Co. Ltd., Yangling, China) outside (30 m from the center, without
trees) and inside 34 different types of green space during 26–31 July 2015, from 08:00 to 18:00, under
roughly the same weather conditions (sunny, cloudless and wind-free). The data recording interval
was 20 min and the daily average values were used in the statistical analyses.

2.3.6. Statistical Analysis

Ordinary least squares multiple linear regression models and correlation coefficients were used
to determine the effects of the UGSs configurations on LSTm at a scale of 100 m. In the analysis
of the relationships between the linear regression models, GSCI/LST was used as the dependent
variable, and the amount of urban vegetation (LAI and TGB) and shape (LSI) of the UGSs were used
as independent variables. Spatial linear regression analysis of LST versus NDVI, FV, IBI and MNDWI
in urban and suburban areas were performed by using SAS 9.2 (SAS Institute Inc., Cary, NC, USA) in
order to analyze their quantitative relationships during the six study periods based on over 500 random
sampling points with distance ≥200 m, which were evenly distributed in the study area.
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3. Results

3.1. Relationship between UHIs and LUCC at the Regional Level

3.1.1. Characteristics of the Mean Annual and Monthly Air Temperature, and Summer Heat Islands

June, July and August were the warmest months of the year (Figure 4) and we used Landsat
satellite images, including the thermal infrared bands, for LST retrieval. According to the
meteorological station at Yan’an (36◦36′ N, 109◦30′ E; altitude: 958.5 m), the average diurnal air
temperature was 18.7 ◦C on 29 August 1990, 24.1 ◦C on 8 June 1995, 24.6 ◦C on 29 June 2000, 26.0 ◦C
on 19 June 2005, 25.8 ◦C on 17 June 2010, and 27.5 ◦C on 1 July 2015. The high temperature in 2015
was attributable to the strong global EI Nino climatic effect as well as severe local deforestation and
construction activities due to construction of the new Yan’an city area, which caused dry and warm
weather. These effects are readily discernible in the annual mean air temperature charts shown in
Figure S1.

Figure 4. Comparison of the average LST among different LULC types and different regions (urban
area of Yan’an city, and suburban area of Yan’an city) during six periods from 1990 to 2015 (error bars
represent the standard deviation in the corresponding average LST).

Figure S2 showed the 20-min variations in the SUHI intensity at 34 open impervious surface sites
located close to the centre of Yan’an City in July. The SUHI intensity values ranged from −6.9 ◦C to
10.1 ◦C, and the standard deviation ranged from −2.7 ◦C to 9.4 ◦C during the day (08:00–18:00), where
the SUHI occurred predominantly during the nearly noon-time hours and it reached a maximum by
11:40 (Beijing Time).

3.1.2. Variations in the LST among Different Land Use Types

The average LST distributions during the six research periods for urban area of Yan’an city (UA),
and suburban area of Yan’an City (SUA) are showed in Figure 4. In the two regions (UA and SUA), the
lowest average LST always occurred in forestland and water area among the six LULC types during
the six research periods. By contrast, the highest average LST occurred in construction land (1990, 2000,
2005, 2010 and 2015) or unused land (1995) because of the bare soil in those two LULC types caused
by soil erosion, which mainly affected by local anthropogenic activities, such as land reclamation, oil
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exploitation, and urbanization. A comparison of the average LST among the two regions (UA and
SUA) showed that the average LST for each LULC type in the descending order by UA and SUA. Thus,
these were significant spatial gradients in the LST from the city center to the surrounding suburban
area. In Figure 4, the length of the error bar represents the spatial difference in the LST, where a
longer error bar indicates the higher heterogeneity of the corresponding thermal landscape between
the two regions (UA and SUA) for each LULC type. In general, the length of the error bar for each
LULC type in the ascending order by UA and SUA, from 1995 to 2015, which also suggested that
the heterogeneity and fluctuations in the average LST decreased gradually along a suburban-urban
gradient in Yan’an City.

3.1.3. Relationships between the Spatial Distributions of SUHI and LULC

In this study, we selected six Landsat images (Table 1), where the distribution of urbanized areas
and SUHIs (medium-hot and hot areas) changed from a sparsely dotted pattern in 1990 to a chain/areal
pattern in 2015 due to the gradual increase in the urban area of Yan’an city during the study period.
A comparison of the LULC maps derived from images acquired on 29 August 1990 and 1 July 2015
shows the dramatic expansion of the urbanized area by 2015 (Figure 5). In 1990, the hot areas only
occurred on construction land at the center of Yan’an city (Figure 5a,b). In 1995 and 2000, the hot areas
were clumped on construction land, farmland, and grassland (Figure 5c–f). In 2005 and 2010, the hot
areas were scattered on construction land and farmland (Figure 5g–l). In 2015, the hot areas were
mainly distributed on construction land (Figure 5k–l).

According to the spatial-temporal analysis of the variations in the SUHI intensity at 5-year
intervals, construction land had the highest LST. There were significant spatial gradients in the LST
from the city center to the surrounding suburban and rural areas.

Based on land use/cover changes trajectory tracking, from 1990 to 2015, the amount of
construction land in the urban area increased by 56.72 km2, from 11.53 km2 to 68.25 km2, where
33.32 km2 of UGS was transformed into construction land. Therefore, 42.42% (17.61 km2) of the new
land use types (41.52 km2 in all) were transformed from UGS. Table S2 shows the time series of the six
types of land use/cover area in percentage.

3.1.4. Relationship between SUHI and LULC

At the landscape scale, the spatiotemporal changes in the six landscape metrics (FRAC, DI,
AI, SHDI, PLAND and EI) for the thermal landscape (classified LST) were similar to those in the
corresponding urbanization landscape metrics for LUCC (especially construction land) during the
last 25 years. The landscape metrics showed that long-term anthropic intervention (petroleum
exploitation and rapid urbanization) produced a highly fragmented and diversified landscape, as
shown by the decrease in FRAC for LULC and thermal landscape because of the decline in the natural
landscape (Figure 6). The decreases in DI of LULC and thermal landscape of urban area, except for
thermal landscape of suburb area (Figure 6b), and the increases in AI, PLAND and EI for urban area
(construction land) because of urbanization (Figure 6c,e,f). The decrease in SHIDI (Figure 6d) showed
that there was a less dispersed and even distribution of land-use types, especially in the new Yan’an
city, which was confirmed by the landscape spatial distribution analysis (Figure 5).

Under the macroscopic land use policy, several large-scale land surface transformation activities
have occurred, where petroleum exploitation (initiated in 1990s), the “Grain-to-Green” program
(initiated in 1999), and the leveling of mountains to build cities (initiated in 2012) were the most
influential projects, which are responsible for the turning points in 2000, 2005 and 2010 in the broken
line graphs for the six landscape metrics in Figure 6.
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Figure 5. Cont.
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Figure 5. (a–f) Maps comparing the spatial distribution of the land surface temperature and land
use/cover during the three periods from 1990 to 2000; (g–l) Maps comparing the spatial distribution of
the land surface temperature and land use/cover during the three periods from 2005 to 2015.
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Figure 6. Changes in the landscape metrics for the LULC and thermal landscape in urban and
suburb areas: (a) fractal dimension index (FRAC); (b) division index (DI); (c) aggregation index
(AI); (d) Shannon’s diversity index (SHDI); (e) percentage of landscape (PLAND); and (f) expansion
intensity (EI).

3.2. Effects of UGS Size, Shape, and Tree-Layer Structures on GSCI

Table 6 shows the descriptive statistics for GSCI, and the size and shape of UGSs. The mean
value and standard error (±SE) for LSI, LAI, TGB, and GSCI were 1095.5 ± 1216.9 m2, 1.421 ± 0.395,
2.252 ± 0.897, 12852.3 ± 2814.0 m3, and 3.66 ± 1.78 ◦C respectively.
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Table 6. Descriptive statistics for the size, GSCI and number of plots for each urban green space.

Green Space Sample
Plot Code Tree Species Composition TSN LSI LAI TGB

(m3)
GSCI
(◦C)

GSCI
Order

Zaoyuan
revolution site

1 3AV + 2PU + 2JR 3 1.062 1.44 3598.3 2.67 25
2 5ZJ + 3AV + 3PU 3 1.145 1.973 4838.1 4.98 7
3 15GB + 5UP + 3JF 3 1.117 1.081 5952.6 5.54 3
4 13ZJ + 8SC + 8RP + 3PC + 3MA 5 1.118 1.182 5110.8 4.83 11

Xibeichuan
park

5 8PS + 6SM + 5FC + 7AM 4 1.247 1.379 3596 3.21 21
6 31PT 1 1.327 1.030 3472.5 2.36 26
7 100PS 1 1.399 2.060 2188.1 2.06 27
8 14 SM 1 1.865 2.470 10,054.4 3.11 22
9 10FC + 16PT 2 1.246 2.760 6329.6 3.98 16

10 4PH + 2PT + 3PB + 1AV 4 1.228 1.930 8967.1 1.87 28
11 63PO 1 2.278 0.980 23.7 0.67 34
12 5SJ + 1AM 2 1.281 1.372 1088.5 1.41 30
13 18PA 1 1.268 1.179 343.2 0.93 32
14 1RP + 5PCa + 4PT + 1SM 4 1.133 1.459 2176.81 1.49 29
15 64GB + 10UP 2 2.774 1.297 1120.3 1.26 31

Yan’an airport
green space

16 7SM + 5PT + 3PA + 2SJ + 1JF 5 1.2 3.56 42,722.4 5.43 6
17 6PCa + 4SJ + 3SM + 2PH 4 1.134 2.93 34073.2 4.86 10
18 5PA + 4SM + 2PT + 1SJ + 1GB 5 1.202 3.24 8050.7 4.93 9

Yuying park 19 6PT + 4RP + 3PO + 3SJ + 3PCa + 2SC
+ 2PH + 1PA 8 2.007 4.567 154,618 8.57 1

Liulin green
belt 20 20PB + 36SJ + 7SM + 4As + 2GB +

1PH + 1PT 7 1.217 3.755 56,100.4 6.39 2

Dalitang green
space 21 4PCa + 3SJp + 2PT + 1AP + 1SC +

1PS + 1CD 7 1.385 2.859 5485.7 4.16 13

Shilipu
nursery

22 100RP 1 1.25 3.140 12,403.3 5.44 5
23 97JF 1 1.717 1.072 87.9 0.82 33
24 27PH 1 1.807 2.980 15,246.6 5.51 4

Revolutionary
memorial hall

green space

25 34SM + 7GB + 5PT + 5JF + 4SJ 5 1.098 2.804 5397.1 4.95 8
26 13SM + 13SJ + 3JF + 3PT 4 2.211 2.651 2065.7 4.76 12
27 10GB + 10JF + 3SM 3 1.286 2.202 2964.1 4.06 14

Wangjiaping
peach park

28 53AP + 1JR 2 1.217 1.830 2236 3.66 18
29 3AV 1 1.458 2.583 2753.3 3.29 20

Yan’an
university

campus

30 11PO + 7SJv + 6SJp + 1AJ 4 1.377 2.628 1503.1 3.32 19
31 19JR + 11PCa + 6JF + 4SJ + 4PA + 3AJ 6 1.249 2.307 28,408.4 3.78 17
32 60WS 1 1.284 2.941 649.5 2.96 24
33 22SJp + 19FS + 16PA + 16AP 4 1.575 2.786 2439.8 3.04 23
34 41PO + 36JF + 24PCa + 4PA + 4PO 5 1.137 2.138 913.1 3.99 15

Mean 1.421 2.252 12,852.3 3.66

Standard deviation 0.395 0.897 2814.0 1.78

The top ten GSCI values (5.10 ◦C to 8.57 ◦C, GSCI order, 1–10) were all observed in the larger
green spaces comprising coniferous broadleaf mixed, deciduous broadleaf mixed, or larger tree canopy
pure forests. The tree species compositions of the top 10 spaces in terms of the cooling effect were (see
the definitions of the abbreviations in Table 6): (1) 6PT + 4RP + 3PO + 3SJ + 3PCa + 2SC + 2PH + 1PA,
(2) 20PB + 36SJ + 7SM + 4As + 2GB + 1PH + 1PT, (3) 15GB + 5UP + 3JF, (4) 27PH, (5) 100RP, (6) 7SM +
5PT + 3PA + 2SJ + 1JF, (7) 5ZJ + 3AV + 3PU, (8) 34SM + 7GB + 5PT + 5JF + 4SJ, (9) 5PA + 4SM + 2PT +
1SJ + 1GB, and (10) 6PCa + 4SJ + 3SM + 2PH.

Based on GSCI order, after considering the diversity of tree species and the cooling effect, the top
three tree species compositions for UGSs in the urban area of Yan’an city were: (1) 6PT + 4RP + 3PO +
3SJ + 3PCa + 2SC + 2PH + 1PA (2) 20PB + 36SJ + 7SM + 4As + 2GB + 1PH + 1PT, and (3) 15GB + 5UP +
3JF.At the sampling plot scale, the linear regression analysis based on ordinary least squares showed
that there were significant strong positive relationships between GSCI and LAI, and the logarithm of
TGB, and there was a negative correlation (p < 0.05) between GSCI and LSI when LSI between 1.062
and 1.717, while GSCILSTm had a significant positive correlation with GSCIAT1.5 according to their
corresponding independent variables (Table 7).
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Table 7. Linear regression models for GSCI versus LAI, LSI, TGB, and AT1.5.

y x Model Domain of Definition R2 p-Value

GSCI TSN y = 1.99684 + 0.51597x 1 ≤ x ≤ 8 0.3248 0.0003
GSCI LAI y = 0.34095 + 1.4719x 0.980 ≤ x ≤4.567 0.5363 <0.0001
GSCI LSI y = 9.4506 − 4.644x 1.062 ≤ x ≤ 1.717 0.1760 0.0151
GSCI LSI y = 14.2984 − 4.7837x 1.717< x ≤ 2.774 0.1669 0.2307
GSCI TGB y = –2.9910 + 0.8089lnx 23.7 ≤ x ≤ 154618 0.6051 <0.0001

GSCILSTm GSCIAT1.5 y = 0.5252 + 0.2172x 0.67 ≤ x ≤ 8.57 0.4253 <0.0001

3.3. Temporal-Dynamic Linear Correlation between the Remote Sensing Ground Indexes and LST

Figure 7 shows the following results: (1) There was a significant strong positive correlation
between LST and IBI, and inverse correlations between LST and FV, NDVI, and MNDWI in both the
urban and suburban areas during the six periods. (2) The correlation coefficients (Pearson’s r) differed
for the ground remote sensing indexes (FV, NDVI, IBI, MNDWI) versus LST, where in urban areas,
IBI was the key positive factor related to the increases in LST, whereas NDVI and MNDWI were the
crucial factors related to decreases in LST during the six periods.

Figure 7. Linear correlation analysis of LST versus the remote sensing ground indexes (NDVI, FV,
IBI and MNDWI) in urban and suburban areas: (a) Pearson’s correlation coefficients (r); (b) adjusted
R-square values (R2

adj) of spatial linear regression.

The absolute average values of the correlation coefficients during the study period were ranked
as follows: for the urban area, IBI (0.5174) > FV (−0.4581) > NDVI (−0.4495) > MNDWI (−0.2871);
and for the suburban area, IBI (0.5356) > FV (−0.4765) > NDVI (−0.4597) > MNDWI (−0.2501). In
general, the average Pearson’s r and adjusted R-square have shown that the correlations between the
four remote sensing ground indexes and LST were stronger in the suburban area than the urban area.
(3) On the five-year temporal scale, the changes in Pearson’s correlation coefficients (r) and adjusted
R-square values (R2

adj) of spatial linear regression emerged four turning points (1995, 2000, 2005 and
2010), the similar to the trends of FRAC in Figure 6a, because of significant changes of land use/cover
every five years from 1995 to 2010.
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4. Discussion

4.1. Main Reasons for the Changes in Vegetation and LST

In response to the national “Grain-to-Green” program, Yan’an Municipal People’s Government
issued the “Closing the mountain and planting trees, feeding animals in shed” act on 16 October 1999.
Subsequently, deforestation was replaced by afforestation. Moreover, the establishment of Yan’an city
as a “National Forest City” was affirmed by the State Forestry Bureau of China on 29 January 2012.
Yan’an Municipal People’s Government initiated the “National Forest City” establishment project
and issued related operational documents, such as “The overall planning of construction for national
forest city in Yan’an” and “Overall planning of Yan’an City (2012–2030).” However, specific weather
conditions and large-scale development projects affected the urban forest and its construction. For
example, torrential rain occurred during 2013, where the total precipitation in 17 days (from 28 May
to 7 October) was 725 mm, while the annual precipitation was 929.1 mm, which was nearly twice of
the normal year. Petroleum exploitation and rapid urbanization, including the leveling of mountains
to build the new city, meant that all the vegetation was removed from over 30 hills, i.e., a total area
of 78.5 km2. The changes in vegetation were significantly influenced by these land use policies and
human activities. In the suburban area, due to ecological restoration, the average vegetation cover
(forest land) increased by 56.54% (from 34,172 ha to 53,493 ha) between 1990 and 2015, which was
similar to the trend in Baota District [66]. By contrast, in the urban area, the average vegetation cover
(forest land) decreased by 11.15% (from 17,661 ha to 15,692 ha) between 1990 and 2015. The leveling
of mountains to build the new city area was the major cause for the decrease in the urban vegetation
coverage and the corresponding increase in the LST [56].

4.2. Correlations between Different Land Surface Indicators and LST

Odindi et al. [33] noted that impervious surfaces are heat sources, whereas green spaces are
the major heat sinks in Ethekwini Municipal Area, South Africa. Impervious surfaces and bare land
are high temperature zones [31,74], and construction land, farmland, and unused land contained
high proportions of impervious surface and bare land in our study area. Our results showed that
construction land, farmland and unused land had higher average LST values than the other types of
land use during the six study periods (Figure 4). Our results also showed that the four ground indexes
were all significantly correlated with the mean LST, i.e., a positive correlation with IBI and negative
correlations with FV (vegetation fraction), NDVI (normalized difference vegetation index) and MNDWI
(modified normalized difference water index), shown in Figure 7. These findings are consistent with
those of other studies. For example, Xu [64] found a significant positive relationship between the
average LST (land surface temperature) and IBI (an index-based built-up index), while other studies
reported significant negative relationships between the mean LST and the amount of impervious
surface [79,80], NDVI [43,51,81] and MNDWI [64]. Related studies had shown that the key factors
affecting urban LST are not only land cover patterns, but also other anthropogenic forces, especially
land use. Therefore, the explanation of urban LST or SHUI (surface urban heat island) by land cover
alone is inadequate. Especially at fine spatial scales, information on land use is more meaningful than
that of land cover to indicate the impacts of urbanization on ecosystems [3,5,36,41,47,51,52,81].

4.3. Spatial Characteristics of LULC and Variations in Vegetation vs. LST Along the Urban-Rural Gradient

We found that the zones closest to the city center did not have the highest average LST values
in all six periods (Figure 5). Considering that the percentage of construction land and forest (Table
S2) had a strong significant correlation with the mean LST, then PLAND (percentage of landscape)for
construction land and forest helped to explain why the zones close to the city center did not always
have the highest mean LST (Figure 5c). The changes in the spatio-temporal distribution of the high LST
zone were clearly divided into two stages: in the first stage from 1990 to 2005, the high LST zones had a
plaque-like distribution in farmland (Figure 5a–h); and in the second stage from 2010 to 2015, the high
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LST zones were distributed mainly in construction land (Figure 5i–l). Previous studies have shown
that some screened landscape pattern metrics can be used to delineate the effects of uraban heat islands
(UHIs) [44,70,72,82]. In the present study, six urban landscape evaluation indexes. i.e., FRAC (fractal
dimension index), PLAND, AI (aggregation index), DI (division index), SHDI (Shannon’s diversity
index) and EI (expansion intensity) and previous research conclusions were employed to calculate
the thermal and land-type characteristics of the two regions (urban area and suburban area) in the
study area. The PLAND indicator showed that the area of impervious surface (construction land) and
land surface temperature increased in the study area. The EI indicator demonstrated that the intensity
of the increase in the construction land and land surface temperature were greater during 2005–2015.
The FRAC indicator showed that the regional complexity of LST and LULC were decreasing, and
revealed that the reduction in patch boundary complexity and degeneration of natural landscape.
The AI and DI indicators demonstrated that the spatial division and aggregation of the different LST
grades changed consistent with that of the land use/cover through the study periods (Figure 6). These
findings highlight the relationship between the LULC pattern and LST at the 100 m landscape scale.

4.4. Major Factors That Influenced the GSCI Intensity

Our results demonstrate that the shape of UGSs as well as features of the urban forest structure
(TSN, LAI and TGB) in UGSs significantly affected the magnitude of the GSCI (green space cooling
island) intensity (Tables 6 and 7). We found significant positive relationships between GSCI and TSN,
LAI and GSCIAT1.5. Ren et al. [24] also found that the park cooling island intensity had significant
positive correlations with features of the urban forest structure in parks (i.e., canopy density, LAI,
basal area, height, diameter and stem density), while Vidrih and Medved [83] showed that the optimal
length for a park with LAIsp = 3 (specific dimensionless coefficient of the leaf area) to achieve the
best cooling intensity is 130 m. Tree volume had the highest impact on the nocturnal UHI intensity in
Amsterdam within 40 m and a one degree reduction in temperature was predicted for an increase in
the tree canopy volume of 60,000 m3 in its 40 m buffer [84].

5. Conclusions

Urban heat islands (UHIs), especially surface urban heat islands (SUHIs), are mainly influenced
by rapid local urbanization. The spatial variations in the LST levels in Yan’an City were related to
SUHIs and LUCC (land use and cover change) from 1990 to 2015 with five-year intervals were revealed
in this studies. The higher LST values were usually distributed in low vegetation cover land types
(construction land, farmland and unused land). Land surface remote sensing indexes, an index-based
built-up index (IBI), normalized difference vegetation index (NDVI), vegetation fraction (FV) and
modified normalized difference water index (MNDWI) and landscape pattern metrics, i.e., Fractal
dimension index (FRAC), percentage of landscape (PLAND), aggregation index (AI), division index
(DI), Shannon’s diversity index (SHDI) and expansion intensity (EI) described the spatiotemporal
relationships well between SUHI and LUCC at the landscape scale (100 m) in our study area. Urban
green spaces (UGSs) can mitigate SUHIs at the sample scale (20 × 20 m) and reduce the LST by 0.67 ◦C
to 8.57 ◦C. Our results demonstrated that several factors affected the GSCI (green space cooling island)
intensity, i.e., positive effects of the tree canopy (LAI) and TSN (number of species comprising the tree
layer of a forest in an UGS, diameter at breast height above 5 cm, with a certain number), a negative
effect of UGS shape (LSI), logarithmic positive effects of the spatial green mass of trees and shrubs, i.e.,
the space volume occupied by living plant stems and leaves (TGB), and complex relationships with
the configuration of tree layer species. We found that mixed forest was better than that pure forest
for mitigating SUHIs. According to the important value (VI) of tree species in the 34 sample plots
(Table S3), the increased use of native plants with higher VI (i.e., dominant species), such as ginkgo
(Ginkgo biloba L.), lacebark pine (Pinus bungeana Zucc. ex Endl.), Hebei poplar (Populus hopeiensis
Hu et Chow), Chinese pine (Pinus tabuliformis Carr.), Robinia (R. pseudoacacia Linn.), Chinese scholar
tree (Sophora japonica Linn.), willow (Salix matsudana var. matsudana f. pendula Schneid.), and elm
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(Ulmus pumila L.), may be a suitable precautionary measure for urban greening in Yan’an City and
other regions with similar climates.

Supplementary Materials: The following are available online at www.mdpi.com/1660-4601/14/8/840/s1,
Table S1: The constants for LST retrieval with different types of thermal infrared data, Table S2: The time
series of the area percentage of the six land use/cover (%), Table S3: The importance value of tree species in the
34 sample plots of the UGSs (%), Figure S1: Fluctuations in the monthly (a) and yearly (b) mean air temperature
from 1990 to 2015, where the mean value was calculated using data obtained from Yan’an city weather stations,
Figure S2: The 20-min variations in the land surface heat island intensity during July 2015 under sunny weather
at 34 open impervious surface sites located close to various green spaces in the core urban area of Yan’an City.
The mean (blue line) and standard deviation (gray line) for each 20 min period are also shown.
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