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Abstract: Introduction: Many studies have reported the association between air pollution and human
health based on regulatory air pollution monitoring data. However, because regulatory monitoring
networks were not designed for epidemiological studies, the collected data may not provide
sufficient spatial contrasts for assessing such associations. Our goal was to develop a monitoring
design supplementary to the regulatory monitoring network in Seoul, Korea. This design focused
on the selection of 20 new monitoring sites to represent the variability in PM2.5 across people’s
residences for cohort studies. Methods: We obtained hourly measurements of PM2.5 at 37 regulatory
monitoring sites in 2010 in Seoul, and computed the annual average at each site. We also computed
313 geographic variables representing various pollution sources at the regulatory monitoring sites,
31,097 children’s homes from the Atopy Free School survey, and 412 community service centers in
Seoul. These three types of locations represented current, subject, and candidate locations. Using the
regulatory monitoring data, we performed forward variable selection and chose five variables most
related to PM2.5. Then, k-means clustering was applied to categorize all locations into several
groups representing a diversity in the spatial variability of the five selected variables. Finally, we
computed the proportion of current to subject location in each cluster, and randomly selected new
monitoring sites from candidate sites in the cluster with the minimum proportion until 20 sites
were selected. Results: The five selected geographic variables were related to traffic or urbanicity
with a cross-validated R2 value of 0.69. Clustering analysis categorized all locations into nine
clusters. Finally, one to eight new monitoring sites were selected from five clusters. Discussion:
The proposed monitoring design will help future studies determine the locations of new monitoring
sites representing spatial variability across residences for epidemiological analyses.

Keywords: air pollution; fine particulate matter; monitoring design; site selection spatial variability

1. Introduction

Many cohort studies have found associations between long-term exposure to air pollution and
various health endpoints by employing air pollution data from regulatory monitoring networks
operated by governments [1,2]. However, these regulatory monitoring networks were designed
primarily to monitor air quality and regulate pollution sources, rather than to evaluate the health
effects of air pollution. Thus, air pollution measurements collected in regulatory monitoring networks
may not sufficiently represent the variability of air pollution concentrations across people’s residences.
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To gauge air pollution variability representative of residences, some studies have carried out
project-based monitoring campaigns independent of or supplementary to regulatory monitoring
networks. These campaigns, mostly performed in urban areas of the USA and Europe, established
monitoring sites at public offices, schools, participant homes, and/or busy roads [3–6]. However,
these studies did not provide detailed methodologies for their monitoring designs, including the
determination of the numbers and/or locations of new monitoring sites.

A few studies elaborately developed methodologies for monitoring designs focusing on the
selection of monitoring sites given a fixed number of sites. Studies in Toronto, Canada and Iowa City,
Iowa, USA, introduced site selection approaches based on location–allocation models. These designs
selected new sites that provided the maximized spatial variability of predicted concentrations for PM10

and NO2 in surrounding areas, in addition to high population density [7,8]. However, their designs
did not incorporate existing regulatory monitoring sites, which are a good resource to combine with
the new sites.

In this study, our goal was to develop a monitoring design supplementary to a regulatory
monitoring network for representing the spatial variability of PM2.5 across people’s residences
for epidemiological studies in Seoul. As a highly populated capital city of the Republic of Korea
with approximately 10 million people in an area of 605.25 km2, Seoul serves as a good example
for developing an effective monitoring design that will help predict individual-level air pollution
concentrations, and to assess the resulting health effects. Our design specifically focused on the
selection of 20 new monitoring sites—the minimum number of sites possible, given logistical and
financial constraints. We selected PM2.5, as an example, based on previous studies showing an
association with human health, and fine-scale spatial variability largely affected by anthropogenic
pollution sources [2,9].

2. Materials and Methods

2.1. Data Collection and Processing

2.1.1. Air Pollution Monitoring Data

We obtained hourly PM2.5 measurements at 37 sites in Seoul from the National Institute of
Environmental Research [10], and computed the annual average concentrations of PM2.5 at each site.
The Ministry of Environment (MOE) in the Republic of Korea operated 294 regulatory air pollution
monitoring sites in 2010 on a national scale. In Seoul, the 37 sites included 25 urban background
and 12 urban roadside sites. The 25 urban background sites were located on roof tops of municipal
buildings without any dominant nearby pollution sources for monitoring air pollution exposure levels
in the population. Each of the 25 districts in Seoul had one urban background site in 2010. The 12 urban
roadside sites were located next to busy roads, to assess air pollution emitted from traffic. Using the
hourly measurements, we computed daily average concentrations for days with more than 18 hourly
measurements (75%), and then computed representative annual averages at all sites. All 37 sites met
our site inclusion criteria; at least one daily average per month for more than 9 months, no more than
91 missing days (25%), and less than 45 consecutive missing days [11].

2.1.2. Location Data

We used three types of location data for our monitoring design. The three types included
regulatory monitoring sites (“current location”), residences (“subject location”), and community
service centers (“candidate location”). The addresses and coordinates of the 37 regulatory monitoring
sites in Seoul were obtained from the Annual Report of Ambient Air Quality in Korea 2010 [10].
For residences, we obtained 31,097 children’s home addresses from the Atopy Free School survey in
2010 [12]. These children, under the age of 13, joined the survey based on their elementary schools
and daycare centers distributed over the 25 districts in Seoul, which largely represent the locations of



Int. J. Environ. Res. Public Health 2017, 14, 686 3 of 12

Seoul residents. Lastly, we obtained the addresses of 412 community service centers, out of a total of
422 in Seoul, from center websites, as candidates for new monitoring sites. Ten centers where current
regulatory monitoring sites were already located, were excluded. Addresses of children’s homes in the
Atopy Free School survey and community service centers were geocoded using geocoding software,
GeoCoder-Xr (3.0, Geoservice, Seoul, Korea).

2.1.3. Geographic Variables

We computed 313 geographic variables at current, subject, and candidate locations. These variables
represented potential air pollution sources for eight categories including traffic, demographic
characteristics, land use, transportation facilities, physical geography, emissions, vegetation and altitude
(Table S1). All source data were collected or generated in 2010, except land use data, which were
generated in 2007, and updated for some areas in 2009. The details on their relationships with air
pollution and computation procedure were published elsewhere [13]. The variables were computed
as two types of metrics: proximity and density. Proximity variables were computed as the distances
closest to pollution sources, such as major roads, airports/ports, and coastline. Density variables
were the sums of entities or percentage of areas within circular buffers, applied to road networks,
population, and land use.

We recoded and excluded some geographic variables to better reflect relationships with air
pollution and/or to obtain sufficient spatial variability. All proximity variables were truncated at
1 km—or 2 km for coastline, river, and northern borderline—and log transformed. In addition, we
excluded 40 variables with less than 10% unique values and less than 10% buffer areas attributed to
each land use.

2.2. Air Pollution Monitoring Design

We selected 20 candidate locations, where PM2.5 concentrations were poorly represented by
current locations, in terms of distribution of related geographic variables. This approach was based on
our assumption that PM2.5 annual average concentrations are largely determined by a limited set of
geographic variables. The associations of geographic variables with PM2.5 have been well reported in
previous studies across different cities and countries [14–17]. Many of these studies employed land use
regression, which regresses air pollution concentrations on a subset of geographic variables, selected
out of a large number of variables by model selection procedures combining statistical techniques and
scientific choices [18]. Our monitoring design for selecting new sites consisted of three steps: variable
selection, cluster analysis, and site selection (Figure 1). Forward variable selection and k-means
clustering used for the design were implemented in R version 3.2.3.
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2.2.1. Variable Selection

We chose five geographic variables most related to PM2.5 annual average concentrations across
37 regulatory monitoring sites using a forward selection approach. The forward selection procedure
starts with a null model, and proceeds by adding variables one at a time, to maximize the explained
variability, until none of the remaining variables are significant. We restricted the maximum number
of variables to five, given the limited number of monitoring sites. To prevent multicollinearity,
variance inflation factors (VIF) and Pearson correlation coefficients between two variables were
investigated. We removed an added variable if the VIF value exceeded 10, or the correlation coefficient
was greater than 0.7 with any of the selected variables. We evaluated the models using leave-one-out
cross-validation (LOOCV). In LOOCV, we left one site out, fitted the model using the data at remaining
sites, and made a prediction at the left-out site. After repeating this procedure for the remaining
36 sites, we obtained cross-validated predictions at all 37 sites. Then, we computed the cross-validated
R-squared value (R2), which is one minus the mean square error (MSE) divided by data variance.
This MSE-based R2 compares predictions to observations based on the identity line [19,20].

2.2.2. Cluster Analysis

Using k-means clustering, we categorized all three types of the 38,680 locations into k groups
representing contrasts in the spatial variability of the five selected geographic variables. We scaled
all variables by subtracting means and dividing by standard deviations, to avoid the large impact
of unit differences across variables on the analysis. K-means clustering is an iterative algorithm that
defines k cluster centers randomly given the number of clusters (k), assigns observations with multiple
dimensions to k clusters based on the shortest distance to the centers, and re-computes cluster centers
of groups, leading to regrouping of observations until all observations are classified into the same
clusters as in the previous regrouping [21].

K-means clustering has been widely used given its easy implementation and computational
effectiveness [22,23]. However, selection of initial cluster centers and pre-specification of the number of
clusters were indicated as major challenges [24,25]. To find the best solution for the initial definition of
cluster centers, we repeated our analysis 1000 times with 1000 different initial cluster centers. For each
analysis, we computed the sum of within-cluster sum of squared errors (SSW), which is the sum
of squared differences from the cluster means. The analysis that provided the lowest sum of SSW,
indicating minimized within-cluster heterogeneity, was considered the best solution.

We determined the number of clusters using the decrease in overall deviation (DiD) [25]. DiD is the
percent change in the average of SSW relative to total sum of squared errors (SSE) over characteristics
(Equation (1)). As the number of clusters increases, within-cluster variability relative to total variability
decreases, resulting in an increase in DiD, and then a plateau that reflects the minimization of overall
deviation. We computed DiDs for 1–50 clusters, and chose the optimal number of clusters based
on k at the beginning of the plateau. For characteristics of DiD, we used predicted PM2.5 annual
average concentrations, in addition to geographic variables, at all three location types, and determined
the optimal number which was consistent between the two characteristics. PM2.5 annual average
predictions were calculated by using regression coefficients of land use regression models and five
selected geographic variables at all locations.

DiD(%) = 100 × (1 − 1
J

J

∑
j=1

K

∑
k=1

SSWjk

SSEj
) = 100 × (1−1

J

J
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K

∑
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∑
i=1

(Yijk−Yjk)
2

(Yijk−Yj)
2 ) (1)

i = observation in the cluster k (1 to nk); j = characteristic (1 to J); k = cluster (1 to K); J = 1 and 5 for
PM2.5 predictions and five geographic variables, respectively.

To understand the characteristics of each cluster, we produced heatmaps that illustrate the mean
of each of the five scaled geographic variables across the three types of locations included in each
cluster. Heatmaps allowed the comparison of the distributions of geographic variables across clusters.
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2.2.3. Site Selection

Given all locations categorized into k groups, we calculated the proportion of the number of
current locations to that of subject locations in each cluster. We then randomly selected a new
monitoring site from candidate sites in the cluster with the minimum proportion of current to subject
locations. The computation of the proportion and the selection of a new site were repeated until 20 sites
were completed.

2.2.4. Sensitivity Analysis

To evaluate the robustness of our clustering results, we repeated k-means clustering 100 times
using 90% of the locations, after randomly excluding 10%, and compared the results to that of the
original analysis using all locations. For this comparison, we computed the Rand index, which
summarizes the agreement or disagreement of a pair of observations between two categorization
methods, as a measure of agreement. Each pair could be either a matched pair (assigned to the same
cluster) or an unmatched pair (assigned to different clusters) in a cluster analysis. This classification
can be either the same or different from another cluster analysis. Agreement was defined as two
matched or two unmatched pairs in both analyses using 90% of all locations, whereas disagreement
was characterized by a matched and an unmatched pair in either analysis. The Rand index was the
proportion of the number of pairs in agreement to the number of all pairs. In this study, the adjusted
Rand index, corrected for random chance of agreement, was employed. Adjusted Rand indices higher
than 0.90, 0.80 and 0.65 indicate excellent, good, and moderate agreement, respectively [25].

In addition, we applied our design to another pollutant, nitrogen dioxide (NO2), to determine
whether the design performed well for pollutants with different characteristics. NO2 has been of
particular interest as a traffic-related pollutant, with fine-scale spatial variability, resulting in adverse
health effects [1,18].

3. Results

3.1. Distributions of Locations and Air Pollution Concentrations

3.1.1. Three Types of Locations

Figure 2 shows the locations of 37 regulatory monitoring sites, 31,097 Atopy Free School survey
children’s homes, and 412 community service centers corresponding to “current”, “subject”, and
“candidate” locations, respectively, in Seoul. The current locations were evenly distributed over the
city, because each of the 25 districts includes at least one regulatory monitoring site. Some subject
locations were far from their current locations.

3.1.2. Annual Average Concentrations of PM2.5

Table S2 shows summary statistics of PM2.5 annual average concentrations in 2010 at 37 regulatory
monitoring sites in Seoul. The means of the annual average concentrations were 26.8 (standard
deviation (SD) = 3.7) µg/m3 across 37 regulatory monitoring sites. PM2.5 concentrations at the
25 urban monitoring sites (mean = 24.9, SD = 1.8 µg/m3) were lower and less variable than at the
12 urban roadside sites (30.6, 3.8 µg/m3).

3.2. Air Pollution Monitoring Design

3.2.1. Variable Selection

Table 1 lists the five selected variables used for PM2.5 annual average concentrations in 2010
in Seoul. The five selected variables for PM2.5 were the sum of road lengths for major roads within
100 m, the proportion of water surface land use within 500 m, the number of construction companies
within 1 km, the distance to the nearest bus stop, and the number of construction workers within
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100 m. The proportion of water surface land use possibly represents traffic, because two out of the nine
highways in Seoul were constructed alongside the Han River, which runs through the middle of Seoul.
Two traffic-related variables showed the strongest relationships with PM2.5. The sum of road lengths
for major roads, the proportion of water surface land use, and the number of construction companies
were positively associated with PM2.5, whereas the distance to the nearest bus stop, and the number of
workers in construction were negatively associated. The LOOCV R2 was 0.69 (Figure S1).
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Figure 2. Map of 37 current locations (regulatory monitoring sites), 412 candidate locations (community
service centers), and 31,097 subject locations (home addresses of the Atopy Free School survey children)
in Seoul, Korea.

Means and standard deviations for the selected geographic variables across three types of locations
are shown in Table S3. There was a noticeable difference in the sum of lengths for major roads between
current locations, and subject and candidate locations, possibly because current locations included
urban roadside sites located next to busy and large roads.

Table 1. Five selected geographic variables and cross-validated R2s from land use regression of PM2.5

annual average concentrations during 2010 in Seoul, Korea.

Variable β a p Value LOOCV R2

Length of major road b (100 m buffer) 3.58 <0.001 0.69
Proportion of water surface land use (500 m) 0.67 <0.001
Number of construction companies (1000 m) 3.01 0.001

Distance to the nearest bus stop −2.46 0.013
Number of employees in construction industries (100 m) −1.91 0.025
a Estimated regression coefficient multiplied by an increment (90th–10th percentile) of each variable; b Major road
defined as all national and metropolitan highways, and local roads with more than six lanes.

3.2.2. Cluster Analysis

Figure 3 displays the increasing trend in DiD as the number of clusters increases. We chose nine
as the optimal number of clusters, where the rates of increase in DiDs based on the five geographic
variables, as well as PM2.5 predictions, became prominently consistent.
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Figure 3. Decrease in overall deviation (DiD) based on predicted PM2.5 concentration (A) and five
geographic variables (B) against the numbers of clusters (k) (vertical lines indicate nine clusters).

Distributions of the numbers of current and subject locations varied across clusters (Table 2).
Cluster 3 consisted of the largest numbers of subject locations (47.9%) and current locations (43.2%).
However, 16 out of 37 monitoring sites may not sufficiently represent the subject locations. Clusters 4
and 5 had the smallest portions of subject locations (0.1% and 0.6%, respectively), also with current
location values of zero or one. On the contrary, clusters 7–9 included none or very few current locations
compared to many subject locations, suggesting the need for new monitoring sites.

Table 2. Numbers (%) of subject, current, and candidate locations, proportions of current to subject
locations, and numbers of new selected sites across nine clusters for PM2.5.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9 Total

Current a 9
(24.3)

0
(0.0)

16
(43.2)

0
(0.0)

1
(2.7)

3
(8.1)

0
(0.0)

3
(8.1)

5
(13.5)

37
(100)

Subject b 2587
(8.3)

505
(1.6)

14,888
(47.9)

34
(0.1)

187
(0.6)

303
(1.0)

2246
(7.2)

6780
(21.8)

3567
(11.5)

31,097
(100)

Candidate c 60
(14.6)

19
(4.6)

131
(31.8)

0
(0.0)

4
(1.0)

7
(1.7)

25
(6.1)

136
(33.0)

30
(7.3)

412
(100)

Current/Subject d 34.8 0 10.8 0 53.5 99.0 0 4.4 14.0

New sites 1 6 4 8 1

a Current location: regulatory air pollution monitoring sites; b Subject location: home addresses of the Atopy Free
School survey children; c Candidate location: community service centers; d Proportion of the number of current
locations to that of subject locations, multiplied by 104.

The heatmap in Figure S2 shows different patterns of five geographic variables across clusters.
The mean of the scaled sum of road lengths was uniquely large at locations in cluster 6 and the
mean proportion of water surface land use in the cluster 5 was larger than other clusters. All current
locations in these clusters were urban roadside sites (one for cluster 5 and three for cluster 6), indicating
that the locations in the clusters were largely affected by traffic. The locations in cluster 3, with the
largest portion of subject locations, showed larger mean distances to bus stops and smaller means
of traffic and urban land use variables, possibly indicating residential areas. Clusters 7–9, with
many subject locations but relatively few monitoring sites, all showed relatively little impact from
traffic-related variables.

3.2.3. Site Selection

Clusters 2 and 7 did not include any current locations, leading to the lowest proportions of current
to subject locations. Clusters 3, 8 and 9 also showed relatively low proportions of 3–16 current locations
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to 3567–14,888 subject locations. We selected one new site from the candidate sites in each of the clusters
2 and 9, and four, six, and eight sites in clusters 7, 3 and 8, respectively (Table 2). Figure S3 shows the
spatial distribution of the 20 new sites, out of the 412 candidate sites in Figure S4. The addition of
new sites increased variability of some geographic variables compared to the variability across current
locations only (Figure S5). In addition, predicted PM2.5 at new sites covered a low range of predicted
PM2.5 at subject locations, which was not represented by current locations. This pattern indicates good
representation of PM2.5 variability across residences, when new sites were added to current monitoring
sites (Figure S6).

3.2.4. Sensitivity Analysis

K-means clustering using 100 sets of 90% locations gave the average adjusted Rand index of
0.93 (range = 0.51–0.99). Ninety-three percent of the indexes were greater than 0.9, whereas 7%
were less than 0.65, indicating excellent agreement. Our monitoring design including variable
selection, clustering analysis, and site selection was well applied to NO2 (Table 3, Tables S4 and S5,
and Figures S7–S10).

Table 3. Numbers (%) of subject, current, and candidate locations, proportions of current to subject
locations, and numbers of new selected sites across nine clusters for NO2.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Total

Current a 2
(5.4)

0
(0.0)

0
(0.0)

0
(0.0)

21
(56.8)

1
(2.7)

1
(2.7)

12
(32.4)

37
(100)

Subject b 228
(0.3)

2
(3.5)

2131
(0.6)

1577
(9.4)

20,935
(63.3)

3336
(6.8)

187
(4.5)

2701
(8.1)

31,097
(100)

Candidate c 5
(1.2)

0
(0.0)

33
(8.0)

20
(4.9)

247
(60.0)

32
(7.8)

4
(1.0)

71
(17.2)

412
(100)

Current/Subject d 87.72 0 0 0 10.03 3.00 53.48 44.43

New sites 4 3 9 4
a Current location: regulatory air pollution monitoring sites; b Subject location: home addresses of the Atopy Free
School survey children; c Candidate location: community service centers; d Proportion of the number of current
locations to that of subject locations, multiplied by 104.

4. Discussion

We developed an air pollution monitoring design for PM2.5 in Seoul, Korea, for the purpose
of representing the spatial variability of exposure across people’s residences for application to
epidemiological studies. This design specifically focused on the selection of new monitoring sites
to supplement existing regulatory monitoring sites. We established a design consisting of three
procedures to achieve our goal: the selection of geographic variables most related to PM2.5, the
spatial clustering of selected geographic variables largely represented by residential locations, and the
determination of candidate sites as new monitoring sites with geographic features dominant across
residences but underrepresented by existing monitoring sites.

We leveraged more than 30,000 residential locations to represent the spatial variability of
geographic features related to PM2.5 concentrations for Seoul residents. Previous studies of air pollution
monitoring designs tended to rely heavily on monitoring data. For example, two previous studies in
Canada and the United States developed monitoring designs for selecting new monitoring sites in
city areas based on geographic variables to characterize the spatial variability of NO2 and PM10 [7,8].
Using land use regression of selected geographic variables on air pollution concentrations from
regulatory monitoring networks or project-based mobile sampling, they created exposure surfaces
of predicted air pollution concentrations over city areas. Assuming that the prediction surfaces are
the true concentration surfaces, they selected locations of new monitoring sites where there was high
variability of predicted concentrations within a surrounding area and large population. However,
this assumption would not hold when regulatory monitoring networks do not sufficiently represent
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residential locations. In particular, limited numbers of regulatory monitoring sites (16 and 67 in the
two studies) may not be sufficient to characterize residential locations.

The development of a monitoring design that correctly represents people’s exposures is
important for subsequent health analyses. A previous simulation study showed that exposure
prediction relying on monitoring network data produced an exposure measurement error in predicted
exposures at people’s residences when monitored locations do not represent population locations [26].
This measurement error resulted in biased and/or imprecise health effect estimates in subsequent
health analyses [27–29]. Given our ultimate goal of utilizing our monitoring design for health analyses,
the design used a large amount of geographic information across residential locations, instead of the
relationships captured by monitoring data.

The five geographic variables selected in our design largely reflected metropolitan characteristics
of Seoul, and were directly or indirectly related to pollution sources, particularly for traffic. The positive
coefficient with the largest magnitude for increment from the 10th to the 90th percentiles of the sum
of major road length variable would reflect traffic as one of the major pollution sources of PM2.5 in
Seoul. A proportion of water surface land use, indicating proximity to metropolitan highways, was
also positively and strongly related to PM2.5 concentrations. This relationship reflected the impact of
metropolitan highways constructed alongside the Han River which flows through Seoul (Figure S11).
The strong associations of traffic variables could be due in part to the large contribution of urban
roadside sites, totaling about one-third of all sites, to our land use regression. Clusters 5 and 6, that
showed the dominant influence of two traffic-related variables (Figure S2), included few subject
locations. However, clusters 1 and 7, with relatively larger impact of traffic variables consisted of
some subject locations, suggesting residences located close to traffic. In Seoul, median distance from
subject locations to the nearest major roads was 256.9 m. The proximity of many residential locations in
Seoul to major roads possibly results from people’s preference for residences that are easily accessible
to transportation in the densely populated metropolitan area with heavy traffic. Five geographic
variables that showed good predictive ability for air pollution concentrations at monitoring sites may
be too limited to predict those at people’s residences. However, a previous study comparing land
use regression and partial least squares (PLS) regression, a dimension reduction approach, showed
largely consistent predictions for PM10 and NO2 at centroids of residential census tracts in South Korea.
Their land use regression included six variables, whereas PLS provided summary predictors estimated
from 300 variables [30].

The regression coefficients of geographic variables generally showed anticipated directions.
The sum of major road lengths and the proportion of water surface, representing traffic density, showed
positive associations with PM2.5, whereas the distance to the bus stop gave a negative association.
The number of construction companies within 1 km was also positively associated. This variable
would mean commercial and developed areas, given its inclusion of site offices as well as head offices
of the construction industry, possibly located in the central part of the city. The only variable showing
a relationship different from the anticipated direction was the number of construction workers within
100 m. This would reflect other information than the original, because the construction-related land
use variable was already included and/or the small buffer size of 100 m could not sufficiently reflect
such land use. Instead, this variable may represent fine local environments such as proximity to roads,
bus stops, or subway stations which would be negatively associated with PM2.5.

Our design provides practicable suggestions to select candidate sites that supplement existing
monitoring networks. Our design, however, could be applied to areas without any existing monitors,
when we import the relationship between geographic variables and air pollution from other areas with
similar environments. This design could also be utilized to locate temporally fixed and/or rotating
sites in project-based monitoring campaigns focusing on specific cohort participants. In addition,
we used community service centers as candidates for new sites, because they are largely located in
densely-populated residential areas and are easy to collaborate with regarding public health concerns,
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such as air pollution in communities. Other public buildings or census-based centroids could be
alternative options.

One of the key limitations of our study is our use of k-means clustering, which could lead to results
that are sensitive to the choice of the number of clusters and initial cluster centers. To find the best
solution, we selected the number of clusters and initial cluster centers that minimized within-cluster
variability used in a previous study of air pollution [25]. Other methods, such as the silhouette
method [31] or information-theoretic approach [32], could also be employed. However, our sensitivity
analysis showed largely consistent categorization of the locations to the original. It should also be noted
that our intention of using k-means clustering was to guide us to partition locations with sufficient
within-cluster similarity and between-cluster difference in geographic features, rather than to identify
the most accurate classification. We selected new sites randomly within each cluster without considering
other information. Alternatively, future studies could consider prioritizing a site located in largely
populated areas, or distant from another selected site, and/or regulatory monitoring sites. As another
limitation, we assumed that children’s homes from the Atopy Free School survey represented residential
locations in Seoul. This survey recruited children based on schools from the 25 districts of Seoul, and
provided rich spatial data with a large number of residential locations, particularly for children as a
population vulnerable to air pollution [33]. However, it is possible that there are groups of residents
whose locations were not represented by this survey. Future research needs to use different location
data to assess the representativeness of our design for the general population in Seoul. Our design
did not incorporate wind direction, which would affect very different air pollution concentrations
between sites upwind and downwind of a road. However, since previous studies reported inconsistent
wind direction over a year in Seoul [34], it is less likely that the long-term air pollution concentrations,
on which our design focused, were affected. Finally, we focused on a spatial monitoring design to
represent the spatial variability of air pollution. There have been recent interests in mobile or personal
monitoring that characterizes spatially and temporally varying air pollution using vehicles and/or
low-cost sensors [35]. Future studies should develop monitoring designs that guide the selection of
new sites in space and time to represent spatiotemporal patterns of air pollution.

5. Conclusions

We developed a monitoring design that is applicable to a new regulatory monitoring design to
characterize residential air pollution exposure in urban areas. This design will allow us to improve
exposure prediction models and to assess the health effects of air pollution.

Supplementary Materials: The following are available online at www.mdpi.com/1660-4601/14/7/686/s1,
Table S1: List of geographic variables in eight categories with their data sources and types of data, Table S2:
Summary statistics of annual average concentrations for PM2.5 (µg/m2) in 2010 at 37 regulatory monitoring sites
in Seoul, Korea, Table S3: Means and standard deviations of the five selected geographic variables from land use
regression of PM2.5 annual average concentrations during 2010 across current, subject and candidate locations in
Seoul, Korea, Table S4: Means and standard deviations of the five selected geographic variables from land use
regression of NO2 annual average concentrations during 2010 across current, subject and candidate locations in
Seoul, Korea, Table S5: Five selected geographic variables and cross-validated R2s from land use regression of NO2
annual average concentrations during 2010 in Seoul, Korea, Figure S1: Scatter plot of observed and cross-validation
predicted annual average concentrations of PM2.5 across 37 regulatory monitoring sites during 2010 in Seoul,
Korea (leave-one-out cross-validation R2 of 0.69), Figure S2: Heatmap of the five geographic variables at current,
subject, and candidate locations across nine clusters for PM2.5, Figure S3: Map of 20 selected new monitoring sites
for PM2.5 along with current, candidate, and subject locations in Seoul, Korea, Figure S4: Maps of candidate sites
in each of the nine clusters determined from cluster analysis for PM2.5 (A) and new selected sites with regulatory
monitoring sites (B), Figure S5: Distributions of five scaled geographic variables across subject locations (left),
current locations (middle), and new sites (right) selected from candidate locations by using the monitoring design
for PM2.5, Figure S6: Variability of predicted PM2.5 across subject locations (left), current locations (middle), and
new sites (right), Figure S7: Scatter plot of observed and cross-validation predicted annual average concentrations
of NO2 across 37 regulatory monitoring sites during 2010 in Seoul, Korea (leave-one-out cross-validation R2 0.58),
Figure S8: Decrease in overall deviation (DiD) based on predicted NO2 concentration (left) and five geographic
variables (right) against the numbers of clusters (k) (vertical lines indicating nine clusters), Figure S9: Heatmap of
the five geographic variables at current, subject, and candidate locations across eight clusters for NO2, Figure S10:
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Map of 20 selected new monitoring sites for NO2 along with current, candidate, and subject locations in Seoul,
Korea, Figure S11: Map of Han River and metropolitan and national highways in Seoul.
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