Next Article in Journal
Antibiotic Concentrations Decrease during Wastewater Treatment but Persist at Low Levels in Reclaimed Water
Next Article in Special Issue
Comparison of Annoyance from Railway Noise and Railway Vibration
Previous Article in Journal
Towards a Long-Term Strategy for Voluntary-Based Internal Radiation Contamination Monitoring: Representativeness of the Monitoring Results in Fukushima, Japan
Previous Article in Special Issue
Effect of Attitudinal, Situational and Demographic Factors on Annoyance Due to Environmental Vibration and Noise from Construction of a Light Rapid Transit System
Article Menu
Issue 6 (June) cover image

Export Article

Open AccessFeature PaperArticle
Int. J. Environ. Res. Public Health 2017, 14(6), 663; doi:10.3390/ijerph14060663

Community Response to Multiple Sound Sources: Integrating Acoustic and Contextual Approaches in the Analysis

1
Medical University Innsbruck, Christoph-Probst-Platz, Innrain 52, Innsbruck A-6020, Austria
2
Waves Research Group, Department of Information Technology, Ghent University, Technologiepark-Zwijnaarde 15, Ghent B-9052, Belgium
*
Author to whom correspondence should be addressed.
Academic Editor: Paul B. Tchounwou
Received: 1 June 2017 / Revised: 15 June 2017 / Accepted: 16 June 2017 / Published: 20 June 2017
(This article belongs to the Special Issue The Combined Health Effects of Environmental Exposures)

Abstract

Sufficient data refer to the relevant prevalence of sound exposure by mixed traffic sources in many nations. Furthermore, consideration of the potential effects of combined sound exposure is required in legal procedures such as environmental health impact assessments. Nevertheless, current practice still uses single exposure response functions. It is silently assumed that those standard exposure-response curves accommodate also for mixed exposures—although some evidence from experimental and field studies casts doubt on this practice. The ALPNAP-study population (N = 1641) shows sufficient subgroups with combinations of rail-highway, highway-main road and rail-highway-main road sound exposure. In this paper we apply a few suggested approaches of the literature to investigate exposure-response curves and its major determinants in the case of exposure to multiple traffic sources. Highly/moderate annoyance and full scale mean annoyance served as outcome. The results show several limitations of the current approaches. Even facing the inherent methodological limitations (energy equivalent summation of sound, rating of overall annoyance) the consideration of main contextual factors jointly occurring with the sources (such as vibration, air pollution) or coping activities and judgments of the wider area soundscape increases the variance explanation from up to 8% (bivariate), up to 15% (base adjustments) up to 55% (full contextual model). The added predictors vary significantly, depending on the source combination. (e.g., significant vibration effects with main road/railway, not highway). Although no significant interactions were found, the observed additive effects are of public health importance. Especially in the case of a three source exposure situation the overall annoyance is already high at lower levels and the contribution of the acoustic indicators is small compared with the non-acoustic and contextual predictors. Noise mapping needs to go down to levels of 40 dBA,Lden to ensure the protection of quiet areas and prohibit the silent “filling up” of these areas with new sound sources. Eventually, to better predict the annoyance in the exposure range between 40 and 60 dBA and support the protection of quiet areas in city and rural areas in planning sound indicators need to be oriented at the noticeability of sound and consider other traffic related by-products (air quality, vibration, coping strain) in future studies and environmental impact assessments. View Full-Text
Keywords: road traffic noise; railway noise; annoyance; mixed sound sources; combined effects; vibration; air pollution; soundscape; environmental health impact assessment road traffic noise; railway noise; annoyance; mixed sound sources; combined effects; vibration; air pollution; soundscape; environmental health impact assessment
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Lercher, P.; De Coensel, B.; Dekonink, L.; Botteldooren, D. Community Response to Multiple Sound Sources: Integrating Acoustic and Contextual Approaches in the Analysis. Int. J. Environ. Res. Public Health 2017, 14, 663.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Int. J. Environ. Res. Public Health EISSN 1660-4601 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top