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Abstract: Fine particulate matter (PM2.5) pollution has become one of the greatest urban issues in
China. Studies have shown that PM2.5 pollution is strongly related to the land use pattern at the
micro-scale and optimizing the land use pattern has been suggested as an approach to mitigate
PM2.5 pollution. However, there are only a few researches analyzing the effect of land use on PM2.5

pollution. This paper employed land use regression (LUR) models and statistical analysis to explore
the effect of land use on PM2.5 pollution in urban areas. Nanchang city, China, was taken as the
study area. The LUR models were used to simulate the spatial variations of PM2.5 concentrations.
Analysis of variance and multiple comparisons were employed to study the PM2.5 concentration
variances among five different types of urban functional zones. Multiple linear regression was
applied to explore the PM2.5 concentration variances among the same type of urban functional zone.
The results indicate that the dominant factor affecting PM2.5 pollution in the Nanchang urban area
was the traffic conditions. Significant variances of PM2.5 concentrations among different urban
functional zones throughout the year suggest that land use types generated a significant impact on
PM2.5 concentrations and the impact did not change as the seasons changed. Land use intensity
indexes including the building volume rate, building density, and green coverage rate presented an
insignificant or counter-intuitive impact on PM2.5 concentrations when studied at the spatial scale
of urban functional zones. Our study demonstrates that land use can greatly affect the PM2.5 levels.
Additionally, the urban functional zone was an appropriate spatial scale to investigate the impact of
land use type on PM2.5 pollution in urban areas.

Keywords: fine particulate matter (PM2.5); land use; land use regression (LUR); statistical analysis;
urban functional zone

1. Introduction

In recent years, the air pollution problem generated by unprecedented urbanization and economic
growth in China has become one of the greatest urban issues, particularly fine particulate matter
(PM2.5) pollution [1]. PM2.5, consisting of particles with aerodynamic diameters smaller than 2.5 µm,
can absorb more hazardous substances than coarse particles and enter the human body by respiration,
resulting in various respiratory and cardiovascular diseases [2]. Some epidemiological studies have
confirmed that a long exposure to PM2.5 will greatly increase rates of cardiopulmonary morbidity and
mortality [3,4]. Therefore, gaining a better and clearer understanding of PM2.5 pollution is of vital
significance in preventing pollution and protecting public health.

Numerous studies have been conducted on PM2.5, mainly focused on the spatial and temporal
distribution [5–10], source apportionment [11–14], health effects [15–18], and estimation [19–22].
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Studies have shown that at the macro-scale, PM2.5 pollution is significantly influenced by
meteorological conditions [23–26]; at the micro-scale, PM2.5 pollution is strongly related to the land
use pattern [27–30]. Some researchers have suggested that optimizing the land use pattern may
mitigate PM2.5 pollution at a city or community level [31–33]. However, there are only a few researches
analyzing the effect of land use on PM2.5 pollution and the consensus about the exact nature of their
relationship has not yet been reached [28,34]. Thus, exploring the effect of land use on PM2.5 pollution
seems to be urgent and significant.

To conduct research on the impact of land use on PM2.5 pollution, available PM2.5 data are
critical. However, gaining access to enough PM2.5 data creates a big challenge. Several approaches
have been developed over the last decade to solve this challenge, including spatial interpolation
(e.g., kriging and inverse distance weighing), air dispersion models, and land use regression (LUR)
models. The interpolation of pollutant concentrations is based on dense monitoring sites, while the
routine monitoring sites are often too sparse. Dispersion models simulating the fate of pollution and
transport can be useful, but are often infeasible at a high spatial resolution and are extremely dependent
on accurate and spatially resolved input data [35,36]. In recent years, LUR models have been proved
to be a valid and cost-effective alternative to these conventional approaches [37]. LUR models are
statistical regression models based on a Geographical Information System (GIS) platform. They can be
used to predict the concentration of atmospheric pollutants at a given site by establishing a statistical
relationship between pollutant measurements and potential predictor variables, e.g., land use, traffic,
and physical characteristics, etc. [37]. This approach was initially applied to air pollution in the
SAVIAH (Small Area Variations In Air quality and Health) study [38]. Since then, it has gained an
increasing amount of attention all over the world.

This paper therefore aims to employ LUR models and statistical analysis to explore the effect of
land use on PM2.5 pollution in urban areas. Nanchang, the capital city of the Jiangxi province, was
selected as a case study. It is a representative city of central China, but has been facing a serious PM2.5

pollution problem due to ongoing construction and heavy traffic. We applied LUR models to simulate
the spatial variations of PM2.5 concentrations in the Nanchang urban area, analysis of variance and
multiple comparisons to study the PM2.5 concentration variances among different types of urban
functional zones, and multiple linear regression to investigate PM2.5 concentration variances among
the same type of urban functional zones. The research results could help correctly understand the
PM2.5 pollution pattern in urban areas. More importantly, they could provide a theoretical basis for
urban PM2.5 pollution control.

2. Materials and Methods

2.1. Study Area

Nanchang City (28◦09′ N–29◦11′ N, 115◦27′ E–116◦35′ E), the capital of the Jiangxi Province,
China, is located in the southwest of Poyang Lake and the middle-and-lower reaches of the Yangtze
River. It belongs to a subtropical monsoon climate zone, with an average annual temperature ranging
from 17 to 17.7 ◦C and an annual precipitation value of 1600–1700 mm. Nanchang is an important
transportation and shipping center in central China. Many highways and railways traverse this region.
The city has experienced a rapid population growth and increase in vehicles in the past decade. By the
end of year 2014, the residential population of Nanchang city was 5.24 million and the number of
vehicles reached 618,100. All of these factors contribute to the tremendous flow of vehicles per day and
the significant amount of pollutants such as PM2.5. The study was conducted in the Nanchang urban
area that has been defined by the Land Use Planning, which covers an area of 562.46 km2. There are
nine nation-standard PM2.5 monitoring sites defined by the China Environmental Monitoring Center
(CEMC) reporting monitor data in the city on an hourly basis, and eight of them are located within
the study area (Figure 1). The eight monitoring sites are located in different urban functional zones.
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Figure 1. Map of the Nanchang urban area showing the monitoring site locations and road network.

2.2. LUR Model Setting

The equation of the LUR models is expressed as follows:

y = β0 + β1X1 + β2X2 + . . . + βnXn + ε (1)

where the dependent variable y is the pollutant concentrations, independent variables X1...Xn are the
potential variables, β1...βn are the associated coefficients, and ε is the constant intercept.

2.2.1. Dependent Variable and Independent Variables

The monthly mean values of PM2.5 for the eight monitoring sites in 2014 were collected from the
Nanchang Environmental Monitor Center (Table 1), and the specified monitoring site locations were
also provided by the Monitor Center.

Table 1. The time-serial fine particulate matter (PM2.5) concentrations for the eight monitoring sites
in 2014.

Monitoring
Site

Month (µg/m3)

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

S1 105 38 46 45 61 50 36 34 52 92 74 61
S2 109 38 44 37 45 39 27 25 36 67 54 52
S3 119 41 45 48 71 55 38 38 57 92 62 55
S4 102 37 44 47 69 55 36 37 52 92 61 54
S5 88 27 36 30 42 39 27 24 35 58 38 38
S6 97 32 36 37 60 47 33 31 44 81 55 51
S7 96 39 47 40 48 46 42 34 38 53 50 36
S8 87 30 37 39 49 55 47 43 59 81 60 57

The independent variables could be categorized into four classes: meteorological factors,
traffic-related factors, land use factors, and population density. Circular buffers were created for 0.3, 0.6,
0.9, 1.2, 2.4, and 4.8 km radii using ArcGIS 10.2 (ESRI, Redlands, CA, USA). In total, 42 variables were
used to build the LUR models. Each independent variable was explained as follows. A description of
the independent variables is reported in Table 2.

Five meteorological variables were employed to characterize the weather conditions. They were
relative humidity, air pressure, water vapor pressure, temperature, and wind speed. The monthly
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average values of the meteorological variables in 2014 were obtained from the Chinese Meteorological
Data Share Service System (http://data.cma.cn/).

The traffic-related variables included three subclasses: the intensity of main roads, intensity of
secondary roads, and intensity of all roads. The road intensity was used to reflect the traffic conditions
due to the unavailability of accurate traffic intensity data. Road intensity was computed by dividing
the buffer area by the sum of road segments within the buffer. The data were collected from the
transportation map of Nanchang urban master planning from 2011.

Table 2. The description of independent variables.

Variable Unit Max Min Mean SD

Relative humidity % 80 57 74.167 8.077
Air pressure hpa 1022.3 998.8 1009.750 7.994

Water vapor pressure hpa 31.8 5.8 18.075 9.167
Temperature ◦C 29 7.3 18.817 8.183
Wind speed m/s 1.9 1.4 1.675 0.166

Intensity of main roads (300–4800 m) m/m2 0.270 0 0.113 0.061
Intensity of secondary roads (300–4800 m) m/m2 0.428 0 0.085 0.100

Intensity of total roads (300–4800 m) m/m2 0.644 0 0.220 0.115
Ecological land proportion (300–4800 m) % 99.728 5.483 39.027 20.233
Industrial land proportion (300–4800 m) % 53.515 0 11.433 14.699

Distance to large ecological space m 1826 67 827.500 659.948
Residential land proportion (300–4800 m) % 49.015 0 18.438 11.973

Note: SD means standard deviation.

Three subclasses of variables including the ecological land proportion (green spaces, rivers, and
lakes), industrial land proportion, and distance to large ecological space were used to describe the
land use situation. The ecological land or industrial land in every buffer zone was calculated to obtain
the values of the ecological land proportion or industrial land proportion. The straight-line distance
of the monitoring site to the nearest large ecological space (Gan River, Qinshan Lake, Huangjia Lake,
Yao Lake, Xiang Lake, Qian Lake, Aixi Lake, Diezi Lake, and Meiling Forest) was measured to describe
the distance to a large ecological space. The data were derived from the Nanchang land use map of
2014 and satellite images from 2014.

The residential land proportion was used to describe the population density as the population
density was only available at a district level in Nanchang. The data were derived from the Nanchang
land use map of 2014.

2.2.2. Model Development and Evaluation

In our study, twelve months were divided into: spring (March to May), summer (June to August),
autumn (September to November), and winter (December to February). The LUR models of four
seasons were developed, respectively, with SPSS Statistics 19.0 (IBM Corp., Armonk, NY, USA).
The 24 samples of every season were randomly divided into two groups: a training data set and a test
data set. A total of 75% of samples were used to develop the model and the remaining 25% were used
for the model evaluation. The backward model-building algorithm proposed by Henderson et al. (2007)
was introduced [35]. The steps were as follows: (1) correlation between PM2.5 and each independent
variable was calculated through an individual univariate regression model; (2) variables that had a
counter-intuitive correlation with PM2.5 were eliminated (e.g., traffic-related variables had negative
coefficients and the ecological land proportion had a positive coefficient); (3) the highest-ranking
variable in each subclass was identified and other subclass variables with a correlation of more than
0.6 with the highest-ranking variable were eliminated; (4) all remaining variables were entered into
a stepwise linear regression; (5) the variables that had insignificant t-statistics (0.1) were removed
(the t-statistics were lowered from 0.05 to 0.1 to control the meteorological variables); and (6) steps
4 and 5 were repeated until convergence was attained and variables that contributed less than 1%
to the R2 value of the final model were removed. The entire procedure was repeated three times

http://data.cma.cn/
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for every season, and thus, three LUR models were developed for every season and the best fitting
one was used as the final LUR model. In this way, the a priori division of samples could be avoided.
The final LUR models were evaluated by comparing predicted PM2.5 concentrations with measured
PM2.5 concentrations from the test data set.

2.3. Selection of Urban Functional Zones

Five types of urban functional zones, including commercial, industrial, residential, educational,
and control functional zones, were selected in the study area based on the Nanchang urban cadastral
survey map and the Nanchang urban master planning map. When choosing urban functional zones,
two rules were followed: (1) maintaining integral land parcels; (2) maintaining the evident land use.

In particular, the residential land accounted for more than 50% of the total residential functional
zone area; the commercial land accounted for more than 60% of the total commercial functional zone
area; and the industrial land (land for high-tech industry and storage included) accounted for more
than 40% of the total industrial functional zone area. The land used for universities was chosen as an
educational functional zone and one university was usually contained in an educational functional
zone. Control functional zones included land use types, e.g., forest, water body, and farmland, and the
area of these land use types accounted for more than 80% of the total control functional zone area.

2.4. Statistical Analysis

Once the PM2.5 concentrations in the urban functional zones had been estimated, the analysis
of variance and multiple comparisons test were carried out under the assumption of equal variances
(homoscedasticity) and normal distribution. The statistical analysis was accomplished using SPSS
Statistics 19.0. The analysis of variance can be used to test the null hypothesis H0, in which the PM2.5

concentrations in all functional zones have the same mean values, against the alternative hypothesis
H1, where the mean values µi of k groups are not the same. This can be written formally as follows [39].

H0 : µ1 = ... = µk = µ

H1 : not all the µi are the same
(2)

The F-ratio and probability value (p-value) were obtained through a one-factor analysis of variance
command. If F > F (α, k − 1, N − k), then H1 can be accepted. Additionally, a multiple comparison
test is necessary to determine which group pairs’ mean values are significantly different. The least
significant difference (LSD) test at a 0.05 level of probability was used to perform multiple comparisons.
Using this method, the pairs of functional zones for which the PM2.5 concentrations are significantly
different from each other can be identified.

3. Results

3.1. LUR Models

The final LUR models are reported in Table 3. Four variables were entered into the final LUR
models after normalization, including meteorological factors, traffic-related factors, and land use
factors. The variable of relative humidity was entered into the LUR models of spring, summer, and
autumn (p < 0.01), and the variable of temperature was entered into the LUR models of spring and
winter (p < 0.01). The intensity of the main roads within a 300 m buffer was found to be the dominant
variable affecting PM2.5 pollution, because it was the only variable that entered all of the LUR models
(p < 0.01). Land use factors including industrial land proportion and ecological land proportion also
greatly impacted the PM2.5 concentrations, since they were entered into three LUR models (p < 0.1).
The final models explained 76.4%, 89.9%, 94.1%, and 96.1% of the spatial variability of quarterly PM2.5

concentrations, respectively.
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Table 3. The final land use regression (LUR) models for PM2.5 concentrations in the Nanchang
urban area.

Season Model Variable β SE p VIF Adj. R2 SE

Spring

Intercept 46.722 1.050 0.000

0.764 4.455
Intensity of main roads (300 m) 4.859 1.085 0.001 1.009

Industrial land proportion (300 m) 2.087 1.110 0.083 1.055
Temperature 16.748 3.061 0.000 8.023

Relative Humidity 11.521 3.049 0.002 7.963

Summer

Intercept 40.056 0.718 0.000

0.899 3.044
Intensity of main roads (300 m) 3.008 0.763 0.002 1.067

Industrial land proportion (300 m) 3.103 0.858 0.054 1.351
Ecological land proportion (2400 m) −3.159 0.925 0.058 1.570

Relative Humidity −6.846 0.775 0.000 1.102

Autumn

Intercept 62.000 1.044 0.000

0.941 4.429
Intensity of main roads (300 m) 9.469 1.149 0.000 1.143

Industrial land proportion (300 m) 3.213 1.147 0.056 1.141
Ecological land proportion (300 m) −2.825 1.199 0.058 1.247

Relative Humidity −14.150 1.156 0.000 1.159

Winter

Intercept 67.778 1.461 0.000

0.961 6.198
Intensity of main roads (300 m) 4.805 1.541 0.008 1.051

Distance to large ecological space 3.380 1.690 0.067 1.264
Ecological land proportion (2400 m) −4.362 1.723 0.020 1.313

Temperature 30.048 1.513 0.000 1.014

Note: β is the associated coefficient of the LUR model, VIF means variance inflation factors.

To evaluate the performance of the final LUR models, the equations were applied to the test
data set and the R2 value between the predicted and measured PM2.5 concentrations was calculated.
The R2 value was 0.764. In addition, predicted data were plotted against measured data for validation
(Figure 2). The figure shows that the predicted PM2.5 concentrations were well correlated with the
measured concentrations.
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Figure 2. Predicted versus measured PM2.5 concentrations of the test data set.

Grids with a dimension of 1 km × 1 km were created in the whole study area and the seasonal
PM2.5 concentrations were calculated at each intersection using the final LUR models. We assumed
there was no trend in the data and a spatially homogenous variation, and the seasonal spatial
distributions of PM2.5 were then interpolated using the Ordinary Kriging approach. As shown
in Figure 3, PM2.5 concentrations demonstrated a discernible spatial variation. High concentration
areas occurred in the centre of the study area, while low concentration areas were mainly distributed
on city borders. The northwest and southwest were low concentration areas throughout the year.
The figure also discloses that the PM2.5 concentrations of most of the Nanchang urban area met the
legislated 24-h average value, but exceeded the annual mean value, which are 75 µg/m3 and 35 µg/m3

in China, respectively.
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3.2. Statistic Analysis of PM2.5 ConcentrationVariances among Different Types of Urban Functional Zones

Five types and a total of 25 urban functional zones were selected in the study area to analyze the
PM2.5 concentration variances among different types of urban functional zones, as shown in Figure 4.
The PM2.5 concentrations in the four seasons of these functional zones are shown in Table 4.
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Table 4. PM2.5 concentrations in the functional zones in four seasons.

Functional Zone Type
Mean ± SD/(µg·m−3)

Spring Summer Autumn Winter

Commercial zones 53.396 ± 1.23a 44.476 ± 0.89a 75.062 ± 2.48a 82.702 ± 1.37a
Industrial zones 51.734 ± 1.11a 43.272 ± 0.81a 71.724 ± 2.23a 80.856 ± 1.23a

Educational zones 46.674 ± 0.95b 39.806 ± 0.64b 61.402 ± 1.98b 65.498 ± 3.23b
Residential zones 47.914 ± 1.16b 40.502 ± 0.84b 64.056 ± 2.32b 68.624 ± 1.28b

Control zones 42.500 ± 0.37c 36.574 ± 0.27c 53.174 ± 0.74c 58.842 ± 0.34c

Note: Different lowercase letters in the same column indicate significantly different PM2.5 concentrations in
functional zones of the same season at 5%.

Analyses of the PM2.5 concentration variances in the urban functional zones were conducted
after a normal distribution test and variance homogeneity test. Table 5 shows the one-factor variance
analysis results. In spring, the F-ratio of 18.062 (p < 0.01) indicates that the PM2.5 concentration
variances among different types of urban functional zones were significant. We can also conclude the
same rule in summer, autumn, and winter.

Table 5. Variance analysis results.

Season Variable Squares Sum Freedom Mean Square F-Ratio p-Value

Spring
Between-group 370.695 4 92.674 18.062 0
Within-group 102.616 20 5.131

Total 473.31 24

Summer
Between-group 192.401 4 48.1 18.264 0
Within-group 52.673 20 2.634

Total 245.074 24

Autumn
Between-group 1500.56 4 375.14 17.888 0
Within-group 419.443 20 20.972

Total 1920.004 24

Winter
Between-group 313.688 4 78.422 18.259 0
Within-group 85.901 20 4.295

Total 399.589 24

Table 4 also expresses the multiple comparison results. In the four seasons, the multiple
comparison results among different types of urban functional zones were the same. The results
show that the PM2.5 concentration variances between the control and other four types of urban
functional zones were significant. The PM2.5 concentration variances between the industrial or
commercial functional zones and the residential or educational functional zones were also significant.
However, there were no statistically significant PM2.5 concentration variances between the industrial
and commercial functional zones, and the educational and residential functional zones.

3.3. Statistic Analysis of PM2.5 Concentration Variances among the Same Type of Urban Functional Zones

Since residential land occupies the highest proportion of the urban area, the residential zone
was selected as the typical functional zone to analyze PM2.5 concentration variances among the same
type of urban functional zone. Another 15 residential functional zones were added to the original
residential zone sample. Variables of intensity of the main roads, building volume rate, building
density, and green coverage rate were used to build the multiple linear regression model for the
annual PM2.5 prediction. As Table 6 shows, the model had a low fitting degree (adjusted R2 = 0.363).
The intensity of the main roads positively correlated with PM2.5 concentrations and was the primary
influencing variable in PM2.5 prediction (p < 0.01). The building volume rate was positively correlated
with PM2.5 concentrations (p > 0.1) and the green coverage rate was negatively correlated with PM2.5

concentrations (p > 0.1). The building density showed a negative correlation with PM2.5 concentrations,
which was counter-intuitive (p > 0.1).
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Table 6. Multiple linear regression model for annual PM2.5 concentrations in residential zones.

Model Variable β SE p-Value VIF Adj. R2 SE

Intercept 52.178 4.059 0

0.363 4.707
Intensity of main roads (300 m) 56.197 16.236 0.003 1.425

Building volume rate 0.577 0.996 0.555 2.308
Building density −0.016 0.059 0.785 1.991

Green coverage rate −0.181 0.162 0.281 1.636

4. Discussion

4.1. LUR Models

We developed LUR models incorporating meteorological factors for predicting quarterly PM2.5

concentrations in the Nanchang urban area, China. The adjusted R2 values of the seasonal LUR
models were 0.764, 0.899, 0.941, 0.961, respectively, explaining the spatial variability of the pollutant
concentrations. In previous studies, the adjusted R2 values of the LUR models ranged from 0.36 to
0.94 for PM2.5 [40,41]. The good performance of our models may be attributed to the combination of
meteorological factors. Few LUR models include meteorological variables, although many studies
have demonstrated that meteorology can significantly influence the pollutant concentration [23–26],
possibly due to the lack of enough data or an appropriate methodology. Obtaining the meteorological
conditions at each monitoring site is costly and time-consuming. In this study, we presupposed
an identical meteorological condition at every site, as the study area was not very large. Different
meteorological factors were entered into the LUR models of different seasons, demonstrating that the
influence of meteorological factors on PM2.5 concentrations varied as the seasons changed.

Among all the independent variables, the intensity of main roads within a 300 m buffer was the
dominant variable affecting PM2.5 concentrations, indicating that PM2.5 concentrations are closely
related to traffic conditions. Some studies used vehicle intensity, while other studies used road
length or road intensity to represent traffic conditions [26,42–45]. Compared to road length or road
intensity, vehicle intensity is more representative of vehicle exhaust, but the data are often unavailable
for researchers because of the high cost of vehicle monitoring. Studies have also proved that the
performance of LUR models developed with road length or road intensity didn’t differ from those
developed with vehicle intensity [35,46]. Therefore, road intensity was used in our models in the
absence of vehicle intensity. The independent variable of industrial land proportion increasing PM2.5

pollution in other studies was also included in the LUR models [33,42]. The variables of road intensity
and industrial land proportion implying sources of PM2.5 in Nanchang are mainly local transportation
and major industries. The independent variable of ecological land proportion decreasing PM2.5

pollution in other Chinese cities was also included in the LUR models [33,47], suggesting that the
function of natural spaces in removing pollutants is evident. It should be noticed that the independent
variable of population density increasing PM2.5 concentration in other Chinese cities was not included
in our models [33,47]. The reason for this is that the spatial resolution of the variable was not good
enough in our study.

The number of monitoring sites might be an important factor influencing the accuracy of LUR
models. However, at present, there is no rigorous methodology to determine the number of required
monitoring sites. The population and size of cities are generally thought to be taken into account when
determining the actual number of monitoring sites [40]. In our study, there were eight monitoring sites
and the coverage area was 562.46 km2, resulting in a monitoring density of one site for every 70 km2.
Although it was a small number of monitoring sites, the spatial coverage was comparable to other
LUR models reported in the literature [33,35,37,42,46].
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4.2. Impact of Land Use on PM2.5 Pollution

The paper studied the impact of land use on PM2.5 pollution from two aspects of land use type
and land use intensity. The impact of land use type on PM2.5 pollution was investigated by analyzing
the PM2.5 concentration variances among different types of urban functional zones. Through the
analysis of PM2.5 data from different types of functional zones, the same rule in four seasons was
found. The highest PM2.5 concentration was found in industrial and commercial functional zones,
while the lowest occurred in control functional zones. The PM2.5 concentration in residential and
educational functional zones was in between these zone types. PM2.5 pollution in the commercial
zone was relatively high in comparison with industrial functional zones, and the residential zone
was slightly higher than educational functional zones. The PM2.5 concentrations in different types
of functional zones have also been investigated through a sample survey and a similar pattern has
been found [48], which confirms the high simulation accuracy of the final LUR models. Further, our
results demonstrate that the PM2.5 concentration variances among different urban functional zones
were statistically significant. The significant PM2.5 variances suggest that the PM2.5 pollutants in the
Nanchang urban area mainly come from local transportation and major industries, echoing the results
demonstrated in the LUR models. We can also conclude that the urban functional zones which are
characterized by a dominant land use type had a great impact on PM2.5 pollution and the impact did
not change as the seasons changed.

The impact of land use intensity on PM2.5 pollution was investigated through predicting annual
PM2.5 concentrations with indexes including the building volume rate, building density, and green
coverage rate. The concept of land use intensity is far from an innovative term and first appeared in
David Ricardo’s Land Rent Theory, which is similar to concepts of smart growth, compact city, Infill
Development, and Urban Growth Boundary [49]. In China, land use intensity is considered as the
national guideline to alleviate the demand for urban land driven by economic and population growth.
However, studies have shown that a higher land use intensity leads to more prominent environmental
problems, like noise, dust, and toxic pollutants, because a higher land use intensity increases the
concentration of the urban activities [50]. In our paper, the multiple linear regression results showed
insignificant t-statistics and inconsistent coefficients with a priori assumptions, illustrating that the
indexes had an insignificant or counter-intuitive impact on PM2.5 concentrations. This may due to the
complex physical-chemical mechanism of PM2.5 pollution or the improper study spatial scale.

In our paper, urban functional zones were used as the basic research unit to explore the effect
of land use on PM2.5 pollution. Some studies analyzed the effect of land use on PM2.5 pollution
through calculating the correlation between PM2.5 pollution and land use/land cover types [34,51,52].
Compared to a single land use type, urban functional zones including a variety of land use types, but
characterized by a dominant land use type, are more appropriate for urban areas. Scholars also believe
that urban functional zones can better reflect the relationship between urban land use and air pollution
as its specific social-economic function [30]. The results demonstrate that the urban functional zone
was a proper spatial scale to investigate the impact of land use type on PM2.5 pollution in urban areas.

4.3. Limitations

There are some limitations that need to be addressed. The first limitation of this study was the
weakness related to applying the LUR model to a large area. As the study area in our paper is not very
large, we presupposed identical meteorological conditions at every monitoring site. In large areas, the
meteorological variables vary from one monitoring site to another and will show a differential influence
at each site. Secondly, only a one-year period was considered in this paper due to the data access
limitations. Using data from longer periods can help improve the prediction ability of an LUR model.
Lastly, it should be noted that this research has explored the impact of land use on PM2.5 pollution
through analyzing the intra-urban spatial variability of PM2.5 concentrations. Further research is
needed to investigate the detailed mechanisms of how land use influences PM2.5 concentration.
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5. Conclusions

This paper attempted to use LUR models to simulate the variances of the PM2.5 level in the
Nanchang urban area and statistical analysis to explore the impact of land use on PM2.5 pollution.
The seasonal LUR models showed a good fit and could explain the spatial variability in PM2.5

concentrations well. PM2.5 exhibits a large variation in different seasons, with the highest pollution
values in winter and the lowest in summer, due to the complicated influence of the meteorological
factors of temperature and relative humidity [53,54]. Similar to many other studies, the dominant
PM2.5 impacting variable was the traffic conditions that were characterized by the road intensity in
this paper [37,42,55–57]. The analysis of variance and multiple comparison test shows statistically
significant variances in PM2.5 concentrations among different types of urban functional zones
throughout the year, demonstrating that the land use types generated a great impact on PM2.5

concentrations and the impact did not change as the seasons changed. The multiple linear regression
results illustrate that the land use intensity indexes including the building volume rate, building
density, and green coverage rate exhibited an insignificant or counter-intuitive impact on PM2.5

concentrations. The study also concludes that the urban functional zone was a proper spatial scale to
investigate the impact of land use type on PM2.5 pollution in urban areas, but might not be a proper
spatial scale to explore the impact of land use intensity on PM2.5 pollution. A reasonable methodology
and optimized spatial scale are still yet to be explored to further investigate how land use intensity
affects PM2.5 pollution.
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