
Int. J. Environ. Res. Public Health 2017, 14, 262; doi:10.3390/ijerph14030262 S1 of S5  

 

Supplementary Materials: Time Prediction Models 
for Echinococcosis Based on Gray System Theory and 
Epidemic Dynamics 

Liping Zhang, Li Wang, Yanling Zheng, Kai Wang, Xueliang Zhang and Yujian Zheng  

In this supplementary material, we provide more detailed information about the procedures of 

the three grey models: GM(1,1), the Grey-Periodic Extensional Combinatorial Model, (PECGM(1,1)), 

and the residual correction model based on Fourier (FGM(1,1)). 

1. Original GM(1,1) Model 

The procedures involved for using the GM(1,1) model can be summarized as follows [1–5]. 

Step 1: Establish the 1-AGO sequence and the generated mean original time series. 

Let the original non-negative time series be ))(,),2(),1(( )0()0()0()0( nxxxX  , where 4n

. It's 1-AGO (accumulated generating operator) sequence )1(X  is: 

))(,),2(),1(( )1()1()1()1( nxxxX  , (1) 

where: 
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The generated mean sequence )1(Z  of )1(X  can be evaluated as: 

))(,),3(),2(( )1()1()1()1( nzzzZ  , (3) 

where: 
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Step 2: Define the differential equation of the GM(1,1) model. 

The grey differential equation of the GM(1,1) is defined as: 

bkazkx  )()( )1()0(
. (5) 

The whitenization differential equation of the GM(1,1) is a first-order differential equation. It can 

be established on the basis of monotonically increasing series )1(X  as follows: 

bax
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)1(

, (6) 

where a  is the development coefficient, which reflects the development trend of the original series; 

and b  is the driving coefficient, which reflects the changes in the relationship between system data. 

Step 3: Estimate the model parameters a  and b . 

The least squares estimation of a  and b  can be obtained as: 

YBBBbaa TTT 1)(],[ˆ  , (7) 
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Step 4: Establish the time response function and the foresting model. 

Make )1()1(ˆ )0()1( xx  , producing the time response function: 
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When applying the first-order inverse accumulation operation (1-IAGO) to )1(ˆ )1( kx , we can 

obtain the simulation and forecasting values: 
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2. Grey-Periodic Extensional Combinatorial Model (PECGM(1,1)) [6] 

Let ))(,),2(),1(( )0()0()0()0( nxxxX   be an original non-negative time series and n  be the 

sample size of the data, where 4n . The procedure for the Grey-Periodic Extensional 

Combinatorial Model can be explained as follows. 

Step 1: Establish the GM(1,1) forecasting model of the original sequence. 

Let ))(ˆ,),2(ˆ),1(ˆ(ˆ )0(
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The error sequence of 
)0(X  can be defined as: 
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where: 
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Step 2: Construct the mean generating function matrix. 

Define the mean generating function of 
)0(

1E  by: 
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where n  is the the sample sequence size, ]/[ mnnm   and 
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One can establish the mean generating function matrix of 
)0(

1E  as follows: 
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Step 3: Establish the period extension function. 

We use the periodic extension for )(izm  by: 

nkmikkzkf mm ,,2,1)];[mod();()(  . (16) 

Step 4: Extract the dominant period of the two-time residual sequence. 

Define 
)(mS  and S as: 
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Let: 
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Thus, )1,1(~)(  nmFF m
. If ),1()( mnmFF m    for a given confidence level  , then 

)0(

1E  contains a dominant period of length m . 

Step 5: Extract the other dominant periods of the error sequence. 

Let 2E  be the two-time error sequence,  

))(,),2(),1(( 2222 nE   , (21) 

where: 
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By repeating step 4 and step 5, the other dominant periods of 
)0(

1E  can be extracted. 

Let I  be the set of different dominant period lengths. Define )(ˆ )0(

1 k  as: 
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)(ˆ )0(

1 k is the approximate value of )()0(

1 k . 

Step 6: Calculate the one-time error correction values. 
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Step 7: Establish the PECGM(1,1). 

Besides the presence of the periodic phenomenon, the stochastic phenomenon also commonly 

exists in the time series. In order to reduce the random noise and improve the accuracy of the model, 

an autoregressive process )( pAR is used to establish a two-time residual correction model. 

Assume tX  is a stationary process with zero mean, the autoregressive process is formulated as: 

tptpttt XXXX    2211 . (25) 

We denote such a process by )( pAR , and p  is called the order of the process; ),,2,1( pii   are 

the model parameters; t  is a white noise time series. 

Let 
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2E  be the new two-time residual sequence after Step 6,  
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3. Modified Grey Model Using Fourier Series (FGM(1,1))  

Assume ))(,),2(),1(( )0()0()0()0( nxxxX   is a non-negative time sequence. The predicted 

values of 
)0(X  given by the GM(1,1) are: 
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Its residual series can be obtained as: 
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where: 
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The residual can be expressed in the Fourier series as follows: 
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Rearrange Eq. (19) in matrix form as: 

PCE )0(ˆ , (32) 

where P  and C  matrixes can be defined as follows 
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(33) 
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One can use the least-squares method to solve the Eq. (20) and calculate the matrix C  as: 

)0(1)(ˆ EPPPC TT   (35) 

The Fourier series correction can be obtained as follows: 
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