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Abstract: The worsening atmospheric pollution increases the necessity of air quality early warning
systems (EWSs). Despite the fact that a massive amount of investigation about EWS in theory and
practicality has been conducted by numerous researchers, studies concerning the quantification
of uncertain information and comprehensive evaluation are still lacking, which impedes further
development in the area. In this paper, firstly a comprehensive warning system is proposed, which
consists of two vital indispensable modules, namely effective forecasting and scientific evaluation,
respectively. For the forecasting module, a novel hybrid model combining the theory of data
preprocessing and numerical optimization is first developed to implement effective forecasting
for air pollutant concentration. Especially, in order to further enhance the accuracy and robustness of
the warning system, interval forecasting is implemented to quantify the uncertainties generated by
forecasts, which can provide significant risk signals by using point forecasting for decision-makers.
For the evaluation module, a cloud model, based on probability and fuzzy set theory, is developed
to perform comprehensive evaluations of air quality, which can realize the transformation between
qualitative concept and quantitative data. To verify the effectiveness and efficiency of the warning
system, extensive simulations based on air pollutants data from Dalian in China were effectively
implemented, which illustrate that the warning system is not only remarkably high-performance,
but also widely applicable.
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1. Introduction

1.1. Motivation

With the high-speed growth of the industrial economy in the past decades, atmospheric pollution
has been acknowledged as one of the most serious environmental issues, because it not only threatens
environmental security, but also induces adverse effects on health [1,2]. Additionally, particulate
matter (PM) can also cause many environmental problems such as corrosion, soiling, damage to
vegetation and reduced visibility [3]. Accordingly, modeling, forecasting and evaluating air quality
play a significant and pivotal part in the early management and warning. However, although they
are very vital, relevant studies regarding air quality forecasting and evaluation are still insufficient.
High-efficiency forecasting for air quality has the capability to aid the public take effective initiatives to
address air pollution, which can reduce the risk of falling ill and enhance living standards. Additionally,
scientific evaluation of forecasting results is also an effective means to foresee the diversification of air
quality levels. The assessment of air quality is a multiple criteria decision-making process, which can
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achieve a qualitative evaluation via addressing quantitative information. Effective forecasting and
evaluation for air quality can also provide remarkable information to government policymakers to
draw up scientific emission policies. Given the aforementioned analysis, a scientific early warning
system (EWS) for air quality is urgently needed.

1.2. Literature Review

There are a variety of tools that are used to forecast air pollutants concentration, which can be
classified into two major models: deterministic models and empirical models [4]. The prevalent
deterministic models are chemical transport models (CTMs), which are based on simulating the special
mechanisms of atmospheric physics and chemistry. The primary studies on CTMs concentrate on the
analysis of pollution sources and the transport of chemical species. Different chemical mechanisms,
chemical kinetic expressions, reaction rate coefficients, chemical species and gas phase reactions are
usually incorporated into very complex models [5]. The accuracy of CTMs is sensitive to the scale
and quality of the emissions data used [6], largely stemming from the incomplete knowledge on the
sources, dispersion of PM, transport processes and atmospheric chemicals [4]. Accordingly, compared
to empirical models, CTMs is less accurate. Empirical models mainly involve multiple linear regression
(MLR), autoregressive integrated moving average model (ARIMA), hidden Markov model and artificial
intelligence models, which are generally applied in air pollutant forecasting [5,7–9]. However, the most
prevalent model for air pollutant forecasting is based on the theory of artificial intelligence, which is
efficient and accurate in practical application.

Artificial intelligence models that are exploited to forecast air pollutant concentration mainly
include some artificial neural networks and intelligent optimization algorithms, which are very
prevalent due to their high-performance learning capacity for nonlinear patterns like air pollution.
Song et al. applied a cuckoo search optimization algorithm to optimize the parameters of Weibull,
Rayleigh, Lognormal and Gamma distribution functions, which can be conducive to implement interval
forecasting further. Besides, the paper applied an adaptive neuro-fuzzy model to perform deterministic
forecasting of PM2.5 and PM10 from three cities in China [9]. Kanchan Prasad et al. developed an
adaptive neuro-fuzzy inference system to comprehensively forecast daily air pollution concentrations
of five air pollutants, namely SO2, NO2, CO, O3 and PM10. In order to reduce the computational cost,
a forward selection method was exploited to choose optimal subsets of input dataset [10]. Hybrid
artificial intelligence models are more effective and robust than single models. Qin et al. built a
hybrid model combining ensemble empirical mode decomposition (EEMD), cuckoo search (CS) and a
back-propagation artificial neural network to implement PM forecasting, and the simulation revealed
that the hybrid outperformed the benchmark models mentioned in the paper [11]. Niu et al. proposed
a novel hybrid decomposition-and-ensemble model based on complementary ensemble empirical
mode decomposition (CEEMD), grey wolf optimizer and support vector regression (SVR) to perform
PM2.5 forecasting, and the empirical study illustrated that the proposed hybrid forecasting model
was significantly superior to the benchmark models used in the paper [12]. Zhou et al. presented
a general regression neural network (GRNN) model combining EEMD. The function of EEMD is
exploited to decompose raw PM2.5 data into some intrinsic mode functions (IMFs), and the GRNN is
implemented to forecast each IMF. The simulations showed that the developed hybrid EEMD-GRNN
model outperformed a single GRNN model without EEMD, MLR model, a principal component
regression model, and an ARIMA model [13].

The aforementioned literature on air pollutants forecasting was mainly focused on PM2.5 and
PM10 forecasting, whereas none of them perform comprehensive air pollutants forecasting. In this
paper, a comprehensive air pollutants forecasting involving PM2.5, PM10, O3, CO, NO2, SO2 was carried
out. Additionally, most of the aforementioned literature was focused on deterministic forecasting
actualized by individual or hybrid models, while few studies implement interval forecasting for
air pollutants.
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Although the forecasting module has vital significance for EWS, the evaluation system for air
quality also plays a remarkable part in air quality EWSs. Scientific evaluation of air pollutants will
provide valid information for supervisory departments, and aid them to formulate scientific policies.
Many researchers have focused on effective assessment models for air quality. Amit et al. explored a
fuzzy—analytical hierarchical process (AHP) model for fuzzy air quality health indexes, which can
be used as a signal to reduce health risk [14]. Zhao et al. put forward a fuzzy comprehensive model
combined with entropy theory for air quality evaluation, and the model was utilized to address the
issue of air quality assessment in Fuxin city [15]. Olvera-García et al. proposed a novel assessment
model utilizing fuzzy inference integrated with an analysis hierarchy process, contributing to a
new air quality index. Simulation results illustrated that the presented air quality index provided a
better evaluation than those in previous studies [16]. The aforementioned evaluation methods have
no capability to take the quantification of evaluation factors and the randomness and fuzziness of
hierarchy into consideration simultaneously, which makes evaluation results lack relative accuracy.
However, a cloud model can achieve the unity between randomness for air quality evaluation and
fuzziness for qualitative expression of language.

1.3. Aim and Contributions

In the EWS, we designed two novel models to implement point forecasting and interval
forecasting for six air pollutants, respectively. For point forecasting, a hybrid model based on
the theory of complementary ensemble empirical mode decomposition (CEEMD) and least squares
support vector machine (LSSVM) optimized by a modified biogeography-based optimization was
successfully proposed, which was designated as CEEMD-BBODE(i.e., a combination of BBO and DE
algorithms)-LSSVM. For interval forecasting, a novel interval forecasting model based on the theory of
bias and variance estimation and LSSVM regression was developed for interval forecasting, which can
overlook the uncertainty of future air pollutant levels and greatly reduce the probability of improper
decision-making. Additionally, most papers either involve forecasting or assessment for air quality,
whereas studies concerning both forecasting and comprehensive evaluation are very scarce. This paper
not only implements air pollutant forecasting but also performs a comprehensive evaluation applying
the theory of probability and fuzzy set, forming a novel air quality warning system. The primary
step of the proposed EWS can be divided into three steps: firstly, as shown in Figure 1, the original
data is decomposed into some intrinsic mode functions (IMFs) by CEEMD, and the first IMF (IMF1)
that possesses noise feature will be removed. Then, the preprocessed data will be reconstructed into
training set and validation set. Secondly, CEEMD-BBODE-LSSVM model and interval forecasting
model will be testified by the aforementioned training and validation set. Finally, cloud model will
be established on the basis of air quality index and its tiered standards, and then the results of point
forecasting for six air pollutants will be regard as an evaluation sample for a cloud model. After 2000
instances of numerical simulation, the final degree of certainty that a sample belongs to certain air
quality rating will be determined by averaging the degrees of certainty generated by 2000 simulations.
Summarizing, the main contributions of this paper are as follows:

(1) A comprehensive warning system is developed firstly, which consists of a forecasting module
and an evaluation module. It is proven as a remarkably effective and high-performance warning
system via many numerical implementations;

(2) In the forecasting module, interval forecasting, which has capability to provide more effective
and credible information than point forecasting, is implemented effectively;

(3) A modified optimization based on the theory of biogeography is utilized to determine the optimal
parameters in LSSVM in order to achieve excellent forecasting performance in the warning system;

(4) A comprehensive evaluation based on probability and fuzzy set is implemented in the EWS,
which has enough capability to realize the transformation between qualitative concept and
quantitative data.
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Figure 1. Data preprocessing for EWS.

The remainder of the paper is organized as follows: Section 2 introduces the related methodology
utilized in this paper. In Section 3, modeling preparation is reported, and a detail case study
that includes point forecasting, interval forecasting and comprehensive evaluation for air quality
is effectively implemented. The forecasting effectiveness, implications and future considerations for
the EWS are discussed in Section 4. Finally, the conclusions are put forth in the final section.

2. Methodology

In this section, the related methodologies of the comprehensive warning system are introduced.
Modified optimization based on the theory of biogeography is utilized to optimize the parameters of
five distributions for six air pollutants. As for the forecasting module, a hybrid model combining a
novel decomposition means, a modified optimization and a classical LSSVM model is developed to
implement point and interval forecasting for air pollutants. Additionally, in order to obtain qualitative
conclusions about the forecasting results, we apply the evaluation based on the probability and fuzzy
set theory to perform an overall assessment of air quality.

2.1. Distribution Functions

Statistical distribution functions were utilized to determine the basic characteristics of air pollutant
concentration, from which we can penetrate into the uncertainty of air pollutants. Five distribution
functions, namely Weibull, Gamma, Lognormal, Log-logistic and Inverse Gaussian were exploited
to study the statistical properties of six air pollutants, which are PM2.5, PM10, O3, CO, NO2, SO2

respectively. The probabilistic distribution functions (PDF) and the cumulative distribution functions
(CDF) of the aforementioned distributions are as shown in the Appendix A.

2.2. CEEMD

The empirical mode decomposition (EMD) is an adaptive time-frequency data analysis method
designed for nonlinear and nonstationary signal analysis [17]. However, the mode mixing problem, a
serious deficiency of the EMD, leads to its limitation in practical applications. As a consequence, many
modified EMD methods devoted to signal decomposition were developed by researchers [18–22].
The ensemble EMD (EEMD) was developed as a noise-assisted mean, which can thoroughly eliminate
the shortcomings of EMD. Time consumption in the process of analyzing large ensemble means and
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suffering from the residual of the added white noise are remarkable deficiencies in EEMD, even
though EEMD has the capability to address the problem of mode mixing effectively. In order to
remove these inherent defects of EEMD and improve its calculation efficiency, CEEMD was established
by Yeh et al. [23]. As a noise-improved method, the CEEMD not only overcomes the mode mixing
problem, but also eliminates the residual added white noise persisting into the IMFs and enhances
the calculation efficiency of the EEMD method [24]. In order to eliminate the weaknesses in EMD and
EEMD, the CEEMD appends a pair of white Gaussian noises to the original signal, which can make
the algorithm save more computing time and lessen the final white noise residue at the same time.
The essential steps of CEEMD are as follows:

(1) Given that a single white noise has no enough capability to solve all intermittent signals, we
established a positive mixture f 1(t) and a negative mixture f 2(t) via appending a pair of white
noise (±εn(t)) to the original signal:{

f1(t) = f (t) + εn(t)
f2(t) = f (t)− εn(t)

(1)

(2) Afterward, kij
+ and kij

− are two ensembles of IMFs acquired from decomposing the positive and
negative mixtures by the EMD, and kij

+ or kij
− is the jth IMF acquired via additive of the ith

positive noise or negative noise.
(3) Then, the final IMF is computed by:

IMFj =
1

2N

N

∑
i=1

[kij
+(t) + kij

_(t)] (2)

(4) (Accordingly, the original signal f (t) can be indicated via:

f (t) =
N

∑
j=1

IMFj(t) + rn(t) (3)

where rn(t) is the n-th residue (i.e., local trend).

2.3. The Modified BBO Algorithm

Biogeography-based optimization (BBO) was originally proposed by Simon [25]. The algorithm
stems from a natural process, which can be utilized to address optimization problems in many fields
concerning sensor selection [25], power system optimization [26,27], groundwater detection [28] and
satellite image classification [29]. The BBO algorithm builds a habitat migration pattern based on
probability according to the geographical distribution characteristics of species, in which individuals
can probabilistically share information based on a habitat suitability index, and the inferior individuals
can be improved by obtaining information from superior individuals. The BBO is an global
optimization algorithm that possess powerful exploration capability for the current populations,
while its global exploitation capability is poor. On the contrary, differential evolution (DE) possesses
commendable exploitation capability, implements effective searches of the decision variable space and
can avoid local convergence. To enhance the global exploitation capability of the BBO algorithm, this
work proposes a novel modified BBO algorithm in which DE was added to the BBO algorithm when
the number of iterations is even, and we designated the modified BBO algorithm as BBODE algorithm,
which is essentially a combination of a BBO algorithm and a DE algorithm. The detail pseudo-code of
our BBODE algorithm can be seen in Appendix A.

Additionally, there are four migration strategies among single islands in the BBODE algorithm,
namely, the cosine model, quadratic model, exponential model, linear model, respectively. The linear
model is the most commonly used one in practice. In the algorithm test section we discuss what
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kind of strategy has the most outstanding performance in the global optimization process. This
paper provides four migration strategies in detail, which computational formulas are as shown in
Equations (4)–(7) respectively:

Cosine model: {
λk = 0.5I(1 + cos( kπ

n ))

µk = 0.5E(1− cos( kπ
n ))

(4)

Quadratic model: {
λk = I( k

n − 1)
2

µk = E ∗ ( k
n )

2 (5)

Exponential model: {
λk = I ∗ exp(− k

n )

µk = E ∗ exp( k
n − 1)

(6)

Linear model: {
λk = I(1− k

n )

µk = E ∗ k
n

(7)

where I denotes maximum possible immigration rate, which will occur when there are no species in
the habitat. E represents maximum possible emigration rate, which will happen when the habitat
reaches its maximum environment capacity. The terms λ and µ express the probability of immigration
and emigration, respectively. n denotes the maximum number of species, and k represents the number
of species on the kth island.

2.4. LSSVM

Support vector machine (SVM), a significant branch of machine learning, was proposed by
Vapnik [30] on the basis of statistical learning theory, and is an effective means to address pattern
recognition and classification missions. The LSSVM based on the structural risk minimization principle
is an extension of SVM, which applies the linear least squares criteria to the loss function instead of
inequality constraints [31]. In fact, the LSSVM, which spends less computation time than SVM in
practice, possesses effective capability in forecasting fields. More details on LSSVM can be found
in [32].

It is noteworthy that different types of Mercer kernel function will consequentially generate
different LSSVM models. Sigmoid, polynomial and radial basis function (RBF) are frequently-used
kernel function for LSSVM model. In [33], the RBF is a prevalent choice for the kernel function on
account of the fewer parameters to be set and superior capability in application. Accordingly, this
work determined the RBF as the appropriate kernel function:

K(xi, xj) = exp
{
−‖xj − xi‖2/2σ2

}
(8)

Consequently, in this paper the parameters (i.e., σ, γ) in the LSSVM model were optimized by our
modified BBO algorithm to achieve high-performance forecasting.

2.5. Interval Forecasting Based on LSSVM

The LSSVM tool not only implements effective point forecasting, but also performs outstandingly
in interval forecasting, which has capability to quantify the uncertainty for point forecasting. In this
paper, the LSSVM toolbox in MATLAB provided by De et al. (http://www.esat.kuleuven.be/sista/
lssvmlab/) was utilized to carry out interval forecasting for air pollutants. The construction of the
forecasting intervals are based on the central limit theorem for linear smoothing combined with bias
correction and variance estimation. Details of the code of LSSVM for interval forecasting can be
obtained from the aforementioned website, and accordingly here we only a brief description on its

http://www.esat.kuleuven.be/sista/lssvmlab/
http://www.esat.kuleuven.be/sista/lssvmlab/
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steps: Step 1: utilize original data to train the LSSVM model based a RBF basis function. Step 2:
calculate the smoother matrix for LSSVM. Step 3: compute the conditional basis and conditional
variance. Step 4: set up the significance level. Step 5: obtain forecasting intervals for this fixed
significance level. More details about interval forecasting using LSSVM can be found in [34].

2.6. Normal Cloud Model Applied for Air Quality Evaluation

A novel hybrid model integrating randomness and fuzziness, namely the cloud model, based on
the theory of probability and fuzzy set, presented by Li et al. [35], is an effective cognitive model based
on the conversion between qualitative concept and quantitative data, which is applied in many fields.
Randomness and fuzziness are generally considered in the evaluation. The cloud model possesses the
joint properties of randomness and fuzziness, which are more effective and comprehensive than single
randomness or fuzziness model [36]. In Figure 2, the x-axis and y-axis of normal cloud denote one
kind of air pollutant and a certain degree of air quality, respectively.
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Determining the air quality criterion (i.e., PM2.5, PM10, O3, CO, NO2, SO2) is the first step.
The second step is to determine the parameters (i.e., Ex, En, He) in the cloud model. The third step
is to compute the hybrid entropy, i.e., the analytic hierarchy process (AHP) weights. Transforming
the observed data into cloud models repeatedly to achieve the distributions of certainty degrees is
the fourth step. The fifth step is to calculate the mean of the certainty degrees and obtain the final air
quality level.

The evaluation of air quality is a multi-criteria decision-making process, and the air quality
criteria are shown in Table 1. How to properly address steps 2–5 is our primary concern. In this paper,
we adopt Equation (9) to compute the cloud model parameters:

Ex = (Bmax + Bmin)/2
En = (Bmax − Bmin)/3

He = k ∗ En
(9)

where Bmax and Bmin present the upper bounds and lower bounds of a qualitative concept, which is
essentially the grade of an air pollutant criterion. Parameter k has the capability to determine the
degree of atomization for a normal cloud. Herein, the parameter k is supposed as 0.1 to achieve a
balance between variation and robustness in the evaluation. It is worthy to note that the Bmax of PM2.5,
PM10, O3, CO, NO2, SO2 on the level VI is non-existent. Herein, we utilized a polynomial regression to
obtain the pseudo-bounds.

Table 1. Quantitative boundaries of air pollution levels of all criteria.

Levels
Air Quality Criteria (µg/m3)

PM2.5 PM10 O3 CO NO2 SO2

I ≤35 ≤50 ≤10 ≤2 ≤40 ≤50
II ≤75 ≤150 ≤160 ≤4 ≤80 ≤150
III ≤115 ≤250 ≤215 ≤14 ≤180 ≤250
IV ≤150 ≤350 ≤265 ≤24 ≤280 ≤475
V ≤250 ≤420 ≤800 ≤36 ≤565 ≤800
VI >250 >420 >800 >36 >565 >800

It is significant to emphasize that the half normal cloud model, which is the half of a normal
cloud model, was exploited on the highest and lowest level for all criteria, as the certainty degree in
this interval is monotonous. As the observed data is beyond the pseudo-bound, the corresponding
certainty degree is 1.

The AHP method is widely applied in multi-criteria decision-making processes. Olvera et al.
applied the AHP method to estimate the weights (zi) of PM2.5, PM10, O3, CO, NO2, SO2 in the
evaluation of air quality in Mexico City, which are 0.3, 0.3, 0.233, 0.1, 0.033, 0.033, respectively [17].
However, the AHP method has the inherent deficiency of being sensitive to the potential subjective
uncertainty. In order to mitigate the influence of the subjective uncertainty in AHP and regional
differences, a hybrid computational method of weights integrating entropy was presented. In the
assessment of air quality, the entropy of air pollutant data (et) can be computed by Equation (10).
Then, the AHP weights based on entropy of ith criteria ωi can be obtained, which is on the basis of
normalized entropy (Ei) [37]. Additionally, the Ei and ωi can be computed by Equations (11) and
(12), respectively.

et = −
T

∑
t=1

Ft InFt (10)

Ei =
ei

InT
(11)
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ωi =
1− Ei

C−
C
∑

i=1
Ei

(12)

where Ft denotes the frequency of ith interval. ei, namely entropy, represents the uncertainty of
observed data for a criterion with T intervals. C represents the number of criteria.

To balance the latent uncertainty of subjectivity in the AHP method, a novel entropy-AHP method
was proposed, which can be calculated via Equation (13). Then, the certainty degree U for a level of
one criterion can be obtained using Equation (14):

Wi =
ziωi

∑C
i ziωi

(13)

U = ∑ C
i=1Wiµi (14)

where µi denotes the certainty degree computed by cloud model for each criterion.

3. Simulation Modeling and Analysis

In this section, modeling preparations are briefly introduced. A function test is implemented to
verify the performance of the BBO and BBODE algorithms. The distribution function parameters for
six air pollutants are estimated using BBO and BBODE, respectively. Point and interval forecasting are
performed to infer the trends of air pollutants in the future. A comprehensive air quality evaluation is
implemented by applying the cloud model.

3.1. Modeling Preparations

In this section, the study site, data source and fitness function are briefly described. Six metrics
are employed to evaluate the performance of point forecasting and interval forecasting. Finally, a D-M
test is used to test the forecasting performance.

3.1.1. Study Site and Data Source

In this paper, the Chinese city of Dalian (latitude and longitude 120◦58′–123◦31′ and 38◦43′–40◦10′)
was selected as the study site for the EWS. It is located in the extreme south of the Liaodong Peninsula.
The area of Dalian is 12,573.85 square kilometers. The population of the city is 6.6904 million, and
the population density is 464 per square kilometer. In recent years, with the rapid development
of the industrial economy of the city, air pollution has been increasingly worsening, which has
becomes a growing concern of the public. The deteriorating air quality has increased the incidence
of cardiovascular, asthma and lung disease among the public, especially for the elderly and children,
which has increased the necessity of an air quality EWS. The existing air quality EWS in the city focuses
on monitoring and lacks effective forecasting and comprehensive pollution evaluation, which hinders
the development of an effective air quality EWS. Additionally, there is little research on the topic of air
quality EWSs in Dalian, and the existing literature puts particular emphasis on cause analysis and air
quality indexes, therefore, we chose Dalian as the study site for air quality EWS design.

The hourly air pollutants data were collected from a website (http://wat.epmap.org/), which is
engaged in the collection of environmental data. Data concerning articulate matters (PM2.5, PM10),
ozone (O3), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), as six common air
pollutants, were collected from Dalian in the aforementioned website, and were utilized to validate the
performance of forecasting models and implement a comprehensive air quality evaluation for the city.
Figure 4 shows the study data for the six air pollutants in Dalian, which was divided into a training
subset and a testing subset.

http://wat.epmap.org/
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3.1.2. The Fitness Function for the CEEMD-BBODE-LSSVM Model

Establishing a proper fitness function is very crucial for the BBODE algorithm, which can build a
connection between LSSVM model and the BBODE algorithm and improve the performance of LSSVM
via searching for the optimal LSSVM parameters. The fitness function represents the mean of the
forecasting error, which is gradually decreasing during the process of searching for the optimal LSSVM
parameters until the fitness value satisfies the end condition. In this paper, the fitness function was
defined as follows:

F = MSE(|y− ŷ|) (15)

where MSE denotes the mean square error between target and forecasting values and y and represent
the target values and forecasting values, respectively.

3.1.3. The Performance Metric

To determine quantitatively which forecasting model is optimal is our main concern. In this paper,
six statistical criteria were utilized to investigate the accuracy and efficiency for point and interval
forecasting. Four metrics as shown in Table 2 were used to evaluate the accuracy of point forecasting,
which are mean absolute error (MAE), mean absolute percentage error (MAPE), root mean square error
(RMSE) and goodness of fit (R2), respectively. Two criteria were adopted to validate the effectiveness
of interval forecasting, which are the coverage probability (CP) and average width (AW), respectively.
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Table 2. Three metric rules for point forecasting.

Metric Definition Equation

MAE Mean absolute error MAE = 1
n

n
∑

i=1

∣∣yi − y′i
∣∣

MAPE Mean absolute percentage error MAPE = 1
n

n
∑

i=1

∣∣∣ yi−y′i
yi

∣∣∣× 100%

RMSE Root mean square error RMSE =

√
1
n

n
∑

i=1

(
yi−y′i

yi

)2

R2 Goodness of fit R2 = 1− ∑n
i=1 (yi−y′i)

2

∑n
i=1 (yi−y)2

yi and y′i denote the actual values and forecasting values, respectively. represents the average of actual values.
The R2 was also utilized to evaluate the fitness performance in the process of distribution fitting, where yi, y′i and
represent the observed cumulative probability, estimated cumulative probability and the average of the observed
cumulative probability, respectively.

CP is a vital metric for interval forecasting, which is evaluated via reckoning the amount of
target points within the constructed forecasting intervals. It can verify the effectiveness of interval
forecasting with the corresponding significance level (a). Theoretically, the forecasting intervals are
valid if CP ≥ (1 − a)%. If not, the implementation of interval forecasting is invalid. AW provides a
measurement of the informativeness for interval forecasting. In theory, the narrow AW can provide
greater information value than the wide AW:

CP = 1
N

N
∑

i=1
Ci

i.e., Ci =

{
1, i f yi ∈ [Li, Ui]

0, otherwise

(16)

AW =
1
N

N

∑
i=1

(Ui − Li) (17)

where Lt and Ut represent the lower and upper bounds of the ith interval forecasting respectively.
yi denotes target points.

3.1.4. D-M Test

The D-M test, first proposed by Diebold and Mariano [38], can be utilized to determine whether
there is a significant difference among samples. The D-M statistic is defined as follows:

DM =
∑t

i=1 (F(εt
(1))− F(εt

(2)))/t√
S2/t

S2 (18)

where εt
(1) and εt

(2) denote forecasting errors from two competing models in this paper. Each forecast
accuracy is evaluated via an appropriate loss function F, and the prevalent loss functions are the square
error function and absolute deviation function [39]. S2 is a variance estimator of Vt = F(εt

(1))− F(εt
(2)).

The null hypothesis and alternative hypothesis of D-M test method are as follows:

Null hypothesis, H0 : E(Vt) = 0
Alternative hypothesis, H1 : E(Vt) 6= 0

(19)

In the null hypothesis circumstance, DM follows the standard normal distribution N (0, 1).
The null hypothesis will be rejected if |DM| > zα/2, which means that there is significant difference
among samples.
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3.2. Numerical Analysis of the BBO and BBODE Algorithms

An excellent optimization algorithm should possess the ability of global exploration and local
exploitation. To enhance the efficiency of the BBO algorithm, the BBODE algorithm was proposed
in this paper. In order to investigate the performance of the BBODE algorithm, the implemented
functions tests are described in this section. Six functions as shown in the Appendix A were exploited
to validate the capabilities of exploration and exploitation for the BBO and BBODE algorithms. In order
to implement an effective and fair comparison between the BBO and BBODE algorithms, each test
function was optimized independently 20 times and we initialized random populations in the same
way for the different algorithms. The average of the optimal value in each experiment and standard
deviation were computed after numerical experiments. All numerical simulations were performed on
the platform of MATLAB R2014b for Windows 7 with a 3.30 GHz Intel Core i5, 64 bit CPU and 8 GB
RAM. The experimental parameters of BBO and BBODE are shown in Table 3.

Table 3. The experiment parameters of BBO and BBODE.

Parameter Setting BBO BBODE

Maximum iteration 5000 5000
Population size 50 50

The number of elite kept 3 3
Maximum emigration rate 1 1
Minimum emigration rate 0 0

Maximum immigration rate 1 1
Minimum immigration rate 0 0

Mutation probability 0.05 0.4
Difference operator - 0.6

The numerical analysis conclusions can be summarized by studying Table 4, which exhibits the
results of different test functions with different dimensions, which can sufficiently show that the
BBODE algorithm generally has a significant superiority over the BBO algorithm.

Table 4. Test results of BBO and BBODE.

Test Function Dimension Algorithm Optimal/Worse Solution Mean/Std. Elapsed Time (s)

Sphere
5

BBO 3.83 × 10−3/1.87 × 10−2 1.21 × 10−2/6.09 × 10−3 24.5293
BBODE 0/0 0/0 25.1026

10
BBO 1.05 × 10−2/3.42 × 10−1 8.06 × 10−2/3.14 × 10−2 27.1782

BBODE 0/0 0/0 28.0055

Rosenbrock 2
BBO 1.05 × 10−2/6.19 × 10−1 2.65 × 10−1/2.48 × 10−1 21.5151

BBODE 0/0 0/0 38.8187

Rastrigin
2

BBO 1.56 × 10−4/3.71 × 10−3 1.70 × 10−3/1.46 × 10−3 22.1951
BBODE 0/0 0/0 23.0743

5
BBO 3.97 × 10−3/2.05 × 10−2 1.15 × 10−2/6.43 × 10−3 24.4002

BBODE 0/0 0/0 24.1739

Shaffer
2

BBO 9.72 × 10−3/3.33 × 10−2 1.45 × 10−2/1.06 × 10−2 22.4175
BBODE 0/0 0/0 23.3923

5
BBO 9.72 × 10−3/7.82 × 10−2 3.99 × 10−2/2.45 × 10−2 24.3080

BBODE 9.72 × 10−3/9.72 × 10−3 9.70 × 10−3/9.23 × 10−11 29.3161

Griewank 2
BBO 3.60 × 10−3/6.80 × 10−2 2.06 × 10−2/2.67 × 10−2 22.2211

BBODE 0/7.40 × 10−3 3.00 × 10−3/4.05 ×10−3 22.4311

Ackley
2

BBO 2.61 × 10−2/8.12 × 10−2 5.24 × 10−2/2.57 × 10−2 22.4061
BBODE 8.88 × 10−16/8.88 × 10−16 0/0 22.9809

5
BBO 2.78 × 10−2/2.90 × 10−1 1.20 × 10−1/1.07 × 10−1 24.3998

BBODE 8.88 × 10−16/8.88 × 10−16 0/0 25.2199

From the detailed information in Table 4, the BBODE algorithm can search for an optimal solution
for a sphere function with dimensions of 5 and 10, a Rosenbrock function with dimensions of 2,
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a Rastrigin function with the dimensions of 2 and 5, a Shaffer function with dimensions of 2, and
a Griewank function with dimensions of 2. Considering the elapsed time, BBODE is slightly more
time-consuming than BBO. However, considering comprehensively the elapsed time, accuracy and
standard deviation, BBODE is still more superior to BBO. Accordingly, the BBODE algorithm was
proven to be an efficient and robust optimization algorithm.

Additionally, four kinds of migration strategies (i.e., cosine model, quadratic model, exponential
model, linear model) in the BBODE algorithm are discussed in this section. Six test functions
with different dimensions as shown in Figure 5 are utilized to validate the efficiency of the four
strategies. Figure 5 clearly shows that the performance and convergence speed for the four strategies
in the migration process, from which it is clearly evident that the cosine model possesses superior
performance. Consequently, the cosine model, was adopted as an efficient migration strategy in our
BBODE algorithm.Int. J. Environ. Res. Public Health 2017, 14, 249  14 of 32 
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Figure 5. The comparison of convergence speed for four migration strategies in BBODE. In Figure 5,
(A) four kinds of migration strategies (i.e., cosine model, quadratic model, exponential model, linear
model) were tested by griewank function with the dimension 5. From the fitness curve in (A), quadratic
model has the better convergence speed and accuracy. In (B), four kinds of migration strategies were
tested by rosenbrock function with the dimension 2. From (B), considering convergence speed and
accuracy, we can conclude that cosine model has a superior performance. Similarly, in (C–F), four kinds
of migration strategies were tested by rastrigin function with the dimension 5, sphere function with
the dimension 10, shaffer function with the dimension 5 and ackley function with the dimension 5,
respectively. From (C–F), compared with quadratic, exponential, linear models, the convergence speed
and accuracy of cosine model remarkably illustrate its excellent performance. Summarizing, cosine
model is a superior migration strategy in BBODE algorithm.
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3.3. The Distributional Characteristics of the Air Pollutants

Studying the distributional characteristic of air pollutants is an important task, which can reveal
the nature and statistical properties of air pollutant data. Six distributions were adopted to perform the
analysis of the distribution characteristics of the air pollutants, which are shown in the Appendix A.

The distribution function parameters are commonly estimated by the ways of minimum least
square (MLS) and maximum likelihood estimation (MLE). In [9], the experimental results show that
artificial intelligent optimization is superior to MLS or MLE in the process of searching for optimal
distribution parameters. Accordingly, in this paper, we utilized artificial intelligence optimization to
search for the optimal distribution function parameters.

In the function test section, the BBODE algorithm has high performance in the parameter
optimization process. Here, the BBODE and BBO algorithms were utilized to search for the optimal
distribution function parameters, and we performed a comparison between the performance of the
BBODE and BBO algorithms. Table 5 reveals the estimated distribution function parameters obtained
for the six air pollutants utilizing the BBODE and BBO algorithms. Goodness of fit (R2) is adopted
to evaluate the fitting performance using different distribution functions and different optimization
methods. A larger value indicates better fitting performance. Table 6 presents the R2 using different
artificial intelligent optimization methods, from which can be concluded that the fitting performance
using BBODE exceeds the performance of fitting using BBO. Figure 6 shows the combination of
frequency histograms and the fitted distributions for six air pollutants. It can be concluded that Inverse
Gaussian function performs superior performance in the process of fitting for PM2.5, PM10, SO2 on the
reason that the corresponding R2 is larger than other distributions. The Gamma function is suitable to
implement fitting for O3 and NO2, and Log-logistic distribution is appropriate for fitting the CO data
based on the aforementioned reasons.

3.4. The Point Forecasting for Air Pollutants

In this section, the proposed hybrid CEEMD-BBODE-LSSVM model was used to implement point
forecasting. CEEMD, as a novel decomposition ensemble methodology, was adopted to decompose the
original air pollutants data into several IMFs. The parameter setting of CEEMD is as follows: the total
number of IMFs and residuals to be decomposed is 8, the standard deviation of added white noise in
each ensemble is 0.4, the ensemble number is 200. In actual application, the first IMF will be removed,
and the remaining IMFs will be added to construct a new dataset that is used for training and testing
the model. The performance of LSSVM is very sensitive to the parameters (i.e., σ, γ). Therefore, the
BBODE algorithm was applied to optimize the parameters in the LSSVM model in order to obtain
high-performance forecasting accuracy. The forecasting work was actualized by LSSVM, which is
an excellent forecasting tool in many fields. The air pollutants data from Dalian was utilized to test
the performance of the proposed hybrid model, which were divided into training subset and testing
subset as clearly shown in Figure 4.
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Table 5. Parameters of the different distributions based on the different optimized algorithm. In Table 5, a and b represent scale and shape parameters of distribution
functions, respectively.

Indexes
Optimized
Algorithm

Parameters

Weibull Gamma Lognormal Log-Logistic Inverse Gaussian

a b a b a b a b a b

PM2.5
BBO 45.6353 1.1494 1.1219 39.3960 0.9590 3.3423 1.9971 31.9631 46.2247 47.6059

BBODE 45.7883 1.1754 1.3769 31.5937 0.8675 3.4642 1.9865 32.0344 46.1661 47.6248

PM10
BBO 82.0580 1.3799 4.5728 15.1932 0.7351 3.9522 2.6477 62.4040 77.6225 137.8372

BBODE 82.1414 1.5152 2.2187 33.7894 0.6939 4.1205 2.4676 61.5932 78.0797 137.2609

O3
BBO 81.9614 1.8979 3.7011 19.7425 0.6156 4.0754 3.0971 65.1357 76.2749 199.8628

BBODE 82.0189 1.8920 3.0735 24.0945 0.5648 4.1715 3.0136 64.9673 75.8027 213.8432

SO2
BBO 27.1355 1.1097 0.9696 28.5482 2.8314 1.0833 1.6724 17.3678 27.1713 19.4500

BBODE 26.4620 0.9312 0.9194 29.4822 2.8378 1.0554 1.6357 17.1035 29.3444 18.3036

NO2
BBO 35.1287 2.1449 3.8436 8.2904 0.5596 3.2623 3.2489 28.1741 32.5209 112.2516

BBODE 35.2476 2.1360 3.8948 8.1566 0.5075 3.3501 3.3673 28.5397 32.3743 114.6579

CO
BBO 0.8547 2.2424 1.1233 0.7854 0.4562 −0.3797 3.8337 0.7208 1.0952 1.0957

BBODE 0.8229 2.3983 4.4389 0.1689 0.4558 −0.3789 3.7101 0.6832 0.7589 3.3818
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Table 6. R2 of different distribution using different optimized algorithm. The data in bold denotes that it is largest in each line of Table 6, which represents the optimal
R2 of distribution fitting.

Indexes
Optimized
Algorithm

Evaluation Criteria (R2)

Weibull Gamma Lognormal Log-Logistic Inverse Gaussian

PM2.5
BBO 0.9918 0.9904 0.9919 0.9980 0.9998

BBODE 0.9919 0.9937 0.9994 0.9980 0.9998

PM10
BBO 0.9879 0.9634 0.9760 0.9970 0.9991

BBODE 0.9898 0.9937 0.9989 0.9982 0.9993

O3
BBO 0.9984 0.9979 0.9870 0.9950 0.9963

BBODE 0.9994 0.9997 0.9968 0.9952 0.9966

SO2
BBO 0.9747 0.9820 0.9944 0.9916 0.9942

BBODE 0.9838 0.9827 0.9947 0.9918 0.9970

NO2
BBO 0.9971 0.9990 0.9901 0.9970 0.9991

BBODE 0.9971 0.9993 0.9990 0.9974 0.9991

CO
BBO 0.9774 0.8257 0.9962 0.9894 0.8309

BBODE 0.9811 0.9899 0.9962 0.9968 0.9963
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Table 7. Performance evaluations of all forecasting models for air pollutants in July and August.

Jul.

LSSVM EEMD-LSSVM CEEMD-LSSVM CEEMD-BBODE-LSSVM

MAE
(µg/m3)

MAPE
(%)

RMSE
(µg/m3) R2 MAE

(µg/m3)
MAPE

(%)
RMSE
(µg/m3) R2 MAE

(µg/m3)
MAPE

(%)
RMSE
(µg/m3) R2 MAE

(µg/m3)
MAPE

(%)
RMSE
(µg/m3) R2

PM2.5 2.7493 13.72 4.6403 0.9190 1.5257 7.01 2.8392 0.9697 0.9223 4.24 1.7455 0.9885 0.8377 3.86 1.5264 0.9912
PM10 4.7844 10.87 7.6946 0.9228 2.3329 5.17 3.7108 0.9821 1.5476 3.46 2.5508 0.9915 1.5004 3.34 2.4581 0.9921

O3 5.7668 6.81 7.9288 0.9451 3.0425 3.56 4.4377 0.9828 1.9619 2.27 2.7241 0.9935 1.7602 2.04 2.4161 0.9949
CO 0.0282 4.93 0.0461 0.9021 0.0137 2.39 0.0225 0.9766 0.0094 1.64 0.0153 0.9892 0.0093 1.64 0.0150 0.9896

NO2 2.4432 12.82 3.6164 0.8298 1.2705 6.61 1.8767 0.9542 0.8877 4.65 1.3733 0.9755 0.8138 4.29 1.2850 0.9785
SO2 1.3173 17.17 1.9538 0.7346 0.6607 8.92 0.9071 0.9428 0.5091 6.71 0.7596 0.9599 0.4762 6.42 0.7222 0.9637

Aug.

LSSVM EEMD-LSSVM CEEMD-LSSVM CEEMD-BBODE-LSSVM

MAE
(µg/m3)

MAPE
(%)

RMSE
(µg/m3) R2 MAE

(µg/m3)
MAPE

(%)
RMSE
(µg/m3) R2 MAE

(µg/m3)
MAPE

(%)
RMSE
(µg/m3) R2 MAE

(µg/m3)
MAPE

(%)
RMSE
(µg/m3) R2

PM2.5 2.8102 10.12 4.2173 0.9718 1.3468 4.72 2.0854 0.9931 0.9601 3.35 1.4169 0.9968 0.8584 3.00 1.2814 0.9974
PM10 4.6826 8.27 7.9020 0.9517 4.6866 8.32 7.8981 0.9518 1.4682 2.55 2.4766 0.9953 1.4201 2.47 2.4687 0.9953

O3 6.8965 7.19 9.2676 0.9454 4.3948 4.66 5.7059 0.9793 2.1932 2.30 2.9572 0.9944 1.9939 2.05 2.6971 0.9954
CO 0.0382 4.83 0.0628 0.9453 0.0196 2.52 0.0350 0.9830 0.0126 1.65 0.0196 0.9946 0.0123 1.63 0.0192 0.9949

NO2 2.6935 12.67 3.8906 0.7507 1.7882 8.44 2.5133 0.8960 1.1073 5.11 1.5708 0.9594 0.9906 4.62 1.4239 0.9666
SO2 1.4433 16.43 2.0774 0.7876 0.7174 8.49 0.9874 0.9520 0.5274 6.17 0.7691 0.9709 0.5124 6.05 0.7568 0.9718
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Table 8. Performance evaluations of all forecasting models for air pollutants in September and October.

Sept.

LSSVM EEMD-LSSVM CEEMD-LSSVM CEEMD-BBODE-LSSVM

MAE
(µg/m3)

MAPE
(%)

RMSE
(µg/m3) R2 MAE

(µg/m3)
MAPE

(%)
RMSE
(µg/m3) R2 MAE

(µg/m3)
MAPE

(%)
RMSE
(µg/m3) R2 MAE

(µg/m3)
MAPE

(%)
RMSE
(µg/m3) R2

PM2.5 1.8597 9.26 2.6744 0.9632 0.8473 3.91 1.2725 0.9917 0.5845 2.73 0.8504 0.9963 0.5329 2.55 0.7836 0.9968
PM10 3.1881 7.25 4.6004 0.9544 1.4800 3.29 2.0462 0.9910 0.9906 2.15 1.4081 0.9957 0.9464 2.10 1.3310 0.9962

O3 6.1037 7.12 8.4823 0.9444 3.8598 4.52 5.5017 0.9766 1.9423 2.30 2.6734 0.9945 1.7936 2.10 2.4833 0.9952
CO 0.0343 4.80 0.0501 0.9231 0.0337 4.70 0.0501 0.9229 0.0108 1.51 0.0159 0.9922 0.0106 1.49 0.0155 0.9926

NO2 3.3152 11.05 4.7473 0.8577 2.5733 9.40 3.6797 0.9145 1.3327 4.44 1.9169 0.9768 1.1959 3.99 1.7156 0.9814
SO2 1.5666 14.18 2.1999 0.6901 6.46 0.9278 0.9611 0.5627 5.08 0.8056 0.9707 0.5429 4.87 0.7764 0.9728

Oct.

LSSVM EEMD-LSSVM CEEMD-LSSVM CEEMD-BBODE-LSSVM

MAE
(µg/m3)

MAPE
(%)

RMSE
(µg/m3) R2 MAE

(µg/m3)
MAPE

(%)
RMSE
(µg/m3) R2 MAE

(µg/m3)
MAPE

(%)
RMSE
(µg/m3) R2 MAE

(µg/m3)
MAPE

(%)
RMSE
(µg/m3) R2

PM2.5 3.1429 14.75 5.2280 0.9632 2.0940 7.18 3.9670 0.9788 1.0080 4.02 1.8061 0.9956 0.9656 3.87 1.6485 0.9963
PM10 5.5187 9.84 8.9370 0.9596 3.3163 5.39 5.7764 0.9831 1.7639 2.98 2.9540 0.9956 1.7107 2.64 2.8270 0.9960

O3 5.2873 8.89 7.5633 0.9622 3.1799 5.05 4.6041 0.9860 1.7490 2.99 2.5731 0.9956 1.5749 2.70 2.3123 0.9965
CO 0.0491 6.26 0.0883 0.9185 0.0475 6.09 0.0846 0.9251 0.0173 2.22 0.0329 0.9887 0.0171 2.10 0.0318 0.9895

NO2 3.2192 10.74 4.6240 0.9025 2.4256 8.04 3.7272 0.9366 1.2379 4.13 1.8160 0.9850 1.1440 3.81 1.6778 0.9872
SO2 1.5912 14.01 2.2161 0.8578 0.7122 6.40 0.9919 0.9715 0.5605 5.01 0.8241 0.9803 0.5541 4.90 0.7995 0.9815
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Tables 7 and 8 report the forecasting performance of all benchmark models for air pollutants
from Jul. to Oct. in 2015. Four metrics (i.e., MAE, MAPE, RMSE, R2) were employed to reveal
the forecasting capability for model assessment and comparison. From the forecasting performance
of PM2.5 in Tables 7 and 8, the MAE, MAPE, RMSE of LSSVM, EEMD-LSSVM, CEEMD-LSSVM,
CEEMD-BBODE-LSSVM are decreasing as a whole, which indicates that CEEMD-BBODE-LSSVM
has better performance than the considered benchmark models. The R2 of LSSVM, EEMD-LSSVM,
CEEMD-LSSVM, CEEMD-BBODE-LSSVM for PM2.5 forecasting increases progressively, which
illustrates that the proposed hybrid model CEEMD-BBODE-LSSVM has superior forecasting capability
than the other benchmark models. Similarly, the forecasting performance of CEEMD-BBODE-LSSVM
for PM10, O3, CO, NO2, SO2 is still superior to that of the other benchmark models. As for
decomposition method, compared to models without CEEMD, the models with CEEMD show
significant improvements, which illustrates that CEEMD is actually an excellent tool for de-noising.
For example, in the forecasting of PM2.5, PM10, O3, CO, NO2, SO2 in Jul. in Table 7, compared with
LSSVM, the MAPE of CEEMD-LSSVM reflects 9.48%, 7.41%, 4.54%, 3.29%, 8.17%, 10.46% improvement,
respectively, and the MAPE of CEEMD-LSSVM reflects 2.77%, 1.71%, 1.29%, 0.75%, 1.96%, 2.21%
improvement, respectively, compared with EEMD-LSSVM. As for optimization, when making a
comparison between CEEMD-LSSVM and CEEMD-BBODE-LSSVM for the six air pollutants in Tables 7
and 8, CEEMD-BBODE-LSSVM indicates an improvement in forecasting accuracy for CEEMD-LSSVM,
which denotes the BBODE algorithm has better performance in the application of searching for
optimal solutions for forecasting models. The aforementioned comparative analysis demonstrates
that the CEEMD-BBODE-LSSVM model is superior to the benchmark models mentioned in this
section. In order to be more clearly illustrate the forecasting performance of all models, we selected the
first three days in July to make a visualization, which contain 35 test samples for the air pollutants,
respectively. Figure 7 exhibits the comparison of forecasting values based on all models, which shows
that the proposed hybrid CEEMD-BBODE-LSSVM model is more accurate and robust. From Figure 7,
there is strong correlation between PM2.5 and PM10 on the reason of the similarity of forecasting
results. From the black dotted line in Figure 7, it can be concluded that the CEEMD-BBODE-LSSVM
model has outstanding capacity for outlier forecasting. Given the superior performance of the hybrid
model in different forecasting environments, we concluded that the hybrid forecasting model has
comprehensively wider applicability, effectiveness, compatibility.

3.5. The Interval Forecasting for Air Pollutants

The quantification of uncertainty, namely interval forecasting, plays a significant part in air quality
EWSs, which can provide more credible and dynamic forecasting results. In this paper, the constructed
nonsymmetrical forecasting intervals were generated by LSSVM since the point forecasting has weak
capability to address the uncertainties in the forecasting process. Quantitative measures (i.e., AW, CP)
are commonly used for evaluating the performance of interval forecasting, which are affected by the
different significance level settings.

In theory, the constructed forecasting interval is effective if the condition that the CP is larger or
equal to its corresponding confidence level is satisfied. Table 9 reports the numerical results of interval
forecasting using the metrics CP and AW quantitatively.
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From Table 9, the CP is larger than the corresponding confidence level in most constructed
intervals, which remarkably demonstrates that the constructed intervals are valid. It is noteworthy that
there is a regular pattern where the interval forecasting width will be smaller when the significance
level is increasing gradually, which was displayed schematically in Figure 8 as an illustrative example.
The smaller the significance is, the larger the interval forecasting width is. It can observed that the
interval forecasting has the best performance when the significance level is 0.05. However, in this
situation, it is hard to determine precise values for forecasting when the interval forecasting width is
large. The effectiveness of interval forecasting declines when the significance level is increasing.
Theoretically, the optimal interval forecasting occurs on actual application and meteorological
conditions. For example, the AW can be squeezed if the weather is stable, and AW can be enlarged if
the weather is unstable.
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Table 9. The evaluation results of interval forecasting using CP and AW.

Indexes
PM2.5 PM10 O3 CO NO2 SO2

a CP AW CP AW CP AW CP AW CP AW CP AW

Jul.

0.1 94.26% 13.6618 90.48% 31.0273 93.12% 26.7807 98.60% 0.2079 92.72% 9.9325 90.20% 8.4259
0.2 90.62% 10.4174 89.92% 24.4988 89.22% 20.7596 97.06% 0.1606 82.21% 7.4009 88.80% 6.6628
0.3 84.45% 8.3868 86.30% 22.4904 81.79% 16.7552 94.68% 0.1292 76.19% 6.2515 84.03% 5.1160
0.4 76.47% 6.9376 78.01% 15.5500 74.37% 13.7277 90.03% 0.0911 71.43% 4.9870 79.61% 4.2380

Aug.

0.1 94.04% 16.1549 96.78% 37.3582 91.27% 28.6477 98.34% 0.2980 91.83% 10.6406 91.27% 9.8413
0.2 89.06% 10.4853 95.24% 29.4140 84.90% 22.1802 96.81% 0.2318 83.52% 8.2517 89.61% 7.6514
0.3 84.49% 10.1968 91.60% 23.3305 76.45% 17.9500 94.74% 0.1849 78.39% 6.9446 86.70% 6.1226
0.4 80.03% 8.1918 88.39% 19.2456 68.42% 14.6038 91.74% 0.1390 73.14% 5.0025 82.57% 4.7893

Sept.

0.1 97.36% 10.8554 89.52% 27.8707 91.79% 27.5385 99.27% 0.2646 92.82% 13.6887 90.03% 10.6070
0.2 95.60% 8.8471 88.08% 22.5034 86.22% 21.4810 98.24% 0.2052 81.97% 10.5548 88.94% 8.0384
0.3 91.94% 7.0965 87.50% 18.5714 80.21% 17.4530 94.13% 0.1627 79.62% 8.6191 86.07% 6.5208
0.4 88.21% 6.1263 86.13% 14.7516 72.73% 14.1431 90.38% 0.1328 76.93% 5.9972 83.16% 3.9879

Oct.

0.1 94.15% 17.7601 92.72% 39.6436 92.89% 23.2962 96.03% 0.3322 93.57% 14.7220 94.39% 11.6736
0.2 90.97% 13.1872 89.64% 31.1285 88.74% 18.0237 92.89% 0.2587 83.88% 11.4790 92.75% 9.2227
0.3 87.82% 10.9541 83.38% 24.9457 79.34% 14.6879 90.83% 0.2106 81.53% 9.2536 90.01% 7.2835
0.4 84.43% 7.4732 80.13% 20.6901 72.09% 11.9308 88.86% 0.1884 78.64% 7.0376 87.49% 5.0129
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In Figure 9, given the informativeness evaluated by CP and correctness assessed by AW in Table 9,
we used significance levels of 0.2, 0.2, 0.2, 0.1, 0.1, 0.1 corresponding to PM2.5, PM10, O3, CO, NO2, SO2

in July to implement interval forecasting, respectively. From Figure 9, it can be observed that most
of the actual values are located within the forecasting intervals, which indicates that the efficiency
of interval forecasting is theoretically valid. A reference about the hazard using point forecasting
will be provided to decision-makers since the uncertainties for forecasting are quantified within the
forecasting intervals. Accordingly, the proposed interval forecasting model can provide a tradeoff
between effectiveness and informativeness, which is of great importance to formulate scientific policy
on early air quality warnings.

3.6. Comprehensive Evaluation Implementation

Air quality evaluation is a multiple criteria decision-making process, and the cloud model has
outstanding capability to address the fuzziness and randomness in the evaluation process. In this
section, a comprehensive evaluation using the cloud model is effectively performed. In the evaluation
process, the forecasting values generated by CEEMD-BBODE-LSSVM were regarded as samples to
participate in the evaluation, which plays a vital part in EWS.

3.6.1. Evaluation Preparation

Before evaluation, there are some vital sections that need to be prepared, which consist
of criteria for air quality, pseudo-boundary for all criteria, parameters in the cloud model, and
weights, respectively. The criteria for air quality evaluation are as shown in aforementioned Table 1.
The parameters of the cloud model were calculated by Equation (9), and can be seen in Table 10.
It is worthy to note that Bmax is missing for all level VI criteria, so in this paper we used a polynomial
regression to obtain them. The detailed information on the polynomial regression for Bmax in level VI
for all criteria is shown in Table 11. The weights generated by the hybrid entropy-AHP method for all
criteria are reported in Table 12.

Table 10. The parameters of the cloud model for all criteria.

Levels
PM2.5 PM10 O3

Ex En He Ex En He Ex En He

I 17.5 11.67 1.17 25 16.67 1.67 5 3.33 0.33
II 55 13.33 1.33 100 33.33 3.33 85 50 5
III 95 13.33 1.33 200 33.33 3.33 187.5 18.33 1.83
IV 132.5 11.67 1.17 300 33.33 3.33 240 16.67 1.67
V 200 33.33 3.33 385 23.33 2.33 532.5 178.33 17.83
VI 291.99 28.00 2.80 457.95 25.30 2.53 988.8 125.86 12.59

Levels
CO NO2 SO2

Ex En He Ex En He Ex En He

I 1 0.67 0.07 20 13.33 1.33 25 16.67 1.67
II 3 0.67 0.07 60 13.33 1.33 100 33.33 3.33
III 9 3.33 0.33 130 33.33 3.33 200 33.33 3.33
IV 19 3.33 0.33 230 33.33 3.33 362.5 75 7.5
V 30 4 0.4 422.5 95 9.5 637.5 108.33 10.83
VI 44.21 5.47 0.55 707 94.67 9.47 989.97 126.65 12.67
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Table 11. Polynomial regression for Bmax of all criteria with level VI.

Indices Polynomial Regression Bmax of Level VI

PM2.5 f (x) = 8.21x2 + 1.21x + 31 333.99
PM10 f (x) = −4.29x2 + 119.7x − 68 495.91

O3 f (x) = 54.64x2 − 159.4x + 167 1177.6
CO f (x) = 1.43x2 + 0.23x − 0.4 52.42

NO2 f (x) = 35x2 − 85x + 99 849
SO2 f (x) = 41.07x2 − 63.93x + 85 1179.94

Table 12. AHP-entropy weights for all criteria.

Criteria AHP Weight z Entropy Entropy Weight ω Entropy-AHP Weight W

PM2.5 0.3 4.6692 0.2348 0.4292
PM10 0.3 5.0828 0.1917 0.3505

O3 0.233 5.1281 0.0621 0.0881
CO 0.1 6.9810 0.0721 0.0439

NO2 0.033 4.0407 0.1730 0.0348
SO2 0.033 4.1733 0.2662 0.0535

3.6.2. Evaluation Implementation

After preparation of the cloud model, a comprehensive assessment was effectively implemented.
For the sake of simplicity, we extracted none samples from the testing subset to perform a
comprehensive assessment utilizing the cloud model, which is shown in Table 13.

Table 13. The forecasting samples from test subset used for evaluation.

Date PM2.5
(µg/m3)

PM10
(µg/m3)

O3
(µg/m3)

CO
(µg/m3)

NO2
(µg/m3)

SO2
(µg/m3) Cases

1 July 2015 1:00 28.7706 55.7602 67.3450 0.9697 25.8604 10.2004 A1
1 July 2015 23:00 72.9066 107.0337 165.4987 1.1086 20.4798 11.1226 A2
2 July 2015 9:00 8.4205 20.8968 82.3072 0.4267 20.5176 10.7273 A3

2 August 2015 17:00 47.5483 69.4576 175.0633 0.7634 22.8088 6.7971 A4
14 August 2015 20:00 127.6426 178.7458 217.2556 1.1993 25.2613 13.9264 A5
15 August 2015 0:00 154.4614 211.3916 228.8058 1.3244 17.0485 16.1272 A6

1 September 2015 1:00 17.9037 34.8418 78.1009 0.6857 24.9247 7.6599 A7
1 Octorber 2015 8:00 20.5887 37.0588 95.6089 1.0228 21.8282 4.3759 A8
5 Octorber 2015 13:00 75.7741 135.5992 157.9036 1.1049 25.8181 21.8493 A9

To enhance the accuracy and robustness, each sample was evaluated over 2000 times, and the
mean of the distribution of certainty degree was adopted to determine the final certainty degree.
The final air quality levels were attained with the maximum certainty degree, which presents the most
possible membership. The final evaluation results for all cases are reported in Table 14. According
to aforementioned Table 2, air quality can be classified in six levels: namely excellent, good, light
pollution, moderate pollution, heavy pollution, serious pollution. From Table 14, the air quality of
A1, A3, A7, A8 is at level I. A2, A4, A9 are belong to level II. A5 and A6 are belong to levels IV and V,
respectively. It is worthy to note that the certainty degree 0 in Table 14 indicates that there is no
membership at the level.
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Table 14. The final results of evaluation for air quality.

Cases
Final Certainty Degree Final Air

Quality LevelI II III IV V VI

A1 0.4599 0.2930 0.0030 0.0000 0.0033 0.0000 I
A2 0.1316 0.5421 0.1623 0.0000 0.0115 0.0000 II
A3 0.9119 0.1142 0.0018 0.0000 0.0040 0.0000 I
A4 0.1331 0.6136 0.0736 0.0001 0.0121 0.0000 II
A5 0.1276 0.0308 0.3346 0.4278 0.0608 0.0000 IV
A6 0.1272 0.0085 0.1554 0.1877 0.3408 0.0000 V
A7 0.8518 0.1532 0.0025 0.0000 0.0038 0.0000 I
A8 0.8138 0.1652 0.0029 0.0000 0.0048 0.0000 I
A9 0.1284 0.3589 0.2323 0.0000 0.0108 0.0000 II

In order to illustrate the distribution pattern, we took case A4 in Table 13 as an illustrative
example. In Figure 10, certainty degrees with different distribution patterns at each level for case
A4 can be seen. The certainty degree is maximum on the level II for case A4, which indicates that
case A4 belongs to level II. Additionally, when making a comparison among the cases that belong to
the same level, more information rather than the simple final level can be provided by the certainty
degree. For example, although cases A2, A4, A9 belong to the same level II, their certainty degrees
are different. The certainty degree of belonging to level II of cases A2, A4, A9 are 0.5421, 0.6136 and
0.3589, respectively, which allows us to reach the conclusion that case A4 is more likely to be level II
than cases A2, A9. The aforementioned discussion revealed that cloud model can not only determine
the air quality level, but also further expresses the relative severity of air quality at the same level.
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Table 15 shows the D-M test results on the basis of MAE loss function, from which a summary can
be obtained as follows: in the forecasting of all pollutants, the D-M values of LSSVM, EEMD-LSSVM are
larger than the upper bound of 1% significance level, which illustrates that CEEMD-BBODE-LSSVM
is significantly superior to the LSSVM, EEMD-LSSVM model. Additionally, the D-M values for
CEEMD-LSSVM are generally larger than the upper bound of 5% significance level, which denotes
the proposed CEEMD-BBODE-LSSVM hybrid model has better performance than CEEMD-LSSVM in
most cases. Obviously, the proposed hybrid model outperforms other benchmark models generally.
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Table 15. The results of D-M test.

D-M Test Jul.

Benchmark Model Target Model PM2.5 PM10 O3 CO NO2 SO2

LSSVM CEEMD-BBODE-LSSVM 4.28249 * 6.99631 * 11.55773 * 6.69119 * 8.35994 * 7.56095 *
EEMD-LSSVM CEEMD-BBODE-LSSVM 5.43788 * 6.39938 * 7.41868 * 4.92945 * 8.24263 * 5.24603 *

CEEMD-LSSVM CEEMD-BBODE-LSSVM 2.00715 ** 1.81403 *** 5.80117 * 1.65674 *** 2.72935 * 2.51401 **

D-M Test Aug.

Benchmark Model Target Model PM2.5 PM10 O3 CO NO2 SO2

LSSVM CEEMD-BBODE-LSSVM 8.35825 * 5.99979 * 12.10402 * 7.63585 * 8.51850 * 8.87180 *
EEMD-LSSVM CEEMD-BBODE-LSSVM 6.60765 * 5.96828 * 14.35558 * 4.55709 * 9.98957 * 6.79926 *

CEEMD-LSSVM CEEMD-BBODE-LSSVM 5.06978 * 0.13336 4.62010 * 1.77389 *** 5.05217 * 0.77962

D-M Test Sep.

Benchmark Model Target Model PM2.5 PM10 O3 CO NO2 SO2

LSSVM CEEMD-BBODE-LSSVM 8.77114 * 9.34361 * 11.15465 * 9.87993 * 10.61179 * 10.64809 *
EEMD-LSSVM CEEMD-BBODE-LSSVM 5.63757 * 9.63785 * 8.88177 * 9.19687 * 9.92837 * 4.73004 *

CEEMD-LSSVM CEEMD-BBODE-LSSVM 3.93133 * 3.29112 * 3.60436 * 2.21033 ** 5.59378 * 1.98392 **

D-M Test Oct.

Benchmark Model Target Model PM2.5 PM10 O3 CO NO2 SO2

LSSVM CEEMD-BBODE-LSSVM 5.26581 * 6.48092 * 9.63251 * 5.52022 * 9.57181 * 10.60434 *
EEMD-LSSVM CEEMD-BBODE-LSSVM 7.64110 * 7.62847 * 10.65943 * 5.52252 * 7.21038 * 5.42034 *

CEEMD-LSSVM CEEMD-BBODE-LSSVM 3.26291 * 2.27028 ** 4.95977 * 1.48417 5.29233 * 1.99318 **

* Denotes the 1% significance level; ** Denotes the 5% significance level; *** Denotes the 10% significance level.
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4. Discussion

4.1. The Forecasting Effectiveness Based on D-M Test

In this paper, a D-M test was utilized to distinguish the difference between error series generated
by a benchmark forecasting model and a target forecasting model, respectively, which has the capability
to verify the point forecasting performance for different forecasting models.

4.2. The Public Health Implications of the EWS

There is few air quality EWS studies in China, which mainly depends on weather research and
forecasting models (WRFs). However, WRFs are faced with many challenges in current applications,
such as high costs, heavy workload and the difficulty of model debugging in a short time. Additionally,
WRFs are usually implemented in the form of grids, and their local forecasting capability is poor.
The proposed EWS for Dalian is based on artificial intelligence theory. High precision and scientific
evaluation of the EWS in practical application was verified via the aforementioned numerical
simulations. The forecasting and evaluation modules in the proposed EWS can be integrated into
the existing air monitoring system in Dalian, which will promote the development of an EWS of air
quality and provide more warning information for the public. Furthermore, effective warnings about
air quality are conducive to lowering the incidence of public health diseases, such as lung, asthma or
cardiovascular disease.

4.3. Future Considerations for the Air Quality EWS

In the comparison of EWSs, the factors of effectiveness, efficiency, cost and precision are frequently
considered. Although the proposed EWS shows admirable performance in the tasks of forecasting
and evaluation, the presented system merely involves empirical models and does not involve the
deterministic models mentioned in literature reviews and WRFs. In order to get better performance in
the EWS, integration of empirical models, deterministic models and WRFs is necessary in the future,
which will combine the respective merits of the three models as much as possible and strengthen
the scientific basis of the EWS. Additionally, in order to enhance the practicability of the EWS, it is
necessary to establish an information platform on the EWS.

5. Conclusions

Establishing a comprehensive air quality warning system plays a particularly crucial role due to
the increasing levels of atmospheric pollution. However, how to establish an effective warning system
that has best performance is not only a challenging technical assignment, but also a noticeable concern
for the public. In this paper, a comprehensive warning system was developed successfully, which
consists of effective forecasting and scientific evaluation, respectively. For the forecasting module,
a novel hybrid forecasting model, namely CEEMD-BBODE-LSSVM, is proposed for point forecasting.
To simplify the complexity of the original data, the series of air pollutants are decomposed into several
IMFs using CEEMD, which can be reconstructed by the way of removing high-frequency signals.
However, no theory can determine the proper number of IMFs so far, which may be an aspect for
future investigations. The BBODE algorithm, as a modified BBO algorithm, is utilized to search for the
optimal LSSVM parameters in order to achieve a desirable forecasting performance. The simulation
results reveal that the hybrid model is remarkably superior to all benchmark models mentioned on the
basis of four metrics (MAE, MAPE, RMSE, R2). However, point forecasting cannot directly provide
the uncertainty information, which means that the decision-maker must bear great risk when using
point forecasting. Accordingly, to improve the accuracy and robustness of the forecasting performance,
interval forecasting is implemented with the purpose of quantifying the inherent uncertainties, which
has the capability to provide malleable information for the future trends of pollutants. Accordingly, it is
significant to integrate the point forecasting and interval forecasting, which is essential for optimally
regulating air quality. For the evaluation module, air quality is evaluated comprehensively applying
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a normal cloud model based on entropy–AHP theory, which also plays a vital part in this warning
system. Additionally, a multiple dimension cloud model, as an extension of the one dimensional cloud
model, is a promising evaluation method, which is a worthy study topic for the future. In this paper,
the study of an EWS for air quality is still in a starting phase, which merely involves one-step-ahead
forecasting. More exploration on multi-step-ahead forecasting and combination forecasting in theory
and practicality should be extensively implemented in the future.
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Abbreviations

CTM chemical transport model
MLR multiple linear regression
ARIMA integrated moving average model
GRNN general regression neural network
LSSVM least squares support vector machine
SVM support vector machine
AHP analytical hierarchical process
EMD empirical mode decomposition
EEMD ensemble empirical mode decomposition
CEEMD complementary ensemble empirical mode decomposition
IMF intrinsic mode function
DE differential evolution
BBO biogeography-based optimization
PDF probabilistic distribution function
CDF cumulative distribution function
AW average width
CP coverage probability
AQI air quality index
MAE mean absolute error
MAPE mean absolute percentage error
RMSE root mean square error
R2 goodness of fit
Std. standard deviation
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Appendix A

Appendix 1. The PDF and CDF Functions for Weibull, Gamma, Lognormal, Log-Logistic, Inverse Gaussian

Table A1. The PDF and CDF of five kinds of distributions.

Distribution PDF/CDF Parameters

Weibull
f (x; a, b) = b

a (
x
a )

b−1 exp[−( x
a )

b], x ≥ 0
a > 0 scale parameter
b > 0 shape parameter

F(x; a, b) = 1− exp[−( x
a )

b]

Gamma
f (x; a, b) = xa−1 exp(− x

b )/baΓ(a), x > 0
a > 0 shape parameter
b > 0 scale parameter

F(x; a, b) = 1
baΓ(a)

∫ x
0 ta−1 exp(− x

b )dt, x > 0

Lognormal
f (x; a, b) = 1

xa
√

2π
exp(− (Inx−b)2

2a2 ), x > 0
a > 0 scale parameter

b > 0 location parameter

F(x; a, b) = 1
a
√

2π

∫ x
0

1
t exp(− (Int−b)2

2a2 )dt

Log-logistic
f (x; a, b) = (b/a)(x/a)b−1

(1+(x/a)b)
2 , x > 0 a > 0 scale parameter

b > 0 shape parameter

F(x; a, b) = xb

ab+xb

Inverse
Gaussian

f (x; a, b) =
[

b
2πx3

]1/2
exp

[
−b(x−a)2

2a2x

]
, x > 0

a > 0 scale parameter
b > 0 shape parameter

F(x; a, b) =

Φ
[√

b
x (

x
a − 1)

]
+
[
exp( 2b

a )
]
Φ
[
−
√

b
x (

x
a + 1)

]

Appendix 2. The Test Functions in This Paper for BBO and BBODE Algorithm

Table A2. Test functions.

Function Name Test Function Variable Domain Global Optimum

Sphere f (x) =
d
∑

i=1
x2

i xi ∈ [−100, 100] fmin(0, 0, 0 · · · 0) = 0

Rosenbrock f (x) =
d−1
∑

i=1

[
100
(
x2

i − xi+1
)2

+ (xi − 1)2
]

xi ∈ [−30, 30] fmin(1, 1, 1 · · · 1) = 0

Rastrigin f (x) =
d
∑

i=1

(
x2

i − 10cos(2πxi) + 10
)

xi ∈ [−5.12, 5.12] fmin(0, 0, 0 · · · 0) = 0

Shaffer f (x) = 0.5 +

(
sin

√
d
∑

i=1
xi

2

)2

−0.5(
1+0.001

d
∑

i=1
xi

2

)2
xi ∈ [−100, 100] fmin(0, 0, 0 · · · 0) = 0

Griewank f (x) = 1
4000

d
∑

i=1
xi

2 −
d
∏
i=1

cos( xi√
i
) + 1 xi ∈ [−600, 600] fmin(0, 0, 0 · · · 0) = 0

Ackley f (x) = −a exp

(
−b

√
1
n

d
∑

i=1
xi

2

)
− exp

(
1
n

d
∑

i=1
cos(2πxj)

)
+ a + e

a = 20, b = 0.2, e = 2.7128

xi ∈ [−32, 32] fmin(0, 0, 0 · · · 0) = 0

Appendix 3. Pseudo-Code of the BBODE Algorithm

The detailed pseudo-code of the BBODE algorithm used in this paper can be summarized as follows:
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Parameters

t: the number of iteration Iter_Max: the maximum number of iteration
n: the maximum number of species size: the size of population
rand: the random number in [0,1] Vi: the mixed hybrid operator
MaxXi: the maximum individual MinXi: the minimum individual
C: the probability of mutation F: difference operator
1 /* Parameter setup */
2 /* Initialize population Pi */
3 /* Compute the fitness function Fi of each habitat, sort Fi */

4 Fi = MSE(
∣∣∣yreal − ŷ f orecast

∣∣∣)
5 /* Obtain elitist population */
6 /* Initialize probability of population in habitat */
7 FOR t < Iter_Max DO
8 IF t is odd THEN
9 /* Compute the number of population k */
10 /* Compute the rate of immigration λi and emigration µi for each habitat */
11 λi = 0.5I(1 + cos( kπ

n )); µi = 0.5E(1− cos( kπ
n ))

12 /* Normalize the immigration rate λscale */
13 λscale = λlower + (λupper − λlower) ∗ (λi −min(λi))/(max(λi)−min(λi))

14 /* Operation of migration */
15 Transform new information to habitat i
16 ELSE
17 FOR i = 1:size
18 Choose indexes r1 6= r2 6= i
19 /* Generate difference operator */
20 Vi = Pi + F ∗ (Pi(1)− Pi) + F ∗ (Pi(r1)− Pi(r2))

21 IF rand ≤ C THEN
22 /* Mutation operation */
23 Vi = MinXi + (MaxXi −MinXi) ∗ rand
24 END IF
25 END FOR
26 END IF
27 END FOR
28 /* Deassign for samples beyond the range */
29 /* Deassign for the same sample */
30 /* Compute fitness Fi for new population and sort Fi */
31 Obtain optimal solution
32 Postprocess results and visualization
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