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Abstract: With the development of the economy and society all over the world, most metropolitan
cities are experiencing elevated concentrations of ground-level air pollutants. It is urgent to predict
and evaluate the concentration of air pollutants for some local environmental or health agencies.
Feed-forward artificial neural networks have been widely used in the prediction of air pollutants
concentration. However, there are some drawbacks, such as the low convergence rate and the local
minimum. The extreme learning machine for single hidden layer feed-forward neural networks
tends to provide good generalization performance at an extremely fast learning speed. The major
sources of air pollutants in Hong Kong are mobile, stationary, and from trans-boundary sources. We
propose predicting the concentration of air pollutants by the use of trained extreme learning machines
based on the data obtained from eight air quality parameters in two monitoring stations, including
Sham Shui Po and Tap Mun in Hong Kong for six years. The experimental results show that our
proposed algorithm performs better on the Hong Kong data both quantitatively and qualitatively.
Particularly, our algorithm shows better predictive ability, with R2 increased and root mean square
error values decreased respectively.

Keywords: feed forward neural network; air pollution; back propagation; extreme learning machine;
prediction

1. Introduction

Currently, the environmental problem may be the most severe problem which has a great influence
on human health and ecosystems. The governments have put great efforts towards the control of
pollution, and have obtained much success. Because of the use of gasoline and other petrochemicals
and fossil fuels, air pollutants are emitted largely by industry and automobiles. The formation of air
pollutants is a very complex and nonlinear phenomenon, due to photochemical processes.

Air pollution degrades air quality and leads to several diseases, such as asthma, wheezing, and
bronchitis. Air Pollutant is formed in the atmosphere because other directly emitted pollutants react.
While Air Quality System monitoring data are viewed as the gold standard for characterizing ambient
air quality and determining compliance with the government Ambient Air Quality Standards, such
data are limited in space and time. The prediction of the concentration of air pollutants can enhance
the scientific understanding of air pollution and provide valuable information for the development
of optimal emission control strategies [1–5]. This predictive ability would also provide a better
understanding of the nature and relative contributions of different emission sources that are responsible
for the observed level of air pollutants. The system which is able to predict the concentration of air
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pollutants with sufficient anticipation can provide public authorities the time required to manage
the emergency. Great progress has been made in the prediction of the concentration of air pollutants
over the past decades. However, it is still challenging to accurately predict the concentration of air
pollutants due to the complex influential factors. It is necessary to study more effective methods to
accurately predict the concentration of air pollutants in the future.

The methods for the prediction of the concentration of air pollutants can be roughly divided into
two types: deterministic and stochastic. The deterministic approaches model the physical and chemical
transportation process of the air pollutants in terms of the influences of meteorological variables, such
as wind speed, relative humidity, and temperatures with mathematical models to predict the level of
air pollutants [6]. These methods can generate either short-term or long-term pollutant concentration
predictions. The performance of these models depends on a thorough understanding of the formation
mechanism of pollutants. Some researchers try to develop and improve an integrated air quality
modeling system that can simulate the sources, evolution, and environmental impacts of air pollutants
at all scales. However, it is still challenging to precisely predict the concentration of air pollutants, due
to the multiplicity of sources and the complexity of the physical and chemical processes which affect
the formation and transportation of air pollutants. Firstly, the parameters in the equations have a vital
influence on the prediction performance. Consequently, the complexity of the large partial differential
equations is high—they are very difficult to solve exactly and will sacrifice great computation resources.
Meanwhile, the density and quality of observations which are used as inputs to the model also affect
the accuracy of numerical predictions.

A statistical approach learns from historical data and predicts the future behaviour of the air
pollutants. Many statistical models are adopted to predict the concentration of air pollutants in space
and time as related to the dependent variables [7–11]. Some researchers proposed an exploitation
of the statistical relationships between the concentration of air pollutants and the corresponding
meteorological variables. It is not necessary to model a physical relationship between emissions and
ambient concentrations, but to analyze the time series directly. The representative methods include
time series analysis, Bayesian filter, artificial neural networks, etc. Although statistical models can
present accurate prediction, they cannot provide a detailed explanation of the air pollution [12–15].
The spatial temporal interpolation is the most popular algorithm in the predictions, and is based on
the assumption that the nearer two points are, the higher correlation they are [16]. It firstly analyzes
the correlation of the sampled data and then uses the correlation to predict the concentration in the
future [17]. However, these methods do not consider the transformation of the air pollutants in two
adjacent times. Thus, the dynamical information are not considered. Some researchers proposed
the combination of the observation and the output of the numerical weather system and obtain the
fused estimation of the concentration of air pollutants in the Bayesian framework [18]. However, the
unanalytic formation of the posterior distribution is generally solved by Markov Chain Monte Carlo
(MCMC) methods in which the parameters are generally difficult to determine.

Meteorological conditions significantly affect the levels of air pollution in the urban atmosphere,
due to their important role in the transport and dilution of pollutants. It has also been concluded that
there is a close relationship between the concentration of air pollutants and meteorological variables.
Thus, multiple linear regression models (MLR) are trained based on existing measurements and are
used to predict future concentrations of air pollutants in the future according to the corresponding
meteorological variables. Well-specified regressions can provide reasonable results. However, the
reactions between air pollutants and the influential factors are highly nonlinear, leading to a highly
complex system of air pollutant formation mechanisms. Therefore, although multiple linear regressions
are theoretically sophisticated for forecasting, they are not widely used in many applications. Moreover,
the outliers and the noise in the data have a strongly negative influence on the performance of these
regression-based algorithms. Statistical techniques do not consider individual physical and chemical
processes, and use historical data to predict the concentration of air pollutants in the future. It is very
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challenging to predict air quality using a simple mathematical formula which is unable to capture the
non-linear relationship among various variables.

Black box approaches have been recognized as perfect alternatives to traditional models for
input–output mathematical models. It is shown that neural networks show better performances
against MLR [19–25]. Artificial neural networks (ANN) have the advantages of incorporating
complex nonlinear relationships between the concentration of air pollutants and the corresponding
meteorological variables, and are widely used for the prediction of air pollutants concentration.
However, ANN-based approaches have the following main drawbacks: (1) ANN-based approaches
very easily fall into the trap of local minimum and have poor generalization; (2) they lack an analytical
model selection approach; (3) it is very time-consuming to find the best architecture and its weights by
trial and error.

According to the above superiority, we proposed the use of an extreme learning machine
(ELM) [26–28] to efficiently predict the concentration of air pollutants. To the best of our knowledge,
there are no declarations that use ELM to predict the concentration of air pollutants. Our paper has
two main contributions: (1) the prediction of the concentration of air pollutants in the framework of
ELM. It is concluded that ELM has stronger generalization than traditional statistical and ANN-based
methods, with extreme learning speed. In the second part, a brief introduction of the ELM is given and
we propose the prediction of the concentration of air pollutants based on ELM simultaneously [29];
(2) ELM is evaluated on the Hong Kong data qualitatively and quantitatively in the third section
comparing ELM with a feedforward neural network based on back propagation (FFANN-BP) and
MLR. In the last section, we conclude our work and make some comments on future work.

2. Study Area

Hong Kong is located on China’s south coast, with around 7.2 million inhabitants of various
nationalities, and is surrounded by the South China Sea on the east, south, and west, and borders the
Guangdong city of Shenzhen to the north over the Shenzhen River. It has a land area of 1104 km2,
is one of the world’s most densely populated metropolises, and consists of Hong Kong Island, the
Kowloon Peninsula, the New Territories, and over 200 offshore islands, of which the largest is Lantau
Island. In Hong Kong, millions of people live and work near heavily travelled roads. Summer is
hot and humid with occasional showers and thunderstorms, and with warm air coming from the
southwest, typhoons most often occur. The occasional cold front brings strong, cooling winds from the
north. It is generally sunny and dry in Autumn. The most temperate seasons are spring, which can be
changeable. The highest and lowest ever recorded temperatures across all of Hong Kong, on the other
hand, are 37.9 ◦C at Happy Valley on 8 August 2015 and −6.0 ◦C at Tai Mo Shan on 24 January 2016,
respectively. The primary pollutants are carbon monoxide and sulfur dioxide emissions from vehicles
and power plants.

In a rapidly changing city like Hong Kong, traffic volume, regulations, and related policies
have a great influence on the formation of air pollutants. Marine vessels and power plants are the
influential factors of Hong Kong’s air pollution. The emissions of power stations, and domestic and
commercial furnaces all contribute to the air pollution in Hong Kong. Smog is caused by a combination
of pollutants—mainly from motor vehicles, industry, and power plants in Hong Kong and the Pearl
River Delta. Approximately 80 % of the city’s smog originates from other parts of the Pearl River Delta.
Air quality has deteriorated seriously in Hong Kong as a result of urbanization and modernization.
Because of the reduction of air quality, cases of asthma and bronchial infections have recently increased.
The mortality rate from vehicular pollution can be twice as high as near heavily travelled roads. Thus,
city residents face a major health risk. Meanwhile, the pollution is costing Hong Kong financial
resources. The Environment Bureau of Hong Kong has been implementing a wide range of measures
locally to reduce the air pollution. The objective of overall policy for air quality management in
Hong Kong is to achieve as soon as reasonably practicable and to maintain thereafter an acceptable
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level of air quality to safeguard the health and well being of the community, and to promote the
conservation and best use of air in the public interest.

Air quality monitoring by the Environmental Protection Department is carried out by 12 general
stations and three roadside stations, including Causeway Bay, Central, Central Western, Eastern,
Mong Kok, Tung Chung, Shatin, Sham Shui Po, Kwai Chung, Kwun Tong, Tai Po, Tap Mun, Tsuen
Wan, and Yuen Long air monitoring stations. The coordinates of monitoring stations are shown in
Figure 1. The department began reporting data on fine suspended particulate—which are a leading
component of smog in the air—on an hourly basis. The seasons are defined as summer (March, April,
and May), monsoon (June, July, August), post-monsoon (September, October, and November), and
winter (December, January, and February). The descriptive statistics of air pollution in four season are
shown in Table 1, the winter and summer have the highest percentage.

Figure 1. The locations of air monitoring stations in Hong Kong.
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Table 1. The statistical description of four seasons in Sham Shui Po and Tap Mun, Hong Kong.

Air Pollutants Season Mean Variance Maximum Minimum

NO2 (µg/m3)

Summer 70.7 20.0 182 31
Monsoon 52.8 19.4 159 26

Post-Monsoon 67.9 16.0 137 17
Winter 75.7 21.4 185 27

NOx (µg/m3)

Summer 129.1 57.7 513 49
Monsoon 102.4 36.7 279 37

Post-Monsoon 102.9 26.5 234 27
Winter 132.7 61.1 601 31

O3 (µg/m3)

Summer 30.9 20.6 108 2
Monsoon 21.4 15.7 122 2

Post-Monsoon 44.6 23.8 118 4
Winter 29.2 16.4 93 2

PM2.5 (µg/m3)

Summer 45.1 29.3 569 11
Monsoon 28.8 14.8 116 11

Post-Monsoon 49.6 20.7 143 9
Winter 55.1 25.2 196 9

SO2 (µg/m3)

Summer 14.2 12.7 80 1
Monsoon 15.2 12.5 84 1

Post-Monsoon 11.5 8.2 62 0
Winter 13.7 10.5 125 0

Daily Average Temperature (◦C)

Summer 23.0 4.0 14.3 30.0
Monsoon 29.3 1.0 25.2 31.2

Post-Monsoon 26.4 2.8 19.8 30.5
Winter 16.4 3.0 7.7 20.8

Relative Humidity (%)

Summer 85 7.9 67 99
Monsoon 80.4 6.0 58 96

Post-Monsoon 75.4 7.9 54 94
Winter 71.9 13.4 29 95

Daily Max Temperature (◦C)

Summer 25.8 4.4 15.4 32.8
Monsoon 32.4 1.3 28.3 34.8

Post-Monsoon 30.0 3.0 22.1 35.1
Winter 20.3 3.4 9.2 27.1

Daily Min Temperature (◦C)

Summer 20.8 3.9 13.2 28.5
Monsoon 26.7 1.2 23.2 28.9

Post-Monsoon 24.0 2.6 18.2 28.0
Winter 13.6 3.0 6.3 18.8

Wind Speed (m/s)

Summer 24.4 9.9 7.0 53.6
Monsoon 17.1 7.6 6.8 43.3

Post-Monsoon 21.2 8.7 4.5 54.8
Winter 26.9 9.0 3.9 52.2

Prevailing Wind Direction (◦)

Summer 0.8 0.7 0.00 2.0
Monsoon 1.1 0.7 0.03 2.0

Post-Monsoon 0.7 0.7 0.03 2.0
Winter 0.9 0.7 0.0 2.0

3. Prediction of the Concentration of Air Pollutants Based on ELM

Meteorological conditions have a large and significant influence on the level of air pollutant
concentrations in the urban atmosphere due to their important role in the transport and dilution of
the pollutants. ELMs have become a hot area of research over the past years and have been proposed
for both generalized single-hidden-layer feedforward and multi-hidden-layer feedforward networks.
It has been becoming a significant research topic for artificial intelligence and machine learning because
of fast training and good generalization. It seems that ELM performs better than other conventional
learning algorithms in applications with higher noise.
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3.1. Multiple Linear Regression

Multiple linear regression (MLR) tries to model the explanatory variables and response variables
through fitting a linear relationship to observed data. That is to say,

yt = β0 + β1x1t + . . . + βpxpt + εt (1)

εt represents the residual term, which is normally distributed with mean 0 and variance σ. The
coefficients β = (β0, β1, . . . , βp) are calculated by minimizing the sum of the squares error from each
data point to the optimal value.

3.2. Feedforward Neural Network Based on Back Propagation (FFANN-BP)

Inspired by biological neural networks, artificial neural networks are used to approximate
functions that depend on a large number of inputs. The basic structure of artificial neural networks
includes a system of layered, interconnected nodes. Feed forward artificial neural networks are a
simplified mathematical model based on the knowledge of the human brain neural network from the
perspective of information processing, and have been found to perform remarkably well in capturing
complex interactions within the given input parameters with satisfactory performance.

FFANN-BP is the most popular and the widely-used supervised learning method, and requires a
teacher who knows the desired output for any given input. FFANN-BPs are systems of interconnected
neurons that exchange messages between each other, in which the connections have numeric weights
that can be tuned based on experience. They consist of an input layer and a hidden layer, the output
layer. Thus making FFANN-BPs adaptive to inputs and capable of learning. The learning process
repeats until the error of neural network decreases to the desired minimum.

The factors that influence the pollution concentration are classified and detected cautiously and
then used as the input data, and the concentrations are used as the output to train the neural networks.
FFANN-BPs can accurately represent the relationships between the influential factors and the air
pollution concentration which are not fully captured by the traditional approaches, and can be used to
predict the air pollutant concentration with the known influential factors.

The training process of FFANN-BPs consists of two iterative steps, including the forward-propagating
of the data stream and the back-propagating of the error signal. Firstly, original data are passed from
the input layer to the output layer through the hidden processing layer. The input of the j-th neuron in
the l-th layer xl

j is

xl
jq = ∑

i
wl

jiqyl−1
iq (2)

where wl
jiq is the weight that connects the i-th neuron in the l − 1-th layer and the j-th neuron in the

l layer, yl
jq = f (xl

jq)− θl
jq is the response of the j-th neuron in the l-th layer, and f is the activation

function which is used to introduce the non-linearity into the network. Generally, any nonlinear
function can be used as the activation function, such as the unit step function; the linear function
and the sigmoid function, θl

jq, is the bias of the neuron. If the real output is not consistent with
the desired output, then error is propagated backward through the network against the direction of
forward computing. The learning process consists of forward and backward propagations. FFANN-BP
dynamically searches the weight which minimizes the network error in the weight space, reaches the
aim of the memory process and the information extraction, and makes the real output of the network
closer to the desired output.

According to the convenience of the calculation, θl
jq can be considered as the weight of the neuron

whose response is constant with −1.
The total error of the network is

E =
1
2

m

∑
q=1

nL

∑
j=1

(yL
jq − ojq)

2 (3)
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where ojq is the target output of the j-th neuron in the output layer for the q-th sample, yL
jq is the

real output, m is the number of training samples, and L is the number of layers for neural network.
The biases can be adjusted according to the adjusting rules of the neurons. The connected weights in
the output layer can be updated online according to the following formula:

wL
jiq(t + 1) = wL

jiq(t) + ε(−∇wL
jiq

E) = wL
jiq(t) + ε

dyL
jq

dxL
jq
(yL

jq − ojq)yL−1
iq = wL

jiq(t) + εδL
j yL−1

iq (4)

where δL
j is defined as

δL
j =

dyL
jq

dxL
jq
(yL

jq − ojq) (5)

The connected weights in the hidden layers are updated with the following formula,

wl
jiq(t + 1) = wl

jiq(t) + εδl
jy

l−1
iq (6)

δl
jq =

dyl
jq

dxl
jq

nl

∑
s=1

δl+1
s wl+1

sjq (7)

where nl is the number of the neurons in the t-th hidden layer.
Three key drawbacks of FFANN-BP may be: (1) slow gradient-based learning algorithms are

extensively used to train neural networks. It is clear that the learning speed of feedforward neural
networks is in general far slower than required, and it has been a major bottleneck in their applications
for past decades. The overtraining of the neural network results from FFANN-BP. Good performance
is time-consuming in most applications due to the gradient-based optimization; (2) All the parameters
of the networks are tuned iteratively by using such learning algorithms. When the learning rate η

is too small, the convergence of FFANN-BP is too slow. When the learning rate η is too large, the
performance of the algorithm is not stable, even divergence; (3) FFANN-BP is always prone to get
caught up in a local minimum, not satisfying the performance requirements.

3.3. Prediction of the Concentration of Air Pollutants Based on ELM

ELM is basically a two-layer neural network in which the first layer is fixed and random, and
the second layer is trained. The basic structure of ELM is shown in Figure 2. ELM has recently been
used for classification and regression, clustering, feature selection, etc. Hardware implementation and
parallel computation techniques guarantee the training of ELM. ELM has been widely used in a variety
of areas, such as biomedical engineering and computer vision. Many researchers from every corner
of the world pay great attention to finding an effective learning algorithm to train neural networks
by adjusting hidden layers. ELM shows that hidden neurons are important but need not be tuned in
many applications, which is proposed based on our intuitive belief in biological learning and neural
networks’ generalization performance theories, in which the weights connecting inputs to hidden
nodes are randomly assigned and never updated because of the randomly generated hidden nodes.

It is different with other machine learning algorithms, such as supported vector machine
(SVM) [30] and deep learning [31]. SVM uses a kernel function to implement the feature mapping.
In deep learning, one uses Restricted Boltzmann machines or Auto-Encoders/Auto-Decoders for
feature mapping. It is different with traditional learning algorithms such as FFANN-BP, in which the
parameters of hidden layers and the output layer all need to be adjusted. In ELM, the weights of
hidden layers need not to be adjusted.

The training of ELM generally consists of two main stages, including random feature mapping
and linear parameters solving. In the second stage, the output weight fi is calculated.
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Given N different samples (xi, ti), where xi = [xi1, xi2, . . . , xin]
T ∈ Rn and ti = [ti1, ti2, . . . , tim]

T ∈
Rm, i = 1, . . . , N. In our study, ti is the i-th air pollutants concentration, and xi is the corresponding
meteorological variables. The neural network has Ñ hidden nodes, Ñ ≤ N. One first randomly assigns
input weight wi and bias bi, and hidden node number Ñ, maps the input data nonlinearly into a feature
space by the specified transform activation function g(x), and obtains the hidden layer output matrix
H. The weight vector wi = [wi1, wi2, . . . , win]

T connects the i-th hidden neuron and the input neurons,
and the weight vector βi = [βi1, βi2, . . . , βim]

T connects the i-th hidden neuron and the output neurons;
bi is the threshold of the ith hidden neurons. Compared with FFANN-BP, the input weights and the
biases of the hidden layer are first randomly generated, and then the output weights are analytically
adjusted through simple generalized inverse operation of the hidden layer output matrices in ELM.
This is equivalent to minimizing the cost function

E =
N

∑
j=1

(
Ñ

∑
i=1

βig(wixi + bi)− tj)
2 (8)

It is undesirable that the learning algorithm stops at a local minima if it is located far above a global
minima. Thus, the weights between the hidden layer and the output layer are the only parameters
needing to be tuned. It has been proven that the standard single layer forward networks with Ñ hidden
nodes and activation function g(x) can approximate these N samples with error and give sufficient
training error for any given training set with probability one. That is to say, there theoretically exist the
weight vector βi, wi and threshold bi such that

Ñ

∑
i=1

βig(wixj + bi)) = tj, j = 1, 2, . . . , N. (9)

We write the above N equations compactly as follows:

Hβ = T (10)

where

H(w1, . . . , wÑ , b1, . . . , bÑ , x1, . . . , xN) =

 g(w1 · x1 + b1) . . . g(wÑ · x1 + bÑ)
... . . .

...
g(w1 · xN + b1) . . . g(wÑ · xN + bÑ)


N×Ñ

(11)

Theoretically, any output functions may be used in different hidden neurons. However, it is necessary
to satisfy the universal approximation capability theorem.

In the second stage of ELM training, we found the weights connecting the hidden layer and the
output layer

β∗ = H†T (12)

where H† represents the Moore–Penrose generalized inverse of matrix H,

H =

h(x1)
...

h(xN)

 =

h1(x1) · · · hL(x1)
...

...
...

h1(xN) · · · hL(xN)

 (13)
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is the hidden layer output randomized matrix, and T is the training data target matrix,

T =

tT
1
...

tT
N

 =

 t11 · · · t1m
...

...
...

tN1 · · · tNm

 (14)

The learning stability is also considered in ELM. ELMs have more generalization ability, and
aim to reach the global maximum solution. ELMs not only achieve state-of-the-art performances, but
also speed up the training of the network. It is difficult to achieve such performance by conventional
learning techniques.

It is noted that there are no biases in the output nodes which will result in suboptimal solutions.
Moreover, the number of the hidden neurons is smaller than the number of distinct training samples.
The activation function of the hidden neurons is generally continuous and differentiable in the
traditional feed forward neural network. FFANN-BP is quite essentially different from MLR. However,
each of them can be adjusted to suit the specific applications.

Figure 2. The structure of extreme learning machine (ELM). The parameters of the hidden layer are
randomly generated, and the parameters of the output layer are adjusted by least squares algorithm.

4. Experiments

The performance of MLR, FFANN-BP, and ELM are evaluated on Hong Kong data sets which
are observed from Hong Kong Observatory (HKO) and Environmental Protection Department (EPD).
Because of the performance of the instruments, the data sets are not noise -free. The effectiveness of
the data are poor, and the incompleteness of data has a limitation on our study. In this study, six year
daily data (2010–2015) of five air pollutants at Sham Shui Po and Tap Mun air quality monitoring
stations in Hong Kong was used to evaluate the accuracy of the above-mentioned statistical techniques.
The air quality variables used in this study are nitrogen dioxide (NO2), nitrogen oxide (NOx), ozone
(O3), particulate matter under 2.5 µm (PM2.5), and sulfur dioxide (SO2). We took the average of 24
h concentration as the daily mean concentration. All the values are in µg/m3. We deleted all NAs
(missing values) in the data set. Eleven predictor variables and one response variable were used, which
is the next day’s air pollutant concentration. For each pollutant, NAs and outliers are about 3%.

Similarly, meteorological parameters were recorded on a daily basis. Hence, the 24 hourly
averaged surface meteorological variables such as daily maximum temperature, minimum temperature,
difference between daily maximum and minimum temperature, average temperature (T in ◦C), wind
speed (WS in m/s), wind direction (WD in rad), relative humidity, and three time variables such as
day of the week and month of the year as inputs for three machine learning models, observed in
Sham Shui Po and Tap Mun and acquired from Hong Kong observatory for the period from 2010 to
2015. The influential factors are selected by the a priori knowledge of the characteristics of potential
input variables, such as the close relationship between each pollutant and the meteorological variables.
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Furthermore, the different combinations of the meteorological variables were tested, and we selected
the combination with the best performance to predict the air pollutant concentrations based on the
trained neural network and the corresponded predictors. Lagged air pollutant concentrations were
included as a predictor variable. It is noted that the wind direction is replaced by the following, which
has been calculated through:

WD = 1 + sin(ϕ− π/4) (15)

where ϕ is the wind direction in radians.
The experiments are carried out in MATLAB 2014 environment running in a Pentium 4, 1.9 GHZ

CPU. We adopted 10-fold cross-validation to assess whether ELM can be generalized to an independent
data set. Using the 10-fold cross validation (CV) scheme, the dataset was randomly divided into ten
equal subsets. At each run, nine subsets were used to construct the model, while the remaining subset
was used for prediction. The average results and the correlation coefficients are shown in Table 2.
The average accuracy for 10 iterations was recorded as the final prediction. We use the training subset
to learn and adjust the weights and biases of the predefined ELMs, and the testing subset is used to
evaluate the generalization ability of the trained network. Generally, the larger the training set, more
accurate models will be obtained.

In order to avoid the performance being dominated by any variables, we scaled the data set
to commensurate data ranges, data including the inputs and the targets have been normalized into
[−1, 1]. The results of the models were reverse-scaled to compare the performance of MLR, FFANN-BP,
and ELM. For FFANN-BP, we adopted the Levenberg–Marquardt algorithm, which is generally the
fastest method for training moderate-sized FFANN. For ELM, the sigmoid function for the hidden
layer and linear function for the output layer are used in our paper.

The number and selection of input variables are very important in the performance of the
prediction of air pollutant concentration algorithms. For FFANN-BP and ELM, the number of hidden
nodes are gradually increased. We selected the optimal number of nodes for FFANN-BP and ELM by
cross-validation. The number of the hidden nodes for ELM and FFANN-BP was set as 20.

In order to evaluate the performance of the three methods, four statistical parameters were
calculated, including mean absolute error (MAE), root mean square error (RMSE), the index of
agreement (IA), and the coefficient of determination (R2). RMSE, MAE, IA, and R2 of the three models
are shown in Table 2. The results with the highest R2 value and the lower value of RMSE is the best
method. RMSE is calculated as follows :

MAE =

n

∑
i=1
|Oi − Ti|

n
(16)

RMSE =

√√√√√ n

∑
i=1

(Oi − Ti)
2

n
(17)

R2 =

n

∑
i=1

(Ti − Ō)2

n

∑
i=1

(Oi − Ō)2
(18)

IA = 1−

n

∑
i=1

(Ti −Oi)
2

n

∑
i=1

(|Oi − Ō|+ |Ti − Ō|)2
(19)
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where Oi is the i-th corresponding observed concentration, Ti is the i-th predicted concentration, Ō
is the average of observation, and n is the number of data. Table 3 summarizes the performance of
the derived models in the four sites in terms of the squared correlation coefficient (R2) among the
observed the observed and predicted values, the mean average error (MAE), the root mean square
error (RMSE), and the index of agreement (IA).

4.1. Results

Firstly, the architectures for the four seasons of summer, monsoon, post-monsoon, and winter
have been trained through MLR, FFANN-BP, and ELM based on daily data of 2010–2015. Hence, the
forecasted values of daily air pollutant concentrations for the validated data have been compared with
the observed values of the same time, as shown in Table 2. The R2, RMSE, IA, and MAE were found
to be better in summer than in all three seasons. The coefficients of determination (R2) have almost
significant values (0.70) in all seasons. The statistical analysis of the three models’ validation in the
validated data have been shown in the same table, which reveals that ELM is performing satisfactorily
with respect to RMSE and R2 in summer, winter, post-monsoon, and monsoon, in decreasing order.
However, we found that the ELM model obtained the best performance in terms of four statistical
parameters. We found that root mean square error (RMSE) and mean absolute error (MAE) were better
in summer than in all three seasons, the R2 and IA were observed to be almost the same in all seasons.

4.1.1. Coefficient of Determination

Based on the performance measures, ranking of the statistical models used in the present study
have been done in Table 2. We selected the Sham Shui Po monitoring station to demonstrate the
performance of the three methods. The coefficient of determination for NO2 varied from 0.52 to 0.61
for MLR, 0.57 to 0.67 for FFANN-BP, and 0.65 to 0.71 for ELM for four seasons. The coefficient of
determination for NOx varied from 0.54 to 0.66 for MLR, 0.56 to 0.76 for FFANN-BP, and 0.62 to 0.83
for ELM for four seasons. The coefficient of determination for O3 varied from 0.54 to 0.59 for MLR,
0.59 to 0.60 for FFANN-BP, and 0.55 to 0.72 for ELM. The coefficient of determination for PM2.5 varied
from 0.50 to 0.64 for MLR, 0.52 to 0.67 for FFANN-BP, and 0.70 to 0.82 for ELM. The coefficient of
determination for SO2 varied from 0.55 to 0.74 for MLR, 0.54 to 0.71 for FFANN-BP, and 0.61 to 0.78
for ELM. The observations made in the study reveal that the ELM-based technique scored well over
MLR and FFANN-BP. ELM is the most suitable statistical technique for the prediction of air pollutant
concentrations. The results reveal that the performance of the statistical models is often superior to
MLR and FFANN-BP for four seasons.

4.1.2. RMSE

There appears to be very good agreement between the predicted and observed concentrations for
three models. However, the ELM model yielded the lowest RMSE compared to the slightly higher
values obtained by FFANN-BP and MLR. The ELM model performed best in terms of RMSE, which
is in agreement with the coefficient of determination results. It is shown in Table 2 that the RMSE
between the predicted and the observed concentrations for each air pollutant has the lowest values
for ELM. However, for MLR and FFANN-BP, the RMSE is higher. A similar conclusion is drawn
for mean absolute error. Clearly, ELM outperforms the other two counterparts in the testing phase.
This indicates that the ELM model had a slightly better skill in the generalization. The same advantages
of the three techniques is that they use a single type of data concentration and effort in training the
data with meteorological, emission, and other such data—in comparison to other methods such as the
numerical models. However, MLR can not capture the complex relationship of the data. This results in
the poor performance of MLR. The high values of the index of agreement indicate a satisfying forecast
of the daily average values of air pollutant concentration by the three models for four seasons.
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4.1.3. Speed

Moreover, it is shown in Table 3 that ELM performs better in terms of the learning speed against
MLR and FFANN-BP. The greatest proportion of learning time of ELM is spent on calculating the
Moore–Penrose generalized inverse of the hidden layer output matrix H. We run the efficient optimal
FFANN-BP package provided by MATLAB2014 (MathWorks, Natick, MA, USA) for this application.
The learning speed of ELM is faster than classic learning algorithms, which generally take a long
time to train FFANN-BP. It is noted that ELM is the fastest compared to MLR and FFANN-BP. The
experimental results show that ELM spent 0.183 s obtaining the testing RMSE 10.1; however, for
FFANN-BP, it took 5 s to reach a much higher testing error of 15.8 for the O3 concentration at Sham
Shui Po. It can also be seen that ELM runs around 25 times faster than FFANN-BP, and eight times
faster than MLR for the prediction of Hong Kong air pollutants. However, ELM only spent 0.05 s
on learning, while FFANN-BP spent nearly 3 s on training. The underlying reason is that it is not
necessary for ELM to iteratively search for the optimal solution. On the contrary, FFANN-BP obtains
the optimal solution by gradient-based optimization.
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Table 2. The mean performance of multiple linear regression (MLR), feedforward neural network based on back propagation (FFANN-BP), and extreme learning
machine (ELM) for Sham Shui Po and Tap Mun. RMSE: root mean square error; R2: coefficient of determination; IA: index of agreement; MAE: mean absolute error.

Stations Season Air Pollutants MLR FFANN-BP ELM
RMSE R2 IA MAE RMSE R2 IA MAE RMSE R2 IA MAE

Sham Shui Po

Summer

NO2 19.0 0.57 0.77 15.4 16.9 0.61 0.81 13.7 14.3 0.71 0.86 11.7
NOx 41.0 0.69 0.85 33.1 37.8 0.75 0.88 30.7 30.8 0.80 0.92 24.9
O3 14.5 0.56 0.85 11.4 13.2 0.64 0.88 10.4 10.1 0.78 0.93 8.0

PM2.5 16.4 0.57 0.83 13.1 12.9 0.68 0.89 10.3 11.3 0.74 0.92 8.9
SO2 7.9 0.62 0.88 6.2 6.9 0.71 0.91 5.4 5.4 0.84 0.95 4.3

Monsoon

NO2 28.2 0.52 0.69 22.7 24.8 0.56 0.76 20.2 19.5 0.64 0.83 16.3
NOx 44.3 0.62 0.76 31.6 36.3 0.66 0.82 29.2 28.3 0.74 0.92 21.4
O3 30.3 0.54 0.70 24.2 20.3 0.56 0.78 16.2 17.3 0.60 0.85 13.7

PM2.5 18.9 0.64 0.70 17.7 14.8 0.67 0.82 11.9 6.9 0.86 0.94 5.5
SO2 18.1 0.54 0.69 19.6 16.9 0.60 0.74 13.6 10.6 0.67 0.86 8.5

Post-Monsoon

NO2 28.1 0.61 0.69 24.7 23.8 0.67 0.76 19.2 17.2 0.69 0.86 13.9
NOx 45.3 0.54 0.68 40.9 43.3 0.56 0.79 36.2 31.7 0.62 0.86 28.4
O3 29.2 0.59 0.66 23.6 20.3 0.56 0.77 16.2 17.2 0.55 0.84 14.3

PM2.5 23.4 0.50 0.69 27.7 19.8 0.52 0.74 21.9 17.7 0.72 0.83 13.2
SO2 15.1 0.55 0.62 14.6 11.9 0.54 0.71 11.6 8.1 0.61 0.77 7.0

Winter

NO2 31.2 0.60 0.61 27.7 28.5 0.66 0.68 25.2 21.2 0.71 0.74 18.9
NOx 43.3 0.56 0.72 40.1 40.7 0.63 0.79 36.2 39.0 0.77 0.91 27.6
O3 26.3 0.58 0.69 24.2 18.3 0.60 0.76 16.2 19.3 0.72 0.83 15.7

PM2.5 25.4 0.60 0.69 20.7 21.9 0.67 0.76 18.8 18.2 0.71 0.89 15.0
SO2 13.7 0.74 0.77 14.6 15.8 0.71 0.79 10.6 7.1 0.62 0.87 5.8

Tap Mun

Summer

NO2 25.6 0.64 0.69 22.7 20.6 0.70 0.74 18.4 19.2 0.73 0.79 16.7
NOx 35.5 0.65 0.80 30.3 27.2 0.71 0.86 26.6 25.7 0.72 0.91 23.7
O3 23.4 0.64 0.76 18.5 15.7 0.79 0.85 11.2 12.3 0.84 0.90 10.9

PM2.5 26.2 0.69 0.76 22.1 19.8 0.74 0.81 17.6 17.9 0.79 0.84 15.3
SO2 13.1 0.69 0.76 10.2 9.9 0.74 0.86 7.6 7.3 0.85 0.91 5.9

Monsoon

NO2 25.9 0.67 0.72 22.7 25.2 0.66 0.71 23.2 20.1 0.75 0.78 18.2
NOx 36.8 0.61 0.68 31.6 30.4 0.69 0.73 27.3 27.7 0.74 0.79 24.9
O3 25.7 0.62 0.68 19.2 20.1 0.71 0.75 18.5 17.6 0.79 0.82 14.8

PM2.5 17.4 0.65 0.70 12.7 14.8 0.69 0.77 11.9 10.1 0.76 0.81 8.5
SO2 14.9 0.65 0.79 13.4 13.6 0.79 0.83 11.2 7.5 0.84 0.89 6.9

Post-Monsoon

NO2 27.7 0.65 0.70 24.2 23.2 0.76 0.82 18.3 17.6 0.80 0.87 15.7
NOx 38.8 0.69 0.73 34.3 35.2 0.74 0.79 30.2 30.4 0.81 0.86 28.6
O3 26.3 0.54 0.58 24.2 18.3 0.59 0.63 16.4 17.6 0.74 0.77 11.8

PM2.5 28.3 0.70 0.75 26.2 23.9 0.77 0.81 21.9 17.6 0.82 0.89 15.8
SO2 13.2 0.74 0.80 11.1 10.0 0.76 0.88 9.2 7.2 0.89 0.91 6.4

Winter

NO2 35.1 0.58 0.63 32.6 30.8 0.67 0.69 27.7 26.4 0.72 0.77 30.6
NOx 38.9 0.55 0.60 31.7 32.4 0.61 0.63 28.2 26.7 0.67 0.72 24.9
O3 31.8 0.62 0.72 29.6 28.4 0.74 0.79 25.6 25.7 0.77 0.82 20.7

PM2.5 29.6 0.64 0.75 25.3 25.8 0.77 0.81 20.1 20.1 0.82 0.86 16.5
SO2 12.4 0.69 0.75 10.6 11.7 0.72 0.80 9.3 7.7 0.79 0.83 6.1
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Table 3. The training time s of MLR, FFANN-BP, and ELM on the air pollutant O3 with the size of the
hidden layers 20 at Sham Shui Po.

Air Pollutants MLR FFANN-BP ELM

NO2 0.25 5.11 0.05
NOx 0.27 4.96 0.06
O3 0.33 7.38 0.07

SO2 0.26 6.41 0.05
PM2.5 0.44 6.38 0.06

4.1.4. Generalization

The generalized accuracy is estimated in our study. It is shown in Table 2 and Figures 3–7 that the
generalization of ELM is often better than gradient-based learning, as in FFANN-BP. FFANN-BP has
some drawbacks, such as local minima and low convergence rate. It is shown that FFANN-BP falls
into the trap of local minima. Some measures, such as weight decay and early stopping strategies are
adopted to avoid these issues. In a reverse manner, ELM, reaching the solutions directly, is simpler
than FFANN-BP. It is shown that the generalization ability of ELM is very stable with the number of
the hidden nodes.
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Figure 3. Comparison of prediction results among multiple linear regression (MLR), feedforward
neural network based on back propagation (FFANN-BP), and extreme learning machine (ELM).
NO2 predictions (a) MLR; (b) FFANN-BP; (c) ELM.
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Figure 4. Comparison of prediction results among MLR, FFANN-BP, and ELM. NOx predictions
(a) MLR; (b) FFANN-BP; (c) ELM.
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Figure 5. Comparison of prediction results among MLR, FFANN-BP, and ELM. O3 predictions (a) MLR;
(b) FFANN-BP; (c) ELM.
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Figure 6. Comparison of prediction results among MLR, FFANN-BP, and ELM. PM2.5 predictions
(a) MLR; (b) FFANN-BP; (c) ELM.
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Figure 7. Comparison of prediction results among MLR, FFANN-BP, and ELM. SO2 predictions
(a) MLR; (b) FFANN-BP; (c) ELM.

4.2. Episode

Different breakpoint concentrations and different air quality standards have been reported in the
literature. In Hong Kong, to reflect the status of air quality and its effects on human health breakpoints
have been considered for individual air pollutants; for example, for PM2.5 (0–50 µg/m3) “Low”, “High”
(≥50 µg/m3). In summary, the “High” level is around 33.5%, and the percentage of “Low” level is
around 66.5% in Hong Kong, respectively (about 3% of the data are NAs). The daily average values of
days and the annual average value was persistently higher than the limit value of 50 µg/m3. Thus, the
limit value of 50 µg/m3 was selected in order to verify the forecast quality of the developed models.
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As was mentioned in the introduction, the concentration levels in Hong Kong center are
considerable when compared to the standards imposed by the World Health Organization (WHO).
The daily average values exceeded the limit value of 50 µg/m3 in 38% of days. Thus, the limit value
of 50 µg/m3 was selected in order to verify the predicted quality of the ELM model. We selected the
probability of detection (POD) and false alarm rate (FAR) indices in order to evaluate the prediction
accuracy for the exceedances of the imposed limit. The POD and FAR should be reasonably high and
low, respectively. It is shown in Table 4 that the three models fulfill these conditions to a large extent.
Particularly, the ELM model can predict the exceedance and the non-exceedances accurately.

In order to show that the models can accurately predict the exceedances of the imposed limit, the
values of POD and FAR should be reasonably high and low, respectively. The definitions of b, POD, PC
and FAR are shown in the Formulas (20)–(23). As is exhibited in Table 4, these conditions are fulfilled
by both models to a large extent. Moreover, the developed models can predict the exceedances and the
non-exceedance to a satisfactory level.

b =
A + C
A + B

(20)

POD =
A

A + B
(21)

PC =
A + D

A + B + C + D
(22)

FAR =
C

A + B
(23)

where A, B, C, D represent the number of exceedances that were observed and forecasted, the number
of exceedances that were observed but not forecasted, the number of exceedances that were not
observed but forecasted and non-exceedances, respectively. Generally, the high levels of POD values
show that the perfect performance of ELM in predicting the exceedances of PM2.5. Moreover, the FAR
are found to be around 30%, the success rate of detection reach up to 91%. The lower performance of
the RBF-NN shows that it is not appropriate for the prediction of the concentration of exceedances.
Multilayer perceptron (MLP-NN) maps sets of input data onto a set of appropriate output. It provides
powerful models which can distinguish data that are either nonlinearly. Radial basis function (RBF-NN)
which is a neural network has radially symmetric functions in the hidden layer nodes. For RBF, the
distance between the input vector and a prototype vector play an important role on the activation of
the hidden neurons.

Table 4. The mean predicting performance of the exceedance for the air pollutant PM2.5 for RBF-NN,
MLP-NN, and ELM. b: bias; POD: probability of detection; PC: the percentage correct; FAR: false
alarm rate.

Statistical Measure RBF-NN MLP-NN ELM

b 0.39 0.86 0.95
FAR 0.24 0.31 0.27
POD 0.22 0.67 0.73
PC 0.86 0.87 0.91

4.3. Comparison with Previous Studies

As stated above, during the last decade, many researchers used ANNs to forecast the particulate
matter concentration levels in the ambient air pollution for Hong Kong, and numerous papers have
been published. Some of them have focused on the prediction of hourly PM2.5 concentrations in
Central and Mong Kong, Hong Kong [32,33], and proved the effectiveness of the proposed model.
Specifically, Fei et al. [34] used to forecast hourly air pollutant NO2 concentrations in Hong Kong, and
reported a correlation coefficient between modeled and measured concentrations around 0.70; there
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was a reasonably good agreement between the predicted and observed NOx and O3 values. Zhao et al.
(2003) [35] proposed the use of quantile and multiple line regression models for the forecasting of O3

concentrations in Hong Kong, and reported better performance, depending on the site, the training
algorithm, the input configuration, etc. The results proved that the MLR worked better at suburban
and rural sites compared to urban sites, and worked better in winter than in summer. Gong [36]
proposed the combination of preprocessing methods and ensemble algorithms to effectively forecast
ozone threshold exceedances, aiming to determine the relative importance of the different variables for
the prediction of O3 concentration.

We also compare the performance of ELM with other similar methods in Table 5 [37–41].

Table 5. The mean performance of other similar methods. RMSE: root mean square error; R2: coefficient
of determination.

Publication Area Air Pollutant R2 RMSE Methodology

Bougoudis et al. (2016) [37] Athens SO2 0.75 8.30 Combined machine learning algorithm
Paschalidou et al. (2011) [38] Limassol, Cyprus PM10 0.33 26.2 PCA-RBF

Papaleonidas and Iliadis. (2013) [39] Athens O3 0.71 15.2 Neurocomputing
Kumar and Goyal. (2013) [40] Delhi Air Quality Index 0.77 32.1 PCA-NN

Azid et al. (2014) [41] Malaysia Air Quality Index 0.615 10.0 FFANN-BP PCA

5. Conclusions

In this paper, we proposed the prediction of the concentration of air pollutants based on ELM,
due to the drawbacks of FFANN-BP, such as low convergence and their tendency to get caught in the
local minimum. Compared with FFANN-BP, ELM overcomes the above drawbacks. ELM has several
interesting and significant advantages compared with FFANN-BP which are based on a gradient
learning algorithm.

It was shown that ELM performs well in terms of precision, robustness, and generalization.
There are no significant differences between the prediction accuracies of each model. ELM provided
the best performance on indicators related to goodness of the prediction, such as R2 and
RMSE, etc. The present study revealed that ELM perform slightly better than those of the simple
statistical techniques.
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