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Abstract: Advanced glycation end-products (AGEs) are formed endogenously as a normal ageing
process and during food processing. High levels of AGEs have been implicated in the development of
both macrovascular disease and microvascular disease. The purpose of this secondary analysis was to
determine whether a major AGE species, Nε-carboxymethyllysine (CML), was reduced after weight
loss. CML values decreased by 17% after weight loss. Participants with diabetes and pre-diabetes had
a lower CML values at baseline and a smaller change in CML than overweight participants without
diabetes. We conclude that, in addition to the known health benefits, weight loss may reduce AGEs.
Randomized studies of the effect of weight loss on AGE in people with and without type 2 diabetes
are needed to confirm these results.
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1. Introduction

Advanced glycation end-products (AGEs) are the nonenzymatic posttranslational modification
of carbonyl groups of reducing sugars and free amino groups of proteins [1]. AGEs are formed
endogenously as a normal ageing process or during food processing and ingested via diet contributing
to circulating and tissue AGEs in the body [2,3]. Consumption of high AGE food can increase the total
daily AGE intake by 25% compared to the average adult intake [4,5]. It has been demonstrated that
approximately 10–30% of dietary AGEs consumed are intestinally absorbed, with only one-third of
ingested AGEs excreted in urine and faeces [6]. Nε-carboxymethyllysine (CML), a major AGE species,
has frequently been used as a marker both in foods and in vivo [7–9]. The absorption of CML from
foods, its metabolism, distribution, and elimination are partly elucidated [10] and a subject of current
research interest [11,12]. Excessive AGE accumulation in the body may cause significant cellular
dysfunction and are implicated in the development of both macrovascular disease and microvascular
diseases in people with diabetes [13]. The mechanisms involved are thought to be increased vascular
and myocardial stiffening, inflammation, and oxidative stress [14].

The effects of decreasing the dietary intake of AGEs on risk markers for cardiovascular
disease has been examined in a recent meta-analysis of randomized controlled trials that included
560 participants [15]. Low AGE diets were found to decrease insulin resistance in the whole group,
decrease total and low density lipoprotein (LDL)-cholesterol in those without diabetes, and decrease
fasting insulin and C-reactive protein (CRP) in people with type 2 diabetes (n = 112). Reductions in
tumour necrosis factor α (TNF-α), vascular cell adhesion molecule-1 (VCAM-1), 8-isoprostane, leptin,
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circulating AGEs, and soluble receptor for AGEs were reported. An increase in adiponectin, white cell
sirtuin-1 mRNA, and the estimated glomerular filtration rate were also reported. Kellow (2013) also
reported benefits of AGE reduction in a review of 12 trials with 289 participants [16]. Meta-analysis
of two 16-week trials showed a reduction in 8-isoprostanes and TNF-α. There were beneficial effects
on VCAM-1 in people with chronic renal failure and on the homeostatic model assessment of insulin
resistance and LDL-cholesterol in people without diabetes. Clarke (2016) identified 12 dietary AGE
intervention studies with 293 participants and reported that a high AGE intake increased TNF-α in all
populations and increased 8-isoprostanes in healthy subjects and VCAM-1 in people with diabetes [3].
However, the current studies lack enough high-quality randomized trials to make a recommendation
that dietary AGE restriction would alleviate chronic disease such as inflammation and oxidative stress.

Foods high in protein and fat have the highest amounts of AGEs, and foods that have been cooked
at high temperature, e.g., fried, grilled, or roasted, will have higher AGEs than foods boiled, poached,
or stewed [14]. Intervention studies of low AGE diets provide limited information on how the dietary
change was achieved, so it is unclear if cooking methods were changed or if particular foods were
excluded or both [5,17].

Energy restriction for weight loss is likely to result in a decreased intake of AGEs, as high-energy
foods cooked at high temperatures, e.g. roasted nuts and fried food, as well as fat intake will be reduced.
Gugliucci (2009) found that serum AGEs were reduced by 7% after weight loss in 37 subjects [18].
However, AGEs were measured by fluorescence intensity rather than by measurement of specific AGE
species such as Nε-carboxymethyllysine (CML), a stable, relatively inert and non-fluorescent AGE [19].

The purpose of this secondary analysis was to determine whether a major AGE species,
Nε-carboxymethyllysine (CML) was reduced after weight loss in subjects with and without diabetes
who had participated in previously published weight loss studies [20,21].

2. Materials and Methods

2.1. Study Participants

In the first weight loss study, 120 men were randomized to a low-fat, energy-restricted diet
(7 MJ/day) either high in protein (HP) or carbohydrate (HC) for 52 weeks, and 68 completed the study
(33 HP, 35 HC). Both groups lost weight (HP −12.3 ± 8.0 kg; HC −10.9 ± 8.6 kg) indicating adherence
to the prescribed energy reduction [20]. In the second study, 65 participants with type 2 diabetes or
impaired glucose tolerance were randomized to two energy-restricted diets (6–7 MJ/day) that differed
in cholesterol content (590 mg or 213 mg) for 12 weeks [21]. Overall weight loss was 6.0 ± 0.4 kg,
indicating adherence to the prescribed energy reduction. In both studies, serum samples were isolated
and frozen at −80 ± 1 ◦C until used for AGE analysis. Both studies had ethics approval from the
human ethics committees of the Commonwealth Scientific and Industrial Research Organization.
All participants provided written informed consent before commencement.

2.2. Biochemical Analysis

The data for total cholesterol, LDL-cholesterol, high-density lipoprotein (HDL)-cholesterol,
triglycerides, glucose, and glycosylated haemoglobin A1c (HbA1c) were obtained from previous
studies [20,21].

2.3. CML Analysis

2.3.1. Sample Preparation

Serum (100 µL) was prepared by reduction with sodium borohydride and protein isolation with
trichloroacetic acid (20%) and then hydrolyzed with hydrochloric acid (6 M) at 110 ± 1 ◦C for 24 h as
previously described [2]. Each protein hydrolysate was subjected to solid phase extraction (SPE) using
preconditioned Supelco C18 cartridge (Sigma, St. Louis, MO, USA). The analyte of interest was eluted



Int. J. Environ. Res. Public Health 2017, 14, 1553 3 of 8

with 1% trifluoroacetic acid in methanol/water (20:80, 3 mL), dried under vacuum, and reconstituted
in acetonitrile (50%, 200 µL) prior to analysis.

2.3.2. CML Quantification Using RP-HPLC

Prior to HPLC injections, samples were derivatized with o-phthaldialdehyde/N-acetyl-L-cysteine
(OPA/NAC) as previously described [22]. Derivatized samples were injected (15 µL) onto an RP
C18 HPLC column (Aeris®, 2.1 × 150 mm, particle size 3.6 µm, pore size 200 Å; Phenomenex,
NSW, Australia). The column was heated to 37 ± 1 ◦C, and the sample was monitored with
a fluorescence detector at 340 nm Ex/450 nm Em. Acetonitrile (100%) was used as the mobile phase at
a flow rate of 0.7 mL/min over 10 min. Lysine (Lys) standards were also derivatized with OPA/NAC as
above before injection. The concentration of Lys and CML were determined from a 5-point calibration
standard curve of lysine (Sigma, St. Louis, MO, USA) and CML (Polypeptide Laboratories, France),
respectively. The standards were also subjected to SPE and measured in triplicates, while samples
were measured in duplicates. Results are presented as mmol CML/mol Lys.

2.4. Statistics

Data was analyzed using a Repeated Measures ANOVA in SPSS v22 (IBM, Armonk, NY, USA).
p < 0.05 was accepted as significant.

3. Results

3.1. The Effect of Weight Loss on Biochemical Characteristics and CML Levels

Samples were available from 49 (31 male, 18 female) participants who were 57 ± 9 years, had a BMI
of 32.7 ± 6.8 kg/m2 and lost 7.9 ± 4.1 kg of body weight. Total cholesterol, triglycerides, and glucose
were significantly decreased in these subjects, whereas no significant changes were seen in terms
of LDL-cholesterol and HDL-cholesterol (Table 1). HbA1c, an indicator of plasma protein glycation,
was significantly reduced (6.8 ± 0.7 to 6.2 ± 0.5, p < 0.001). CML values, a ratio between CML and lysine
after derivatization, in plasma are reported as mmol CML/mol Lys as previously reported [23,24].
Figure 1 represents an HPLC chromatogram of lysine and CML in standards and a sample. CML values
decreased by 17% after weight loss (Table 1). Participants with diabetes and pre-diabetes had a lower
CML at baseline (0.062 ± 0.009 vs. 0.081 ± 0.022 mmol CML/mol Lys p < 0.01) and a smaller change in
CML than overweight participants without diabetes (0.005 ± 0.015 vs. 0.017 ± 0.020 mmol CML/mol Lys,
p < 0.01). These differences were independent of gender, age, weight at baseline, and weight loss.

Table 1. The effect of weight loss on biochemical characteristics and CML values.

Parameters n Before Weight Loss After Weight Loss p-Value

TC (mmol/L) 39 4.9 ± 0.9 4.5 ± 0.9 <0.01
TG (mmol/L) 39 1.8 ± 0.8 1.4 ± 0.6 <0.001

HDL-cholesterol (mmol/L) 39 1.2 ± 0.3 1.3 ± 0.3 >0.05
LDL-cholesterol (mmol/L) 39 2.9 ± 0.8 2.7 ± 0.8 >0.05

Glucose (mmol/L) 41 6.8 ± 1.7 6.3 ± 1.1 <0.05
HbA1c (%) 29 6.8 ± 0.7 6.2 ± 0.5 <0.001

CML (mmol CML/mol Lys) 49 0.070 ± 0.017 0.060 ± 0.009 <0.001

Data are presented as mean ± SD. Total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol
(HDL-cholesterol), low-density lipoprotein cholesterol (LDL-cholesterol), glycosylated haemoglobin A1c (HbA1c),
Nε-carboxymethyllysine (CML).
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Figure 1. HPLC chromatographs of OPA/NAC derivatized standards and samples. (A) Lysine standards (0.25 mmol/L); (B) Lysine detection in plasma protein
(1:500 dilution); (C) Nε-carboxymethyllysine (CML) standards (0.25 mmol/L); (D) CML detection in plasma protein.
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3.2. Correlation Analysis

The correlation analysis indicated a weak but significant relationship between weight change and
change in HbA1c (−0.33, p < 0.05). However, no correlations between HbA1c and CML either before
(n = 35) or after weight loss (n = 30) or between CML change and change in HbA1c or weight change
and CML were observed.

4. Discussion

In this study, both HbA1c and CML significantly decreased after weight loss, suggesting
the possibility that energy restriction reduces AGE intake and thus lowers CML levels. However,
AGE levels in the diet were not measured, as the study was focused on macronutrient composition
for energy restriction. In this study, a weak but significant relationship was observed between weight
loss and HbA1c as in the previous report [25]. Plasma AGE concentration appears to be influenced by
dietary AGE intake, but previous studies have shown conflicting data on the relationship between
dietary AGE consumption and circulating CML levels [5,26–29].

As in the present study, Gugliucci and coworkers [18] found that AGEs were reduced after weight
loss but used plasma fluorescence to measure them rather than a more robust CML measure as used in
the present analysis. A low energy low AGE Mediterranean diet has been shown to decrease CML
levels by >30% in a single arm study after 3 kg of weight loss. Dietary quality as shown by an increase
in the Mediterranean Diet Score improved, but AGE intake was not calculated before or after the
diet [30]. In contrast, Sánchez and coworkers found that AGEs measured using skin autofluorescence
did not decrease following weight loss when measured five years after bariatric surgery [31]. However,
the authors suggest that this result was not unexpected, as protein turnover is a major determinant
of AGE accumulation in collagen and may be take up to 15 years [32], so the timeframe of the
study was not sufficient to see a decrease. In women with and without polycystic ovary syndrome,
both orlistat and a low-calorie diet decreased weight and AGE with an improvement in insulin
resistance after 6 months [33]. In these previous studies, AGEs/CML levels were reported based on
either fluorescence or immunoassays that yield only semi-quantitative results with uncertainty on
the specificity of the antibody used. In our study, CML, a specific AGE, was detected and quantified
in plasma proteins using analytical techniques. It is noteworthy that the participants with diabetes
and pre-diabetes had a lower CML at baseline and a smaller but significant change in CML after
12-week weight loss. Two homogenous trials involving long-term (6–16 weeks) interventions showed
that low-AGE diets reduced circulating CML concentrations in adults with type 2 diabetes [5,28].
In addition, our studies showed significant reduction in CML values in overweight but otherwise
healthy adults when subjected to 52 weeks of energy restricted diet. Long-term (16 weeks) dietary AGE
restriction significantly reduced circulating CML concentration in healthy adults [5,29]. Once again,
it is worth mentioning that CML concentrations in most of these previous studies were based on
immunological assays.

In this study, protein-bound plasma CML values were significantly reduced after weight loss.
As our study did not measure dietary CML levels, we are not certain that the reduction in plasma
CML values was achieved through a dietary reduction in AGE. Previous studies have shown that
protein-bound plasma CML may not be influenced by dietary AGEs [26,27,34], although the data are
conflicting (e.g., Uribarri et al., [35,36]), thus suggesting that another mechanism may be responsible for
the reduction in CML after weight loss. AGEs are generated in vivo as a normal process of metabolism,
but their formation is accelerated under conditions of hyperglycemia, hyperlipidemia, and increased
oxidative stress. Thus, CML could be generated through different pathways, including fructosamine
oxidation and reaction with lipid peroxidation-derived reaction products [9,37]. Other investigations
on energy restriction for weight loss have also shown significant reduction in lipid peroxidation
biomarkers, including malondialdehyde and isoprostane, suggesting a decrease in oxidative stress
status [25,38,39]. Taken together, it can be speculated that weight loss as seen in our studies may have
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reduced the probability of lipid-derived CML formation and reduced oxidative stress and eventually
led to less CML.

Reducing dietary intake of AGE may improve risk markers for cardiovascular disease as shown
in a recent meta-analysis of randomized controlled trials in which low AGE diets decreased insulin
resistance overall, decreased total and LDL-cholesterol in those without diabetes, and decreased
fasting insulin and C-reactive protein in people with type 2 diabetes [15]. Most of the studies included
in this meta-analysis are confounded on differences in the diet, disease state of the patients and
AGE species. In addition, dietary quality may be improved during weight loss as participants may
increase intake of fruits and vegetables and reduce fat intake [40]. However, improving dietary quality
alone did not reduce CML levels or plasma fluorescent AGEs despite an improvement in insulin
sensitivity [41] and a marked reduction in plasminogen activator inhibitor-1, which has been linked to
serum AGE levels [42].

The finding that participants with diabetes and pre-diabetes had a lower CML at baseline and
a smaller change in CML after weight loss was unexpected, and it is unclear as to why this may
have happened.

5. Conclusions

We conclude that weight loss appears to decrease AGE as measured by CML in overweight men
and to a lesser extent men and women with impaired glucose and type 2 diabetes. There is a clear need
for larger randomized studies of the effect of weight loss on different AGE species in people with and
without type 2 diabetes.
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