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Abstract: Gene-environment (GE) interaction has important implications in the etiology of
complex diseases that are caused by a combination of genetic factors and environment variables.
Several authors have developed GE analysis in the context of independent subjects or longitudinal
data using a gene-set. In this paper, we propose to analyze GE interaction for discrete and continuous
phenotypes in family studies by incorporating the relatedness among the relatives for each family
into a generalized linear mixed model (GLMM) and by using a gene-based variance component test.
In addition, we deal with collinearity problems arising from linkage disequilibrium among single
nucleotide polymorphisms (SNPs) by considering their coefficients as random effects under the null
model estimation. We show that the best linear unbiased predictor (BLUP) of such random effects
in the GLMM is equivalent to the ridge regression estimator. This equivalence provides a simple
method to estimate the ridge penalty parameter in comparison to other computationally-demanding
estimation approaches based on cross-validation schemes. We evaluated the proposed test using
simulation studies and applied it to real data from the Baependi Heart Study consisting of 76 families.
Using our approach, we identified an interaction between BMI and the Peroxisome Proliferator
Activated Receptor Gamma (PPARG) gene associated with diabetes.

Keywords: gene-environment interaction; generalized linear mixed model; variance component test;
score test; ridge regression; best linear unbiased predictor; family data

1. Introduction

Linear mixed models (LMM) have been used to find associations between continuous phenotypes
and genetic variants, genes, and gene-environment (GE) interactions in unrelated and related subjects
in genome-wide association (GWA) analysis. For unrelated subjects, the analysis can be performed
within the generalized linear model framework, however, for related subjects as in the case of family
data, one has to include the kinship matrix to take into account the correlation among the relatives
for each family. In this paper, we are interested in testing GE interaction for discrete phenotypes.
Generalized linear mixed models (GLMM) proposed by Breslow and Clayton [1] is an ideal statistical
approach to detect such an interaction with non-continuous phenotypes, because it can treat the
familiar effect on the phenotype as a random effect.

Gene-based GE interaction tests have previously been proposed for independent subjects [2–4].
While each GE interaction can be tested individually using one single nucleotide polymorphism (SNP)
at a time, it is known that single SNP association is not as powerful as the gene-based analysis [2]
due to the linkage disequilibrium (LD) present among the SNPs in a gene. Lin et al. [2] proposed
a variance component test (VCT) of the interactions by treating the interactions as a random effect.
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This approach was extended to sequencing data with rare variants [3,5]. To overcome multicollinearity
of the coefficients of the genetic markers, Lin et al. [2,3] applied ridge regression penalization of SNP
coefficients and estimated the ridge penalty parameter with generalized cross-validation. However,
this method is computationally demanding and their final test ignores the tuning of the ridge penalty
parameter. Coombes [6] instead proposed treating the genetic coefficients as a random effect in a linear
mixed model framework to perform the ridge penalization. This equivalence was initially proposed
by Bishop and Tipping [7,8] for Bayesian ridge regression in linear models framework. While this
approach was able to incorporate the ridge penalty into the test statistic, it was only developed for
a quantitative phenotype [6].

Here, we propose a GLMM GE interaction framework for discrete and continuous phenotypes
that treats the coefficients of genetic markers as random effects. Also, because the correlation among
relatives cannot be ignored, this modeling framework incorporates the kinship matrix in the GLMM [9].
We test for GE interaction between a set of SNPs and an environment by treating interaction coefficients
as random effects using a VCT. Our proposed model includes three random effects: the first for
genetic variants, the second for gene-environment interaction, and the third for the inclusion of
families. In the methods section, we develop the framework for this model. We present the VCT as
proposed by Lin [10] in the presence of several random effects and adapt this VCT to accommodate the
interactions [11]. We also prove that the corresponding best linear unbiased predictor (BLUP) in our
GLMM model is equivalent to the ridge regression estimator, as proposed by Shen et al. [12]. In our
simulations, we show that our model can be efficiently computed using the GMMAT package [13] in R
and maintains appropriate type I error as well as sufficient power. Finally, we apply our methodology
to test for genetic interactions with BMI associated with diabetes among the Baependi Heart Study [14],
which consists of 76 families of varying pedigree size.

2. Methods

2.1. Generalized Linear Mixed Model

GLMMs have been widely applied in situations where the outcome is discrete and random
components are involved in the linear predictor. GLMMs, as proposed by Breslow and Clayton [1],
link a response variable yi, for i = 1, . . . , n, with vectors xi and zi of explanatory variables associated
with the fixed and random effects. Given a r-dimensional vector d of random effects, the model is given
by g

(
µd

i

)
= xT

i β + zT
i d, where g(.) is known as the link function and µd

i = E(yi|d) is the conditional

mean. The conditional variance is given by Var(yi|d) = φωiν
(

µd
i

)
, with ν(.) is a known function, φ is

a scale parameter and ωi are known weights. Denoting the observation vector by y = (y1, . . . , yn)
T

and the design matrices with rows xT
i and zT

i by X and Z, the general formulation of GLMM is given by

g
(

µd
)
= Xβ + Zd (1)

with µd = (µd
1, . . . , µd

n)
T , and where d is assumed multivariate normal distributed with mean 0 and

covariance matrix D = D(π) depending on an unknown vector π of variance components.

2.2. Generalized Linear Mixed Model with Gene-Environment

To set up the GLMM to model GE interaction in families, assume we have a random sample of
N independent families from a study population, with ni members in the ith family such the total
number of individuals is n = ∑N

i=1 ni. For the jth member in the ith family, let Yij be a discrete or
continuous response variable for the phenotype of interest, Xij = (X1

ij, . . . , Xp
ij)

T , with p equal to the

number of non-environmental covariates, Gij = (G1
ij, . . . , Gq

ij)
T with q equal to number of observed
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genotypes for SNPs in a gene, Eij the environmental variable of interest, and Sij = (EijG1
ij, . . . , EijG

q
ij)

T

the GE interaction. The GE interaction GLMM for families may be written as

g
[
E(Yij|αij)

]
= XT

ij β1 + Eijβ2 + GT
ij θ+ ST

ij γ + αij

Var(Yij|αij) = φω−1
ij ν

[
E(Yij|αij)

]
αi = (αi1, . . . , αini )

T ∼ N(0, 2σ2Φi)

(2)

where g(.) is a monotone known function, Yij|αij follows a distribution in the exponential family, ν(.) is
a known function, φ is a scale parameter that may be known or may need to be estimated, ωij are
known weights (commonly equal to 1), Φi is the kinship matrix, and σ2 is a parameter to be estimated.

Equation (2) can be rewritten using the Cholesky decomposition of the kinship matrix for the ith
family 2Φi = KiKT

i and assuming that αi = Kibi with bi ∼ N(0, σ2 Ini ), where Ini denotes a (ni × ni)

identity matrix. Then, the family model is given by

g
(

µb
i

)
= Xiβ1 + Eiβ2 + Giθ+ Siγ + Kibi (3)

with µb
i = E(Yi|bi), g(µb

i ) = (g(µb
i1), . . . , g(µb

ini
))T , Xi = [Xi1 . . . Xini ]

T , Gi = [Gi1 . . . Gini ]
T ,

Ei = (Ei1, . . . , Eini )
T , and Si = [Si1 . . . Sini ]

T .
To simplify the computational burden in the estimation process, we generalize Equation (3),

by redefining its vectors and matrices as: µb = E(Y |b), X = [X1 . . . XN ]
T , G = [G1 . . . GN ]

T ,
E = (E1, . . . , EN)

T , S = [S1 . . . SN ]
T , K = diag{K1 . . . KN} and b = [b1 . . . bN ]

T , and

g
(

µb
)

= X̃β + Gθ+ Sγ + Kb (4)

with X̃ = [X E]T and β = (βT
1 , β2)

T . Our goal is to test the null hypothesis H0 : γ = 0 that the gene of
interest has no GE interaction associated with response.

3. Proposed GE Interaction Test

As mentioned by Lin et al. [2], to treat γ as a fixed vector and proceed with a p degrees of
freedom (DF) score test can result in loss of power to test for interaction. Another common strategy is
to use a single SNP analysis of GE interaction, which assumes all SNPs are uncorrelated, however, this is
usually not the case. In the majority of cases, the SNPs within a gene are highly correlated, thus, here we
propose a test that accounts for correlation among SNPs and has uses less DF than the score test.

Using Equation (4), our proposed test assumes γ is a random vector following an arbitrary
distribution with mean 0 and variance τIq. Thus, a test of the null hypothesis H0 : τ = 0 is equivalent
to testing H0 : γ = 0. For simplicity, we assume γ ∼ N(0, τIq).

In order to account for LD among SNPs in a gene and avoid estimation issues related to
multicollinearity, we use a ridge regression approach to impose a penalty on θ in the PQL proposed
for GLMM [1]. However, the selection of a penalty parameter can be computationally demanding [2].
Thus, to expedite and incorporate the selection of a penalty parameter used in our proposed test,
we specify d1 = Gθ, as a random effect in Equation (4), with θ ∼ N(0, σ2

θ Iq). By using this approach,
we demonstrate later in Section 3.1, under the null model, the best linear unbiased predictor (BLUP) of
d1 is equivalent to the ridge regression estimator. Denoting d2 = Kb and d3 = Sγ, and assuming d1,
d2 and d3 to be independent, we can write Equation (4) in the GLMM form as

g
(
µd) = X̃β + d1 + d2 + d3

= X̃β + Zd
(5)

with Z = [In In In], where In is the (n × n) identity matrix and d =
(
dT

1 , dT
2 , dT

3
)T ∼ N(0, D),

where D = diag
{

σ2
θ

(
GGT) , σ2 (KKT) , τ

(
SST)}.
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Based on the penalized quasi-likelihood (PQL) [1], Lin [10] developed a VCT for independent
subjects in the framework of a GLMM. To test the null hypothesis H0 : τ = 0, the VCT uses the
score statistic

Uτ

(
β̂, π̂

)
=

1
2

{(
Ỹ − X̃β

)T
Σ−1SSTΣ−1 (Ỹ − X̃β

)
− tr

(
Σ−1SST

)} ∣∣∣∣
β̂, π̂

(6)

where β̂ and π̂ are the maximum likelihood (ML) estimators for β and π = (σ2
θ , σ2, φ)T ,

respectively, under the null model as described in Section 3.1. In addition, Ỹ = X̃β + d1 + d2 + ε is
the corresponding working vector, where ε ∼ N(0, φW−1) and W = diag

{
ωij/

[
ν(µd

ij)g′(µd
ij)

2
]}

is

calculated under the null model, where g′(.) denotes the derivate of function g(.). The covariance
matrix for the working vector Ỹ is given by Σ = σ2

θ GGT + σ2KKT + φW−1.

Since SST does not have a block diagonal structure, the score Uτ

(
β̂, π̂

)
cannot be written as

a sum of N independent random variables, corresponding to the families. Therefore, the asymptotic
distribution of Uτ

(
β̂, π̂

)
is not a normal distribution, in contrast to the VCT of Lin [10].

Instead, we follow the approach developed by Zhang and Lin [11], and propose, as score statistic,
the first term in Equation (6), which corresponds to the quadratic form

Uτ = Uτ

(
β̂, π̂

)
=

1
2

{(
Ỹ − X̃β

)T
Σ−1SSTΣ−1 (Ỹ − X̃β

)} ∣∣∣∣
β̂.π̂

To correct for bias, we use the restricted maximum likelihood (REML) estimators [1] in the GLMM
framework to obtain β̂ and π̂ under the null hypothesis.

Zhang and Lin [11] showed that under H0 : τ = 0, Uτ follows approximately a mixture of one
degree of freedom, independent chi-square distributions. However, for computational ease, we use the
Satterthwaite method [15] to approximate the distribution of Uτ by a scaled chi-square distribution
κχ2

ξ , where the scale parameter κ and the degrees of freedom ξ can be calculated by equating the mean
and variance of Uτ to those of κχ2

ξ .
When REML estimates are used to calculate Uτ , Zhang and Lin [11] showed that the mean and

variance of Uτ can be approximated, respectively, by

tr
(

PSST
) ∣∣∣∣

π̂

and Iτ =
1
2

{
tr(PSSTPSST)− JT M−1 J

} ∣∣∣∣
β̂,π̂

, with

J =


tr[PSSTPGGT ]

tr[PSSTPKKT ]

tr[PSSTPW−1]

 , M =


tr[PGGTPGGT ] tr[PGGTPKKT ] tr[PGGTPW−1]

tr[PKKTPGTG] tr[PKKTPKKT ] tr[PKKTPW−1]

tr[PW−1PGTG] tr[PW−1PKKT ] tr[PW−1PW−1]


and P = Σ−1 − Σ−1X̃

(
X̃TΣ−1X̃

)−1 X̃TΣ−1.
Dashed lines in J and M represent the cases: (i) φ known, implying a (2× 1) vector and (2× 2)

matrix, respectively and (ii) φ unknown, implying a (3× 1) vector and (3× 3) matrix, respectively.
As the mean and variance of κχ2

ξ are given by κξ and 2κ2ξ, respectively, we obtain the equations

tr(P̂SST) = κξ and Iτ = 2κ2ξ, where P̂ denotes the matrix P evaluated in π̂. By solving these

equations, we demonstrate that κ = Iτ/[2 tr(P̂SST)] and ξ = 2
[
tr(P̂SST)

]2
/Iτ .

Therefore, to test H0 : τ = 0, we propose the statistic

Tτ = Tτ

(
β̂, π̂

)
=

Uτ

(
β̂, π̂

)
κ

(7)
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which follows approximately a chi-square distribution with ξ degrees of freedom.

3.1. Null Model Estimation

Our proposed score test requires that we first fit the null model. Under the null hypothesis
H0 : τ = 0, Equation (5) becomes

g
(

µd0
)

= X̃β + Z0d0 (8)

where d0 = (dT
1 , dT

2 )
T , Z0 = [In In] and d0 ∼ N(0, D0) with D0 = diag{σ2

θ

(
GGT) , σ2 (KKT)}.

To estimate the parameters in Equation (8), Breslow and Clayton [1] proposed a Fisher scoring
solution that may be expressed as the iterative solution to the system[

X̃TWX̃ X̃TWZ0

ZWX̃ φD−1
0 + ZT

0 WZ0

](
β

d0

)
=

(
X̃TWỸ
ZT

0 WỸ

)
(9)

This system is equivalent to the so called Henderson equations [16] for computing the best linear
unbiased estimator (BLUE) of β and the best linear unbiased predictor (BLUP) of d0.

By re-expressing d0 to (dT
1 , dT

2 )
T in Equation (9), we obtain the system X̃TWX̃ X̃TW X̃TW

WX̃ φ

σ2
θ

(GGT)−1 + W W

WX̃ W φ

σ2 (KKT)−1 + W


 β

d1

d2

 =

 X̃TWỸ
WỸ
WỸ

 (10)

This new system is equivalent to using a ridge regression penalization for parameter θ in
Equation (4) (see Appendix A for details). Assuming that π = (σθ , σ, φ)T is known, it can be shown
that the solution of Equation (10) is given by the following equations:

β̂ = (X̃TΣ−1X̃)−1X̃TΣ−1Ỹ

d̂0 =

(
d̂1

d̂2

)
= DZTΣ−1(Ỹ − X̃ β̂)

=

 σ2
θ

(
GGT)Σ−1(Ỹ − X̃ β̂)

σ2 (KKT)Σ−1(Ỹ − X̃ β̂)


(11)

with Σ = σ2
θ GGT + σ2KKT + φW−1. Chen et al. [17] fitted their GLMM by defining, ds = (d1 + d2),

and assuming ds ∼ N
(
0,
[
σ2

θ GGT + σ2KKT]). However, the BLUP for ds is identical to the sum of
BLUPs in Equation (11). Therefore, we use their PQL-based estimation algorithm implemented in the
R package GMMAT (see Chen et al. [17] and Chen and Conomos [13] for details) to estimate our null
model. The iterative process uses REML to estimate the variance parameters vector π used in the score
statistic Equation (7).

4. Simulations

For our simulations, we used SimPed [18] to generate 100 SNPs (50 independent and 50 in LD) for
1000 independent families with identical pedigree structures of size 10 Figure 1. For each simulation,
we randomly sampled without replacement 100 families to obtain a sample of 1000 individuals.

The environment was simulated to be correlated within a family and depend on age and sex of
the subject using the following model with parameters chosen to mimic our real data example:

Eij = 2 + 0.01Ageij + 0.1I(Femaleij) + γi + εij (12)
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where I(·) is the indicator function, εi = (εi1, . . . , εi10)
T ∼ N(0, 4I10) where I10 is the (10× 10) identity

matrix, and γi ∼ N(0, 4).

1 2

3 4 6 9 5

7 8 10

Figure 1. Pedigree for simulated data. Circle = Female, Square = Male.

In our simulations, we considered a SNP-set with 50 independent SNPs or in LD. The correlation
structure for the SNPs in LD is shown in Figure 2. Using the R package SimCorMultRes [19],
we simulated a correlated binary phenotype dependent on family using the following mean structure:

logit
[
P
(
Yij = 1|Ageij, Femaleij, Eij, G1ij, G2ij

)]
= 0.1 + 0.01Ageij + 0.1I(Femaleij)

+0.1Eij + 0.3G1ij + 0.3G2ij + γ1(G1ij × Eij) + γ2(G2ij × Eij) + αij

with αi = (αi1, . . . , αi10)
T ∼ N(0, 2σ2Φi), where Φi is the kinship matrix corresponding to the family

pedigree in Figure 1. Given SimCorMultRes only allows for specification of the correlation matrix, σ2 is
set equal to 1. G1ij and G2ij are either independent SNPs (MAF = 0.3 and 0.1) or the first and fifth
SNPs with MAF = 0.3 and 0.17 respectively from Figure 2. Note that only the SNPs with a main effect
interact with the environment in our model. We generated 10,000 and 1000 datasets to estimate type I
error and empirical power, respectively, at an α = 0.05 level. Using these datasets, we compared the
performances of the score test, MinP test, and our proposed VCT. As previously mentioned, the score
test treats γ as a fixed vector and results in a p DF test. The null model for this test was estimated as
specified in Section 3.1. For the MinP test, which represents a single SNP analysis of GE interaction,
we independently model the single SNP-by-environment interaction using Equation (4) where G
and S are a vector, rather than a matrix, for a SNP and GE interaction, respectively. For each model,
we calculated the p-value for the test of interaction and found the minimum p-value among all tests.
We corrected for multiple testing by multiplying by the number of effective SNPs in the gene [20].
In the case of independence, the number of effective SNPs would be equivalent to the number of SNPs
in the gene.
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Figure 2. Correlation of the 50 simulated single nucleotide pollymorphisms (SNPs) in linkage
disequilibrium (LD). The vertical color line to the right indicates the level of correlation between
the SNPs. The dark blue (red) means high positive (high negative) correlation and the light blue (red)
means low positive (low negative) correlation.

4.1. Type I Error

We first compared the empirical type I error of the different methods at 0.05 α-level. To evaluate
type I error, we set γ1 = γ2 = 0 and varied the number of SNPs q in the gene. The SNPs were either
independent or in LD. The empirical type I error rates are shown in Table 1 as well as the mean
of the fitted σ̂2, σ̂2

θ , and λ̂ = 1/σ̂2
G parameters from Equation (8) across all simulations. While the

variance component for the random effect defined by the kinship matrix stays approximately constant,
the penalization term λ̂ increases as the number of SNPs in the model increases. Thus, like in ridge
regression, increasing the number of parameters results in an increased penalization of the model.
All of the methods were conservative in our simulations, but as q increased, the score test became
useless due to the large DF of the test.

Table 1. Type I error at 0.05 α-level for each method depending on the number of SNPs q and whether
the SNPs are independent or in LD. Two of the SNPs in each scenario have a main effect.

SNPs Category q σ̂2 σ̂2
θ λ̂ = 1/σ̂2

G Score MinP VCT

Independent
5 1.247 0.034 29.4 0.020 0.031 0.034

10 1.240 0.017 58.8 0.023 0.026 0.024
50 1.222 0.003 333 0.004 0.022 0.014

LD
5 1.243 0.021 47.6 0.025 0.026 0.031

10 1.239 0.009 111 0.004 0.034 0.030
50 1.222 0.002 500 0.000 0.028 0.022

4.2. Empirical Power for Independent SNPs

We next compared the empirical power of the different methods with either five, 10, or 50
independent SNPs. We varied the amount of interaction for the two selected SNPs by varying γ1 = γ2

from 0 to 0.1 by 0.01. Figure 3 shows that as the number of SNPs in the model increases, each of the
methods lose power due to the increase in DF of each test. While the VCT performs best with five or



Int. J. Environ. Res. Public Health 2017, 14, 1134 8 of 13

10 SNPs, the MinP test performs best for 50 SNPs because only two out of 50 SNPs have interaction.
The MinP test will always perform best if very few of the SNPs in the set have interaction.
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Figure 3. Empirical power at 0.05 α-level of the methods for q independent SNPs of which two of
the SNPs have a main effect. The same two SNPs have an equal interaction with the environment.
(a) q = 5 independent SNPs; (b) q = 10 independent SNPs; (c) q = 50 independent SNPs.

4.3. Empirical Power for SNPs in LD

Finally, we compared the empirical power of the different methods with either five, 10, or 50 SNPs
in LD. We varied the amount of interaction for the two selected SNPs by varying γ1 = γ2 from 0 to
0.1 by 0.01. Figure 4 shows that as before, each of the methods lose power as q increases. The VCT
outperforms the MinP test in all scenarios because the SNPs are correlated which the MinP test fails to
account for.
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Figure 4. Empirical power at 0.05 α-level of the methods for q correlated SNPs of which two of
the SNPs have a main effect. The same two SNPs have an equal interaction with the environment.
(a) q = 5 correlated SNPs; (b) q = 10 correlated SNPs; (c) q = 50 correlated SNPs.
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5. Application to Baependi Data

We use our proposed method to test for GE interactions in the Baependi Heart Study [14] between
BMI and three different candidate genes that may be associated with type II diabetes (T2D). The first
candidate gene we studied was the Peroxisome-Proliferator-Activated Receptors gamma (PPARG)
gene, which is a key regulator of adipocyte differentiation and energy balance. Two of the mutations
in the PPARG gene have been shown to be associated with obesity or diabetes-related phenotypes in
different populations [21]. PPARG2, the predominantly isoform of PPARG, is expressed selectively and
at a higher level in adipose tissue, where it modulates the expression of target genes implicated in
adipocyte differentiation and glucose homeostasis [22]. Thus, the PPARG2 gene is a major candidate
gene for T2D or obesity, both being complex phenotypes determined by the combination of multiple
genetic and environmental factors [23,24]. The second candidate gene studied was the Fat Mass and
Obesity associated protein (FTO), which confers risk for obesity and BMI. Since obesity is known to
be a predisposing factor for the development of T2D, it is not surprising that variants in FTO have
been also found in T2D GWAS [25]. The final candidate gene studied was the cyclin-dependent kinase
5 regulatory subunit associated protein 1-like 1 (CDKAL1) gene which confers risk for obesity and
T2D [26]. In our study, the PPARG, FTO, and CDKAL1 genes had 16, 149, and 186 genetic variants
genotyped, respectively. However these numbers of SNPs do not represent the number of effective
SNPs discussed in Gao et al. [20], that is equivalent of the number of principal components to reach
99.5% of their total variation. Then, the effective number of SNPs associated with the PPARG, FTO,
and CDKAL1 genes are 10, 93, and 92, respectively. We used Equation (5) to specify a logistic GLMM to
test for GE interaction of the aforementioned genes with BMI associated with T2D status (case/control).
Our model included age, sex, and the first two principal components of the entire genotype data of
Baependi data as covariates. Due to some individuals missing genotype information for some SNPs,
the tests of each gene had different sample sizes. Table 2 describes the sample sizes (number of subjects
and number of families) for cases and controls included in analysis of each gene.

Table 2. Summary of cases per subjects and families.

Gene
Subjects Families

Control Cases Total Control Cases Total

PPARG 845 83 928 43 42 85
FTO 712 71 783 47 38 85

CDKAL1 661 69 730 47 38 85

In Table 3, we report the p-values for each method. By comparing the p-values with respect to
the corresponding α level, only the VCT identifies a significant GE interaction of BMI with PPARG.
All other tests were non-significant for this gene as well as for other candidate genes.
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Table 3. Sample size, GLMM parameters, p-values and execution times for the analysis of the
Baependi dataset.

Gene SNPs Total Subjects
GLMM Parameters

Test p-Value α Level Time (s)
σ̂2 σ̂2

θ λ̂ = 1/σ̂2
G

VCT 0.028 0.05 18.420
PPARG 16 928 0.4463 0.0029 344.8276 MinP 0.019 * 0.005 100.261

Score 0.595 0.05 9.025

VCT 0.451 0.05 12.958
FTO 149 783 0.3710 0.0033 303.0303 MinP 0.031 * 0.0005 2675.907

Score 0.992 0.05 6.197

VCT 0.635 0.05 9.907
CDKAL1 186 730 0.0918 0.0111 90.0901 MinP 0.040 * 0.0005 1755.881

Score 0.915 0.05 4.257

* Compare MinP test p-value with the corresponding corrected α, obtained by dividing 0.05 for the number of effective
SNPs (which is equivalent to the number of principal components that reach 99.5% of the their total variation): 10 for
PPARG, 93 for FTO and 92 for CDKAL1.

The variance estimates for families σ̂2 and the ridge penalty σ̂2
θ are reported in Table 3. In Section 4,

we showed that the ridge penalty increases as the number of SNPs increases, however, our results for
PPARG, FTO and CDKAL1 suggest that λ also depends on the number of subjects. Finally, Table 3 also
shows the execution times using the R version 3.3.1 and a processor Intel(R) Core(TM) i5-6500 CPU @
3.20 GHz with a RAM memory 8.00 GB and operating system 64-bits. Computation times for the VCT
and the score test were considerably lower than those for the MinP test. The time to compute each test
increased with the increase in number of SNPs in a gene and number of subjects in the analysis.

6. Conclusions

We have proposed a variance component score test for testing for interactions between a set of
SNPs in a gene and an environmental variable with family data. We specified the interaction coefficients
as random variables with common variance and evaluated the null hypothesis that the variance is equal
to zero. Given the LD among some SNPs in a gene, we fit the null model assuming the SNP coefficients
as random effects and showed that the corresponding BLUP was equivalent to ridge regression
estimator. This approach gives a direct estimation for the ridge penalization parameter in comparison
with other computationally demanding procedures based on cross validation [2]. We compared,
via simulations and a real data application, our approach with the so called MinP test and also with
the traditional q degrees of freedom score test. The results showed that the proposed test is robust and
performs well, with considerable power. Simulations and application presented in this paper were
done assuming a binary phenotype and a continuous environmental variable, however, the GLMM
admits phenotypes with distribution belonging to the exponential family. These other distributions are
currently unexplored in this paper. In addition, it is possible to have multiple environmental factors
as well as environmental factors that are discrete. The proposed model can easily incorporate these
cases. It is important to note that the proposed model does not account for a possible correlation of the
environment among family members. A possible extension of this work is to include in the GLMM
a shared household factor by adding a random effect that follows a normal distribution with mean
vector zero and with variance the matrix that characterizes household sharing. Finally, using GLMMs
can be computationally intensive and may experience convergence issues. In the future, we plan to
explore using generalized estimating equations as an alternative approach to testing for interactions
in families.
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Abbreviations

The following abbreviations are used in this manuscript:

LMM Linear Mixed Model
GLMM Generalized Linear Mixed Model
GE Gene-Environment
SNP Single Nucleotide Pollymorphism
BLUP Best Linear Unbiased Predictor
PPARG Peroxisome Proliferator Activated Receptor Gamma
GWA Genome Wide Association
LD Linkage Disequilibrium
VCT Variance Components Test
ML Maximum Likelihood
REML Restricted Maximum Likelihood
PQL Penalized Quasi-Likelihood

Appendix A. Ridge Regression and BLUP Equivalence in GLMM

Using the same notation of Section 2.2, where d2 = Kb, the Equation (4) under the null hypothesis
H0 : γ = 0 becomes to

g(µd2) = X̃β + Gθ+ d2

with µd2 = E(Y |d2). Following Breslow and Clayton [1], the penalized quasi-likelihood (PQL) for this
model is given by

ql(β, θ, φR, σR) = −1
2

log
∣∣∣∣ σ2

R
φR

(KKT)WR + In

∣∣∣∣
+

N

∑
i=1

ni

∑
j=1

qlij(β, θ, φR; d̃2)−
1
2

d̃T
2

(
σ2

RKKT
)−1

d̃2

with d̃2 is choosen to maximize the sum of the last two terms, WR = diag
{

ωij/
[
ν(µd2

ij )g′(µd2
ij )

2
]}

and

qlij(β, θ, φR; d2) =
∫ µ

d2
ij

Yij

ωij(Yij − µ)

φRν(µ)
dµ

Subindex R denotes that the parameters are being estimated under Ridge regression method.
We maximize the PQL with respect to β, θ and d2 = d̃2 jointly, obtaining the partial derivates

∂ql(β, θ, φR, σR)

∂β
=

1
φR

X̃TWR∆R(Y − µd2)

∂ql(β, θ, φR, σR)

∂θ
=

1
φR

GTWR∆R(Y − µd2) (A1)

∂ql(β, θ, φR, σR)

∂d2
=

1
φR

WR∆R(Y − µd2)−
(

σ2
RKKT

)−1
d2
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with ∆R = diag
{

g′
(

µd2
)}

(see Chen et al. [17] for details). Ridge regression estimator of θ is obtained
by minimizing the function

[ql(β, θ, φR, σR)× φR]−
1
2

λθTθ

where λ is a penalizing factor and function ql(β, θ, φR, σR) is multiplied by φR to be consistent with
the definition of ridge regression estimator under normality [27]. Therefore, the second line of
Equation (A1) becomes

∂ql(β, θ, φR, σR)

∂θ
= GTWR∆(Y − µd2)− λθ

and the system of equations is therefore

X̃TWR∆R(Y − µd2) = 0

GTWR∆R(Y − µd2)− λθ = 0 (A2)

WR∆R(Y − µd2)− φR

σ2
R

(
KKT

)−1
d2 = 0

and left-multiplying by (GGT)−1G the second line of Equation (A2), we have

X̃TWR∆R(Y − µd2) = 0

WR∆R(Y − µd2)− λ(GGT)−1Gθ = 0 (A3)

WR∆R(Y − µd2)− φR

σ2
R

(
KKT

)−1
d2 = 0

But ∆R(Y − µd2) = Ỹ − X̃β−Gθ− d2, so the Equation (A3) becomes

X̃TWRX̃β + X̃TWRGθ+ X̃TWRd2 = X̃TWRỸ

WRX̃β + [WR + λ(GGT)−1]Gθ+ WRd2 = WRỸ (A4)

WRX̃β + WRGθ+

[
WR +

φR

σ2
R

(
KKT

)−1
]

d2 = WRỸ

and denoting d1 = Gθ, we have the matricial representation of Equation (A4) X̃TWRX̃ X̃TWR X̃TWR
WRX̃ WR + λ(GGT)−1 WR

WRX̃ WR WR + φR
σ2

R
(KKT)−1


 β

d1

d2

 =

 X̃TWRỸ
WRỸ
WRỸ


which is equivalent to the Equation (10), where d1 is assumed as a normal random effect with mean 0
and variance σ2

θ GGT and, also, the penalization factor λ is identical to φ/σ2
θ .
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